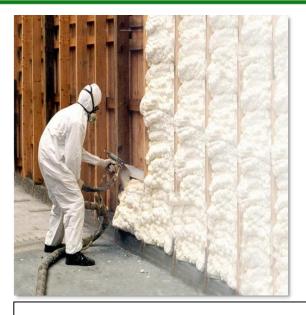

Robotically and Autonomously Installed Wall Interior Spray Foam


Oak Ridge National Laboratory
Mikael Salonvaara, Senior R&D Staff
salonvaaramh@ornl.gov
WBS 03.01.03.12.19

Project Summary

Objective and outcome

Develop an innovative robotic system that completes the installation of interior spray foam to reduce labor costs by 50%, improve installation safety, increase the yield of installed insulation by 10%, and reduce the overall cost by 20%. The automated control and feedback system will guarantee consistent quality and achieving the target R-values.

Team and Partners

- Building Envelope Materials Research
- Manufacturing Demonstration Facility

Stats

Performance Period: 10/1/2022 - 09/30/2025

DOE budget: \$1050k, Cost Share: -

Milestone 1: Conceptual design

Milestone 2: Fabrication and in-lab testing

Milestone 3: Automated system's field test

Problem

- Skilled construction workforce shortage ≥ half a million in 2023*
- Low-carbon net-zero buildings
 - Must have airtight and well-insulated envelopes
 - Cost is increased by having air sealing and insulating as separate tasks
- Closed-cell spray foam contributes to air tightness and high Rvalues per thickness in a single application
- Spray foam must be installed properly
 - Meet the required properties
 - Avoid costly repairs and uncured insulation with health concerns
- Installers must wear extensive protective gear
 - Makes installation difficult
 - Increases installation time

^{*}https://www.abc.org/News-Media/News-Releases/entryid/19777/construction-workforce-shortage-tops-half-a-million-in-2023-says-abc

State-of-the-art

Spray foam installation

- Foam is installed manually, often in multiple passes
- Robotic spray foam systems available are controlled remotely by an installer

Difficulties

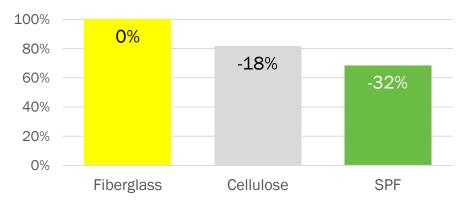

- Manual spray foam installation is labor-intensive and requires extensive safety precautions to avoid health risks for installers
- The manual installation is often inconsistent, not providing the targeted thermal and airtightness performance or resulting in overspray that requires shaving off excess insulation
- Installation conditions can be strenuous for workers increasing fatigue

Technical gaps

 Current robotic systems are manually controlled and do not monitor the quality (e.g., spray thickness) or conditions

SprayBot for roof SPF install by SprayWorks

Q-Bot for crawlspace SPF install


Goals

- Increased efficiency
 - Robotic systems can work faster and more consistently than humans reducing time and costs
- Improved safety: Operator is not exposed to chemicals
- Improved quality and consistency
 - Precisely control the amount and location of foam insulation
 - Reduce waste by improving yield
- Reduced labor costs

Alignment and Impact

- 50% reduction in labor and trades on the jobsite compared with traditional methods
- 20% savings in total cost
- Higher overall R-value than manual installation and fewer repairs due to better control
 of spray foam consistency and quality
 - Improves energy efficiency, reduces waste, and consumer energy burden
- Autonomous foam sprayer can be tailored to prefab factories and exterior building applications
 - Accelerates energy-efficient building construction in tight labor markets
 - Sprayed foam reduces defects in prefab construction after transportation to the jobsite

Relative air leakage in houses: Walls insulated with...

Bruce Harley in "Energy Design Update, April 2005".

Tasks for the Robotic System to Perform

- Scan wall geometry, develop spray path, and send it to the AutoFoamBot
- The robotic system finds and moves to its location
- The bot applies spray foam autonomously on the wall cavities, avoiding structural irregularities and protrusions like windows, vent openings, and doors
- The bot monitors the substrate conditions and spray thickness continuously to adjust settings and help ensure quality and achieve the target R-value

Scan Locate

Automatic spray Monitor/Control Deliver product

Challenges, Risks, Commercialization, Demonstration

Technical Challenges

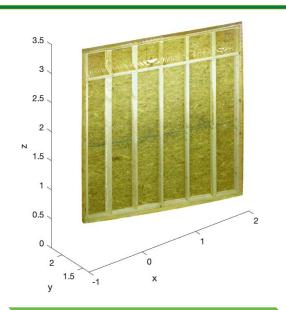
- Spray mist may cover sensors and moving parts
 - Curtain shields, operable covers
- Handling climatic conditions on job site
 - Automatic monitoring and temperature controls

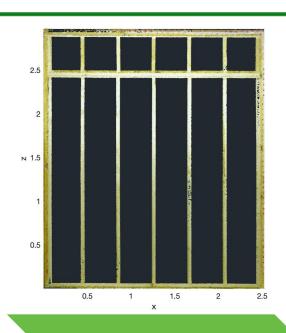
Commercialization

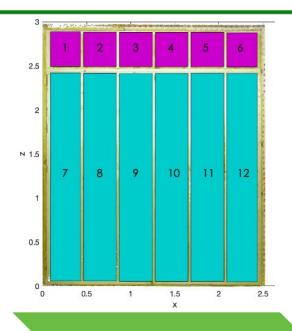
- Spray foam trade shows and training events with SprayWorks
- Prefabricated housing/component manufacturers
- Larger companies with sizable jobs

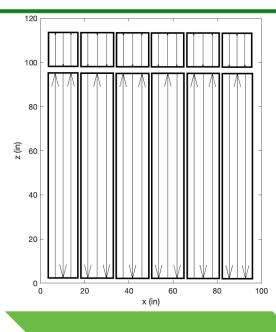
Risks

- Equipment malfunction, loss of position
 - Perform location checks
 - Monitor performance, stop and inform the controller person if not performing


Demonstration


- Field demonstration with comparison to manual installation


Progress: Technical Boundaries and Specifications


- Ability to fit through doorways and step over door sills and debris
- Autonomously locate and fill wall cavities using LIDAR and Vision systems
 - Scanning and spray path accuracy, ½" resolution
- Omnidirectional base motion to allow free motion.
- Five-degree-of-freedom robotic system
- Monitor substrate, environment, and spray temperature to optimize foam composition and improve quality and installation consistency
- Monitor foam thickness to ensure adequate thickness without overfill, no spots
 >1" off the specified thickness
- Fill standard height 8-foot-tall wall with extendable design

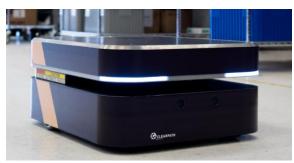
Progress: Automatic Spraying Path Generation

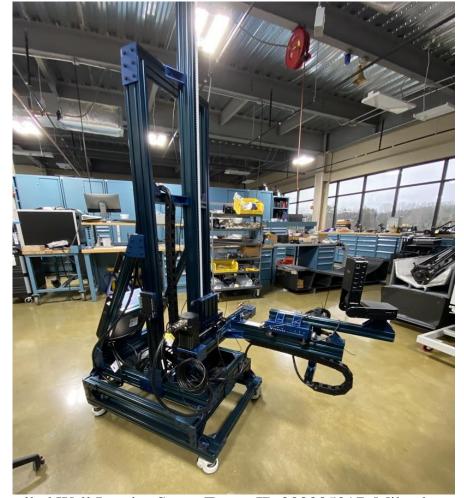
Wall cavity LiDAR scan

Automatic stud identification Identification of wall cavities to be sprayed

Automatic spray path generation

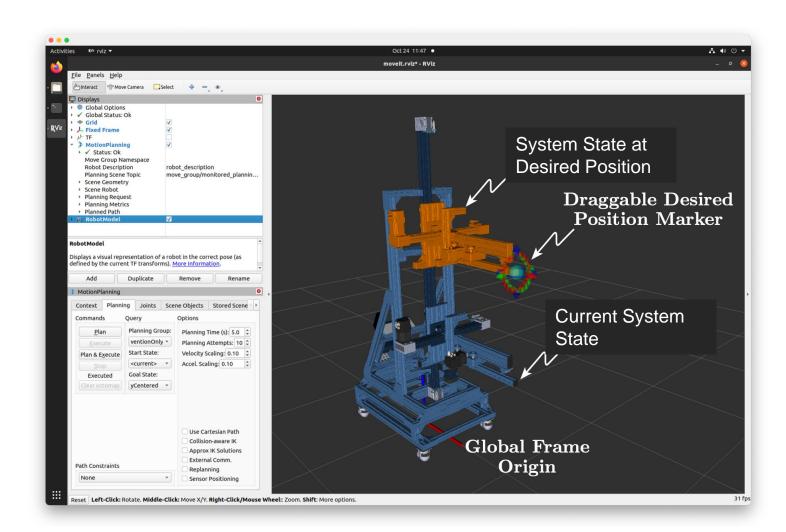
LiDAR scanner


Point cloud


Spray foam gun specs

Progress: Robotic spray system

- Mechanical and Electrical Assembly has been completed
 - Components from Vention.io
 - Testing has begun
- Successful motion on X & Y axes
- Clear Path robot platform (Boxer)
 - Scheduled completion of manufacturing March 31st, 2023
 - Delivery 1-2 weeks after



Invention disclosure: Robotically and Autonomously Installed Wall Interior Spray Foam, ID 202205217. Mikael Salonvaara, Peter Wang, Joshua Vaughn, Celeste Atkins, Bryan Maldonado, Diana Hun, Philip Boudreaux.


Progress: Vention System in ROS (Robot Operating System)

- Movelt for motion planning and sensor visualization
- Can easily integrate:
 - Vention controller
 - Boxer mobile base
 - Vision, LiDAR, and other sensing

Progress: Boxer in Simulated Environment with LiDAR

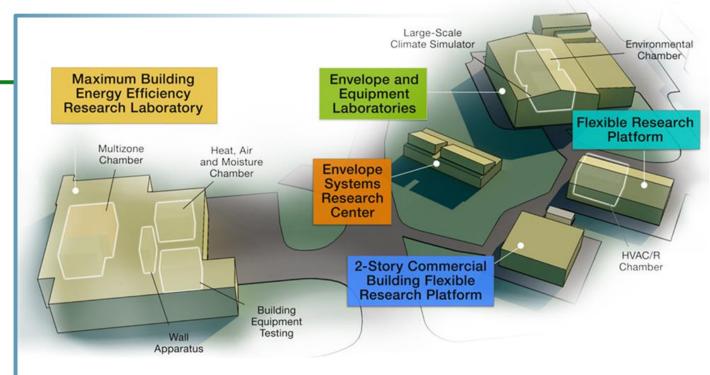
- Tested controls in simulated environment
 - Developed trajectory-generation algorithms for Vention platform
 - Initial test of localization algorithms for mobile base
- Integration of controls with physical system
 - Tested baseline control of Vention system
 - Code for mobile base ready for testing once system arrives

Future work: Robotic Mechanical Systems

- Design mount for spray nozzle onto gimbal mechanism
- Design hose management system
- Design a shroud to protect equipment from the back spray
- Mount the Vention System to the Clearpath Mobile Platform
- Test the fully assembled system

Future work: In-Laboratory Spraying

- Spray foam installation on an 8'x8' wall in laboratory conditions
- Evaluation of spray quality, the resulting thickness, and speed
- Test wall assembly for airtightness and thermal performance in the climate chamber


Ventilation enclosure with exhaust air to allow safe spraying in the lab

Future Work: Field Demonstration and Techno-economic Analysis

- Field evaluation
 - Test robotic installation under varying climatic conditions and on the job site surfaces (e.g., varying substrates, cleanliness)
 - Test samples for adhesion, insulation quality, and installed thickness
- Techno-economic analysis with SprayWorks Equipment Group
 - Determine
 - Typical costs for existing practice and drivers for significant costs
 - Yield, labor, and cost of robotic installation of spray foam
 - Product optimization steps
 - Evaluate the feasibility of scaling up, and gain customer feedback
- Trial runs with a sister project developing a biobased foam

Thank you

Oak Ridge National Laboratory
Mikael Salonvaara, Senior R&D Staff
(865)-341-0022 | salonvaaramh@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 50,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

238 publications in FY20 125 industry partners 27 university partners 10 R&D 100 awards 42 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Project Execution

		FY20 <mark>22</mark> \$300,000				FY20 <mark>23</mark> \$450,000				FY20 <mark>24</mark> \$350,000			
Planned budget													
Spent budget		\$188,000			\$91,000								
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	
Past Work													
Q1 MS: Technical boundaries defined for installation.		•											
Q3 MS: Select scanning and metrology tools.				•									
Q4 MS: Application of scanning tool on the robot refined					•								
Q4 MS: Conceptual design for complete system designed													
Q4 MS: Typical costs identified and quantified					•								
Q1 MS: Complete assembly of the system						•							
Q2 MS: Integrate controls into the spray system							•						
Current/Future Work													
Q3 MS: Integrate spray system with the motion platform								▶					
Q4 MS: Fabrication and in-lab testing performed													
Q4 MS: Projected lifetime costs of the system quantified									•				
Q2 MS: Interior spray installed and passes standards											•		
Q4 MS: Automated installation in the field													
Q4 MS: Techno-economic analysis of the system													

Invention disclosure: Robotically and Autonomously Installed Wall Interior Spray Foam, ID 202205217. Mikael Salonvaara, Peter Wang, Joshua Vaughn, Celeste Atkins, Bryan Maldonado, Diana Hun, Philip Boudreaux.

Team



Celeste Atkins

Jeremy Davidson

SPRAYWORKS

John Davidson

