Low-carbon, Recyclable, Biobased Foam Insulation

Oak Ridge National Laboratory Diana Hun, Group Leader | Building Envelopes Group Zoriana Demchuk, R&D Associate Staff | Soft Matter Group 865-574-5139, hunde@ornl.gov BTO-03.04.06.97, DE-FOA-0002099

Project Summary

<u>Objective</u>: Reduce embodied carbon of thermoset foam insulation

Outcome:

Thermoset foam insulation

- R-value ≥6/inch
- 50% lower embodied carbon
- Recyclable through low energy thermal process

Team and Partners

- Building Envelope Materials Research Group
- Soft Matter and Membranes Group

Stats

Performance Period: 10/1/21 to 9/30/24 DOE budget: \$900K

<u>Milestone 1</u>: Synthesize polymer foams with dynamic covalent bonds that have at least 60% negative carbon content

<u>Milestone 2</u>: Fabricate 4×4 -inch polymer foam samples that have at least 5% reduction in embodied energy and R-value ≥ 3.5 /inch.

<u>Milestone 3</u>: Fabricate $4 \times 4 \times 3/8$ -inch polymer foam with longterm R-value ≥ 6 /inch, compressive strength ≥ 15 psi, $\geq 50\%$ reduction of embodied energy, and recyclable with 95% of original toughness.

Problem

- Polymer-based foam insulation
 - $\sim 1/3$ of North American thermal insulation market*
 - Primarily petroleum-based polymers and blowing agents with high global warming potential (GWP)
 - Higher embodied CO_2 than other insulation materials
- Efforts to decrease embodied carbon primarily focus on low GWP blowing agents
- Biopolymers
 - Plants sequester ~1.83 kg of CO_2 per 1 kg of biomass growth
 - Used in paints, coatings, and lacquers
 - Limited use in biobased foam insulation

*https://www.grandviewresearch.com/industry-analysis/insulation-market ** RMI

State-of-the-Art for Biobased Foam Insulation

Commercial Polyurethane (PU) Biobased Foams

- R6/in to R7/in
- Uses isocyanate
 - Can cause skin sensitization, asthma, skin or mucous membrane irritation
 - Personal protective equipment needed
- ~22% biobased content
 - $_{\circ}$ 20% max lower embodied carbon
- Non-recyclable

Biobased Foams from the Literature

- Examples
 - $_{\odot}\,$ PU foams with biobased polyols
 - \sim 30% max lower embodied carbon
 - Extruded polylactic acid-based foam
 - Cellulose-based foams
- Challenges
 - \circ <R4/in
 - <15 psi compressive strength
 - \circ Non-recyclable

Do not meet R/in and compressive strength of commercial foams

Goals

- R-value ≥6/inch
- ~50% lower embodied CO_2 than PU foam with low GWP blowing agents
- Recyclable via thermal processes with low energy intensity
- Nontoxic components and emissions
- Applications
 - Boards
 - Spray applied

Alignment and Impact

Successful biobased foam insulation

- Produced with current manufacturing practices
- Similar cost as PU foam with low GWP blowing agents

Contribution to EERE/BTO goals

- Heat transfer thru opaque envelope responsible for ~7% of US primary energy use
- New biobased foam insulation will reduce <u>both</u> embodied and operation carbon emissions

EERE/BTO's vision for a net-zero U.S. building sector by 2050

Increase building energy efficiency

Reduce onsite energy use intensity in buildings 30% by 2035 and 45% by 2050, compared to 2005

Accelerate building electrification

Reduce onsite fossil -based CO₂ emissions in buildings 25% by 2035 and 75% by 2050, compared to 2005

Transform the grid edge at buildings

Increase building demand flexibility potential 3X by 2050, compared to 2020, to enable a net-zero grid, reduce grid edge infrastructure costs, and improve resilience.

Concept

Specifications

Biobased Insulation properties: R ≥6/inch

Foam

Embodied carbon ~50% < PU foam made with low GWP blowing agent

Recyclable through process with low energy intensity

Compressive strength \geq 15 psi

Gelation time = 2 - 5 min

No toxic emissions, safe for customers

Compatible with current foam manufacturing practices

Low energy manufacturing process

Low Embodied Carbon Foams

AESO Acrylated Epoxidized Soybean Oil

- High biocarbon content (>90 %)
- Readily available
- Eco-friendly (i.e., not volatile)
- Biodegradable

Crosslinking agent (Amines)

- Preferably biobased
- Highly reactive

Blowing agent

- Low GWP
- Miscible with polymer matrix

Challenges, Risks, Commercialization, Validation

Technical challenges

- Applying new chemistry to foam fabrication
 - Chemical reactivity
 - Processing
 - Aging

Risks and mitigation strategies

- New chemistry not adopted by foam industry
 - Consult with manufacturers to ensure that new formulation(s) meet their requirements
- Availability of biobased feedstock
 - Use feedstock with known structure and composition and production that can be expanded based on demand
- Misconception that polymer-based, biobased materials are prone to mold growth and fast deterioration
 - Biodegradability occurs at conditions that typical building materials are not expected to perform in
 - Mold growth does not depend on material source (bio- vs. petro-based)

Stakeholder engagement

- Advisory group
 - Suppliers of biobased building blocks
 - Manufacturers of foam boards
 - Spray foam equipment suppliers
- Advise on feedstock availability and manufacturing requirements
- Participated in IMPEL 2023 to develop and articulate value proposition

Validation

 Perform LCAs throughout the foam development process to ensure that the pursued approaches can attain the targeted embodied carbon reductions

Progress: Initial Prototype Development

Progress: Morphology of Preliminary Biobased AESO Foams

Target > 95 %

- Attained high porosity and uniform pore distribution
- Open-cell structure from initial trials
- ~R3.5/in

Progress: Recyclability

- AESO foams have dynamic covalent bonds that allow recyclability with certain triggers
- Low-energy recycling steps
 - <160 °C
 - 15-30 min
- New products
 - Elastic films for adhesives or membranes
 - Stretch goal: Insulation foam

Progress: Compressive Strength and Storage Modulus

- Cadaverine has significant impact on the mechanical performance of AESO foams
- Aromatic curing agents will be evaluated to increase compressive properties of AESO foams

Progress: Thermal Stability

Foam	Т _{5 %} , °С	Т _{50 %} , °С
Commercial polyiso	178	312
Bioisofoam (ref.)	222	381
AESO-EDR foam	219	<mark>394</mark>

Biobased AESO foam is more resistant to higher temperatures than commercial polyiso foam

Progress: Effect From Blowing Agents (BA)

Cher	nical	BA

- 5% PHMS*
- R2.4/inch
- 10.9 lbs/ft³

- Chemical and Physical BAs
 - 5% PHMS8 + 15% low GWP physical blowing agent
 - R3.9/inch
 - 9.49 lbs/ft³

*PHMS-polymethylhydrogensiloxane

Generated sufficient data for proof of concept and filing of invention disclosure #202305321

Targeted R-value ≥6/inch Targeted density ≤2 lbs/ft³

Future Work

Thank you

Oak Ridge National Laboratory Diana Hun, Group Leader Zoriana Demchuk, R&D Associate 865-574-5139, hunde@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 60,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

236 publications in FY22
125 industry partners
54 university partners
13 R&D 100 awards
52 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Na	Deliverable/Milestones	Year 1			-	Year 2				Year 3			
No.		Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1: Ider	ntify at least 3 main renewable bio-materials and 2-3 chemical reaction approaches that are suitable	e for the	e produ	iction o	f recyc	lable po	olymer	insulati	on foan	ns			
M1	Selected at least 3 different bio-resource and 2-3 different chemical approaches												
Task 2: Pro	totype Development												
M2	Produced at least 2 intermediate products from the initial modification of the biomass												
M3	Synthesized polymer foams with dynamic covalent bonds from biomass that have at least 60% negative											l l	
	carbon content.												
G/NG M4	Fabricated 4×4-inch polymer foam samples that have at least 60% negative carbon content, 5%											l l	
	reduction in embodied energy, and R-value ≥3.5/inch.												
M5	Fabricated 4×4-inch polymer foam samples with R-value \geq 3.8/inch and compressive strength \geq 10 psi.											i	
M6	Fabricated of 4×4-inch polymer foam samples with at least 60% of biobased carbon content with a												
re	reduction of CO ₂ emission by 30%.												
M7	Fabricated 4×4-inch polymer foam samples with R-value \geq 4.0/inch and compressive strength \geq 15 psi.												
M8	Demonstrated thermo-recycling of the polymer film from the used polymer foam within 2 h.											ſ	
G/NG M9	Fabricated 4×4-inch polymer foam samples with R-value \geq 4.5/inch and compressive strength \geq 20 psi.												
M10	Fabricated 4×4-inch polymer foam samples with at least 70% of negative carbon contents and 30%												
	reduction of embodied energy.												
M11	Fabricated 4×4-inch polymer foam samples with R-value ≥5.5/inch.												
M12	Demonstrated chemical recycling of the polymer foam to a new polymer foam. The recycled foam will												
	have mechanical toughness that are \geq 70% of the original polymer foam.												
M13	Fabricated 4×4-inch polymer foam samples with R-value ≥6/inch, compressive strength ≥30 psi, and												
	≥30% reduction of embodied energy.												
M14	Demonstrated chemical recycling of the polymer foam to a new polymer foam. The recycled foam will												
	have mechanical toughness that is ≥95% of the original polymer foam. Determined the process that is												
	most feasible with regard to processing energy and large-scale adoption.												

Team

Diana Hun, PhD

Som Shrestha, PhD Bokyung Park, PhD

Building Envelope Materials Research Group

Characterization Integration

Ke Cao, PhD

Soft Matter and Membranes Group Synthesis

Life cycle assessments