SSPS Node Demonstration

Principal Investigator:

Jason Autrey

Manager, Power Delivery R&D

Affiliation:

Southern Company Services, Inc.

The Numbers

- DOE PROGRAM OFFICE:
 OE Transformer Resilience and Advanced Components (TRAC)
- FUNDING OPPORTUNITY:
 AOP
- LOCATION:
 Birmingham, Alabama
- PROJECT TERM:
 11/1/2022 to 12/31/2023

- PROJECT STATUS:Ongoing
- AWARD AMOUNT (DOE CONTRIBUTION):\$650,000
- AWARDEE CONTRIBUTION (COST SHARE): \$125,000
- PARTNERS:
 Oak Ridge National Laboratory

Project Summary

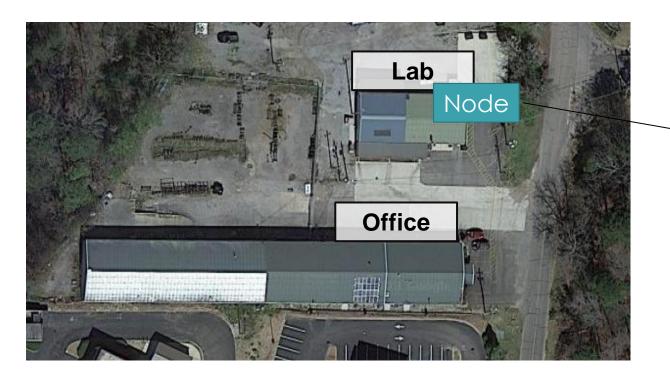
Objectives

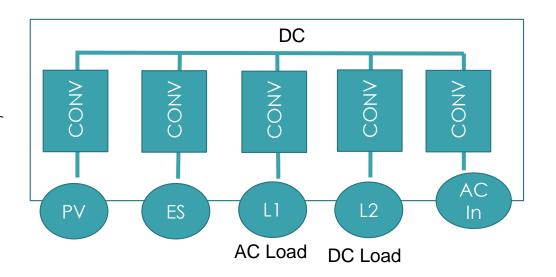
- Transfer technology-Based on prior R&D at ORNL
- Validate SSPS fundamentals safely
- Educate internal workforce on SSPS technology

Measures of Success

- Successful installation and commissioning
- Zero catastrophic failures or safety incidents
- Hands-on lab demonstrations for utility groups

Project Summary


Force	Effect
Bulk deployment of solar & storage	Bi-directional flows, co-located load and generation on Distribution, microgrids
Electrification of transportation	Load growth, hot spots, grid dependency, large capacity requirements
Consumer to prosumer	Financial incentives, integration gaps
Other decarbonization	Fleet retirements, transmission rebuild, operational stability concerns
Increasing cyber & natural threats	Stringent security requirements, new resilience focus, short-repair time needs
Energy equity	Downward rate pressure, scrutiny of costs



Technical Approach

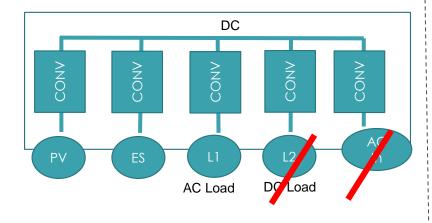
- Leveraging R&D demonstration through GMLC partnership with ORNL
- Initial concept validated in GRID-C @ ORNL

Technical Approach

Protection and Control Lab

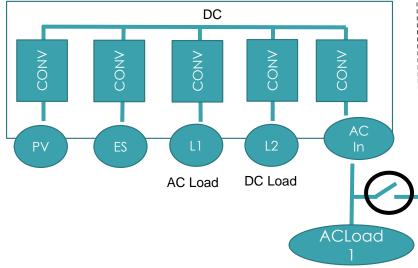
Commercial & Residential

V2X R&D



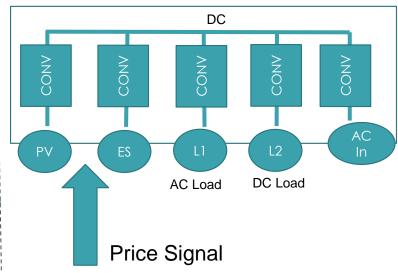
Technical Approach

Use Case #1: Resiliency


Goal: Maximum sustaining of a specified load (here, AC Panel)

Metric of Success: A subset of lab sustains a maximum-hour, loss-of-grid event without initial interruption of operations

Use Case #2: Reliability


Goal: Support of entire load for an outage duration (including existing load on AC side)

Metric of Success: Island entire facility load for 30 minutes and seamlessly resynch with the grid

Use Case #3: Economic

Goal: Price signal optimization (price signal from utility, self optimization)

Metric of Success: The SSPS node successfully reduces the lab power bill by x% or \$x/month, TBD

Timeline

Milestone	Timing	Status
Project Kick-Off	November 2022	Complete
Goals & Use Case Prioritization	April 2023	Complete
Facility Design Document	December 2023	In-Progress
Implement Use-Cases via CHIL	December 2023	In-Progress

Future Work

THANK YOU

This project is supported by the U.S. Department of Energy (DOE) Office of Electricity's Transformer Resilience and Advanced Components (TRAC) program. It is led by Andre Pereira, TRAC program manager.

