Super-Flexible and Robust AC Transmission System Devices (SuperFACTS)

Principal Investigator: Vahan Gevorgian, NREL

NREL Team: S. Shah, P. Koralewicz, R. Wallen, E. Mendiola, W. Yan, R. Lachance

U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY

The Numbers

- DOE PROGRAM OFFICE:
 OE Transformer Resilience and
 Advanced Components (TRAC)
- FUNDING OPPORTUNITY:
 N/A
- LOCATION:
 NREL, Golden, CO
- PROJECT TERM: 10/01/2020 to 6/30/2023

- PROJECT STATUS:
 Nearing completion
- AWARD AMOUNT (DOE CONTRIBUTION): \$800,000
- AWARDEE CONTRIBUTION (COST SHARE):
 \$0
- PARTNERS: no paid partners
 ABB (advisory role)

Project Summary

- SuperFACTS concept proposes a grid stability enhancing solution that combines mature grid supporting technologies under central advanced control system capable of addressing all main grid integration challenges for variable generation and improve reliability of power grids.
- SuperFACTS scalable concept combines grid forming battery energy storage (GFM BESS) and synchronous condenser (SC) functionality in a single system that depending on use case can be controlled to provide fully dispatchable and flexible operation using energy storage component, provide a full range of existing and future ancillary and reliability services to the grid (similar or better than conventional sources), maintain adequate levels of grid strength and inertia, and provide fault current for proper operation of protection systems.
- The main objective of this project is to develop a validation platform and demonstrate the SuperFACTS system at scale and develop models and conduct simulations to demonstrate benefits at system level.

Project Summary (continued)

SuperFACTS benefits

Challenge	BESS	Synchronous Condensers	SuperFACTS
Various forms of grid services based on active power control	Yes	Νο	Yes
Inertial response	Synthetic, depends on BESS operation point	Yes, real rotating inertia	Enhanced
Steady-state and dynamic reactive compensation, voltage support	4-quadrant	2-quadrant (limited by stability and thermal constraints)	Enhanced
Grid strength enhancement	Depends	Yes	Yes
Overcurrent capability	No	Yes (up to 300% for 2–3 seconds)	Yes
Short-circuit current	Νο	Yes, very high	Yes
Black-start capability	Yes (only for BESS with GFM inverters)	No	Yes
Transient and fault ride- through performance	Yes (can control levels of fault current within inverter rating)	Yes (no control over levels of fault current)	Enhanced
Controls to mitigate undesirable interactions with other components on the grid	Yes	Yes (but limited)	Enhanced
Cost	Moderate	Moderate	Lower (compared to same performance by BESS or condenser only)

SuperFACTS scalability:

- Grid strength, inertia, and fault current
- Energy services and resilience services
- **Reliability services**
- Black-start services. •

Technical Approach

SuperFACTS in the Grid

- 1. Replacing retiring conventional plants (taking advantage of existing infrastructure) for active and reactive power control services, maintaining grid strength and protection adequacy
- 2. Transmission services (power flow control, voltage support, black start etc.)
- 3. Integrating variable generation (dispatchability, grid strength, enhanced transient performance, black start, etc.)
- 4. Services to large industrial loads (power quality, islanded operation, black start. Etc.)
- 5. Distribution level services (increase hosting capacitates of distribution systems, islanded operation, black start, protection adequacy, etc.)
- 6. Maintaining grid strength, SCR and transient performance for heavy-duty EV charging stations
- 7. Islands

Milestones

3.1: Task 1: Identify all use cases for SuperFACTS concept, develop a test plan	100%
3.2: Task 2: Develop control theory for SuperFACTS concept	100%
3.3: Task 3: Develop SuperFACTS Controller	100%
Task 4: Deploy controller and conduct initial testing	100%
Task 5: Demonstrate ability to provide reliability services on transmission level	100%
Task 6: Demonstrate ability to provide blacks start services	100%
Task 7: Demonstrate benefits of SuperFACTS operation in a large power system	100%
Task 8: Demonstrate benefits of SuperFACTS in islanded grids	100%
Task 9: Impedance-based stability testing and evaluation of SuperFACTS system	100%
Task 10: Development of power system stabilizer (PSS) controls for SuperFACTS	100%
Task 11: Testing SuperFACTS with GFL BESS configuration	100%

Ongoing activities:

- Drafting final project report
- Paper to be presented at 2023 IEEE PES GM, US
- Paper to be presented at 2023 Wind&Solar International Workshop, Europe
- ESIG presentation being planned

Accomplishments: Demonstrated Use Cases

- Combination of SC with GFM BESS provides much better transient performance
- This is because of significant grid strength increase provided by SC

SuperFACTS services:

- Provision of combined real and configurable virtual inertias V
- Provision of synchronizing torque √
- Provision of short circuit current contribution v
- Increased grid strength and short-circuit ratios ✓
- High overcurrent capability √
- Grid topology-independent smart voltage recovery contributor/ flexible fault response provider
- Provision of enhanced voltage and reactive power control with ultra-wide dynamic ranges v
- Provision of all forms of active power controls **v**
- Provision of dispatchable operation and flexibility services for variable generation **v**
- Provision of all essential reliability services (better and faster than conventional generation) V
- Black-start and stand-alone operation
- Ability to provide inrush current-free energization of transformers, cables and motors **v**
- Enabler for economic renewable technology hybridization (can be co-located with solar and wind generation)
- Provision of active and reactive power flow controls
- Full 4-quadrant reactive power capability **V**
- High bandwidth for power system oscillations damping
- Superior transient and grid fault ride-through performance **v**
- Less than 1ms response times for damping instabilities caused by control interactions between invertercoupled variable power generation and grid √
- Stabilizing power systems with any desired ratios between grid-forming and grid-following inverters **v**
- Fully scalable and modular topology for both grid-connected, microgrid and stand-alone operation 🗸
- Same SuperFACTS building blocks will allow deployment in numbers to achieve desired design parameters (MVA capacity, MWh capacity, inertia, SCR and grid strength levels, ability to provide overcurrent during system faults and inrush currents during black starts, etc.)
- The same basic SuperFACTS building blocks can be used to provide services at transmission, subtransmission and distribution levels, cam help operating microgrids and islanded grids, and provide black start services for all above.
- Can be controlled for electric loss minimization in transmission and distribution grids
- Control of negative sequence voltages for phase rebalancing may be possible for advanced BESS inverters

SuperFACTS configurations

230 kV

OFFICE OF

ELECTRICITY

Grid

- 2.5 MVA SC combined with 1 MW / 1MW GFM BESS
- 2 MW dynamometer: pony motor replica and enhanced mechanical inertia
- Controlled MV grid emulation
- Islanded and grid connected operation
- Parallel operation with wind and solar
- Multiple black-start scenarios

Demonstration Platform

Controller Interface

- Central SuperFACTS controller implemented in NI PXI RT
 hardware
- Can operate on operator setpoints, or setpoints coming from any interface or historic time series
- Modbus interface between PXI and BESS controllers
- CanBus interface between PCI and voltage regulator of synchronous condenser

All stages of operation

15

10

5

0

-5

-10

-15

70

- Self black start ٠
- **Energizing transmission line** ٠
- Islanded operation of loads ٠
- **Resynchronization with grid** ٠
- Control mode: smooth power ٠
- **BESS is controlled to compensate any** ٠ oscillations by SC

Weak Grid Operation and Stability

39-bus system – ground fault

SuperFACTS Responses

No SuperFACTS

- Improved ride-through performance
- Enhanced grid strength

Measured transient performance

PHIL experiment

39-bus system: Largest N-1 Response

- Better frequency response
- Lower frequency nadir
- Better voltage stability

No SuperFACTS Bus33 Bus34 Bus36 Bus37 Bus38 Bus39 Bus30 Bus31 Bus32 60.4 60.2 60.0 59.8 59.6 59.4 59.2 59.0 58.8 G30 MW = G31 MW = G32 MW = G33 MW = G34 MW = G36 MW = G37 MW = G38 MW = G39 MW 1.20k 1.00k 0.80k 0.60k 0.40k-0.20k-0.00 -0.20k G30 G31 G32 G33 G34 G36 G37 G38 G39 1.04 1.02 1.0 0.9 0.96 0.94 0.92 0.90 0.88 0.86 sec 30.00 40.00 60.00 70.00 50.00 ENERGY ELECTRICITY

SuperFACTS Islanded Operation Test

Transition to island

Loss of synch condenser

Black-start and operation in GFL mode

Impact/Commercialization

- Supplemental to other DOE-funded
 - SETO / WETO / WPTO / HFTO funded projects on hybrid systems including storage
- Facilitates the shift towards development of new research platforms under NREL's Advanced Research on Integrated Energy Systems (ARIES)
- Innovative use of prior and new multi-million DOE investments (CGI#1 and CGI#2, BESS, PHIL)
- New platform for industry and academia to conduct at scale research synchronous condenser-based systems
- Supplemental to all DOE island power system studies (Puerto-Rico, Hawaii, USVI, etc.)

Potential Future Work

Opportunities for future research:

- SuperFACTS allocation optimization problem
- Levelized cost of energy
- Impacts on power system production cost
- Impacts on reliability and resiliency metrics

THANK YOU

This project is supported by the U.S. Department of Energy (DOE) Office of Electricity's Transformer Resilience and Advanced Components (TRAC) program. It is led by Andre Pereira, TRAC program manager.

U.S. DEPARTMENT OF OFFICE OF ELECTRICITY

Backup Slides

U.S. DEPARTMENT OF OFFICE OF ELECTRICITY

Acronyms

- SC synchronous condenser BESS – battery energy storage system GFM – grid forming GFL – grid following SCR – short circuit ratio
- CGI controllable grid interface

