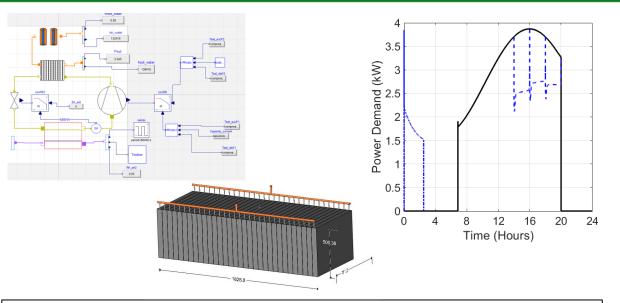

Dual-Purpose – Heating & Cooling - Thermal Battery to Enable Flexible and Energy Efficient Heat Pump Systems

Performing Organizations: University of Maryland, Oak Ridge National Laboratory, Electric Power Research Institute, Rheem Manufacturing, Insolcorp, Heat Transfer Technologies Professor Reinhard Radermacher, Dr. Vikrant Aute, <u>Dr. James Tancabel</u> vikrant@umd.edu

DE-EE0009681



Project Summary

Objective and outcome

- Develop an integrated heat pump-thermal energy storage (HP-TES) for load shifting in cooling & heating modes
- Assessment of demand reduction potential in all US climate zones
- System model validation, laboratory testing and technology demonstration (field test & commercialization plan)

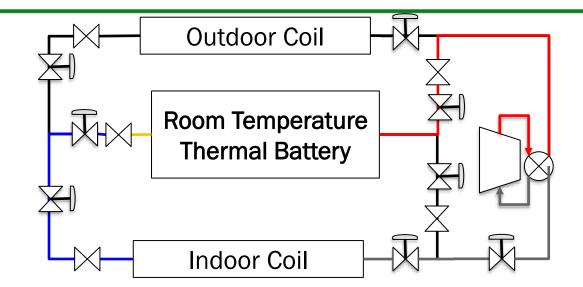
<u>Stats</u>

Performance Period: 10/2021-09/2024 DOE budget: \$3,000K, Cost Share: \$750K Milestone 1: Component & system design Milestone 2: Laboratory testing & validation Milestone 3: Technology demonstration

Problem

- HVAC&R equipment is responsible for 40-70% of residential & commercial building loads
- They are one of the main drivers of peak loads (30% peak electricity share), particularly in the summer season
- Systems in the range of 3-5 Tons correspond to the largest light commercial rooftop units market share (approximately 4 million units shipped in 2020)
- Thermal energy storage can be used in a plethora of different configurations with HVAC&R equipment and are 2-3x less costly than electrochemical batteries

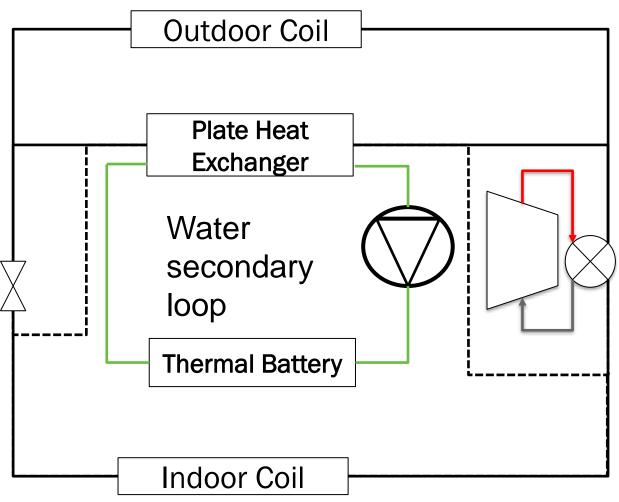
Project Objectives & Opportunities


- Objective
 - Develop & validate a single integrated HP-TES operating in both cooling & heating modes
- Timeline
 - \circ Year 1
 - Component & system design
 - Prototyping & component testing
 - \circ Year 2
 - System construction & lab tests
 - \circ Year 3
 - Technology demonstration, field testing, & validation

• Opportunities

- Use a <u>single room-temperature TES</u> replacing the outdoor coil suitable for both heat pump modes
 - Reduce system (capacity) size
 - Reduce added cost
 - Possibly competitive with other highefficiency heat pumps
- Reduce demand during the peak load use, thus operating costs
- Reduce system performance degradation, e.g.,
 - Constant temperature lift (less cycling)
 - Less frost (cold climates)

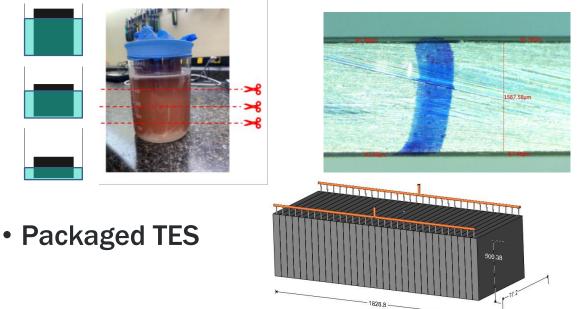
Approach & Challenges


- Original approach
 - Direct refrigerant/TES system
 - TES operation: 5 tons, 4 hours
- Challenges
 - TES weight limits rooftop applications (6 x HP weight)
 - 5 x Refrigerant charge increase
 - TES aluminum HX are susceptible to corrosion from PCM salt hydrates
 - Demand reduction potential is dependent on location

Targets	Metric	Unit	Target Values	Model-predicted performance
SOPO	System Capacity	Ton	5	5
	Demand Reduction	%	50+	20-80
SOPO & DOE	Period	hours	4+	4
	Volumetric Storage	kWh/m³	80	72
DOE	Volume Increase	%	10	40
Overlooked	Weight Increase	%	No target set	Critical issue for RTUs
metrics	Refrigerant Charge Increase	%	No target set	500

Metric	Unit	Original	New
(Commercial) System Capacity	Ton	5	4*
Demand Reduction	%	50+	50+
Period	hours	4+	2+
Overall COP Improvement	%	20+	20+
TES Cost	\$/kWh	15-	15-

- Current TES weight is 3 x HP
- Lower refrigerant charge increase in PHX compared to direct ref/TES
- Water △T in PHX degrades the HPTES COP compared to direct ref/PCM

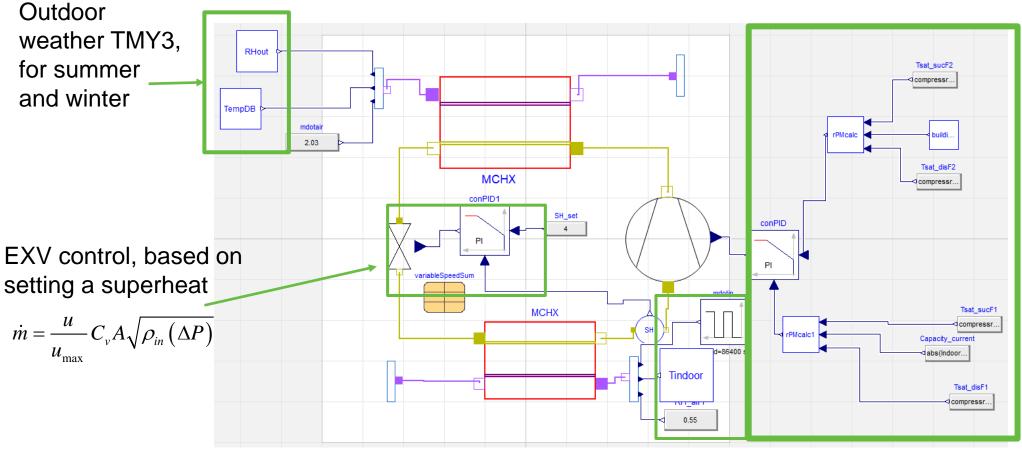


*Highest selling system by millions of unit shipped (Source: AHRI (Statistics | AHRI (ahrinet.org))

TES Design, Assembly, & Material Durability

- TES requirements
 - $_{\odot}~$ Cooling mode: 16-17 kW
 - $_{\odot}~$ Heating mode: 10-11 kW
- Storage requirement: $V_{PCM} = 0.45 \text{ m}^3$
- Discharge rate requirement: $\dot{Q} = 17 \text{ kW}$
- HXs types that meet TES requirements
 - \circ Microchannel HX
 - Small internal volume, low-cost and weight, high compactness
 - Difficult to assemble & package
 - ✓ Tube-fin HX (32 HX required)
 - Adequate compactness, low-cost and weight
 - ✓ Easy to assemble & package

- Corrosion Testing
 - All-aluminum tube-fin corrodes in salt hydrates
 - o Heresite[™] immersed coating applied and tested
- Sampling Approach & Coating Results



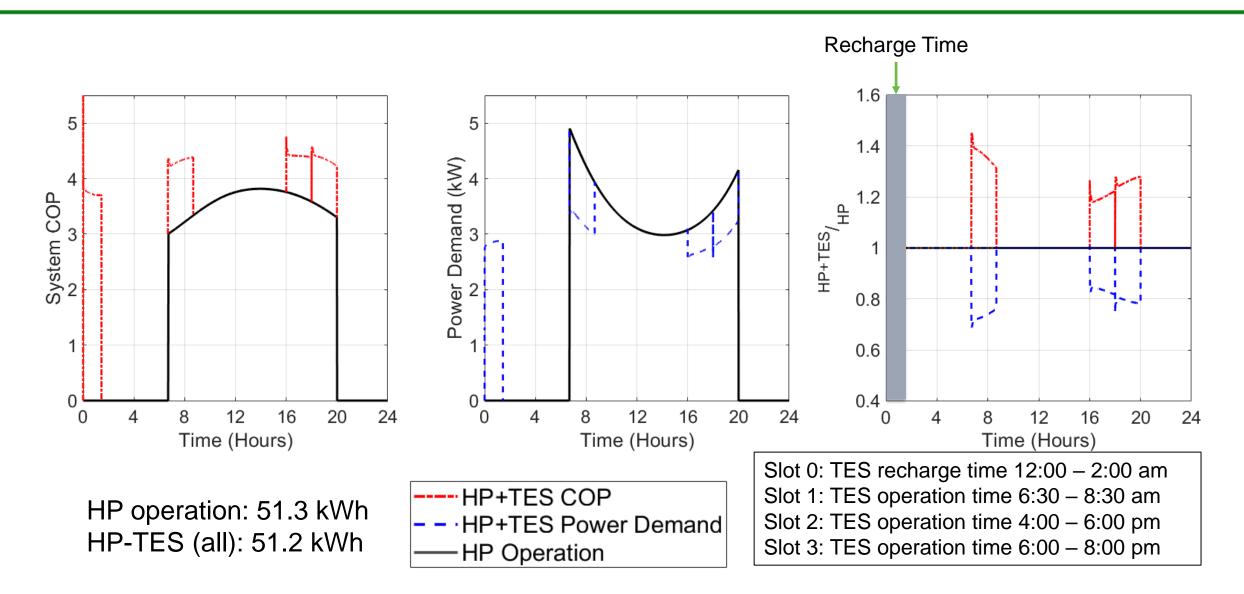
Transient Model Setup & Validation

- Baseline HP cycle was modeled & validated in Modelica at AHRI A-test conditions
- Secondary loop components in Modelica
 - Modelica results for selected plate HX in agreement with PHESim
 - Segmented TES model created using simplified resistance-capacitance model
- System level modeling
 - HP cycle: variable-speed rotary compressor with EXV
 - HP-TES cycle: created for charging and discharging, same as HP cycle

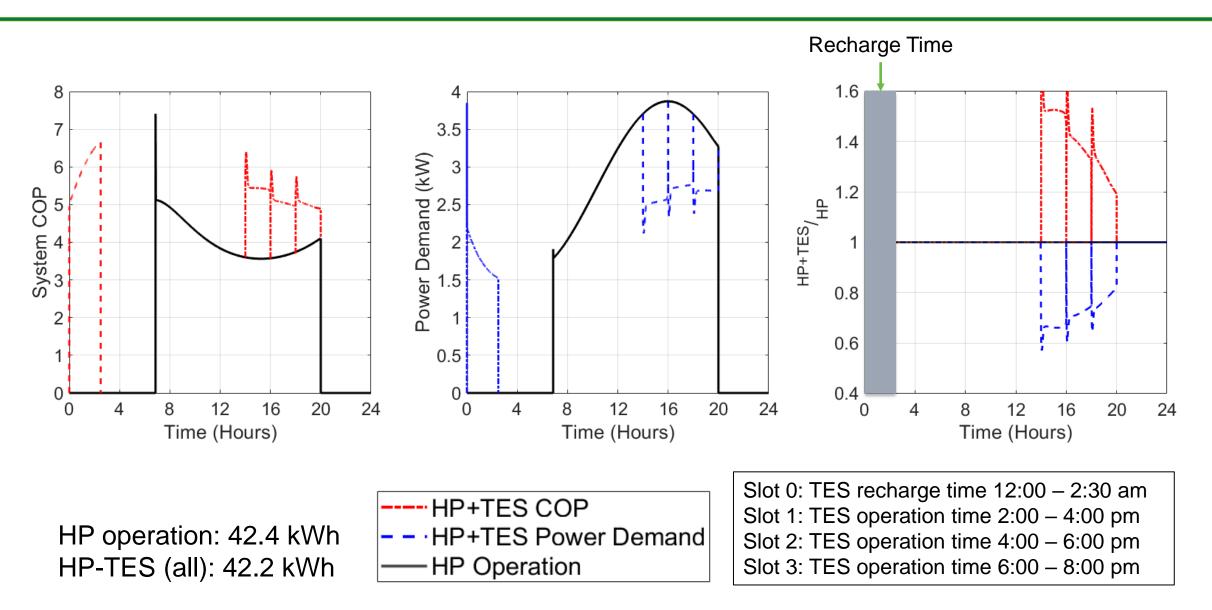
Metric	Unit	Experiment	Modelica	Abs. Diff.
Superheat	K	4.44	4.89	0.45
Subcooling	K	7.25	5.25	2.00
Suction T	°C	14.00	14.28	0.28
Discharge T	°C	71.11	74.94	3.83
Comp. Power	kW	3.22	3.18	1.24%
Indoor HX Capacity	kW	13.97	13.86	0.79%
PHX		V	Refrige Tube v Vater-side	
			PCM-s	side
TES			Tube	e wall
			Water-s	side

System Level Model with Weather Data & Building Loads

Control of the compressor RPM, to match internal loads with the indoor HX capacity


Indoor boundary conditions from building loads (Roth et al. 2022)

System Level Model with Weather Data & Building Loads


- Similar HP system level components are available with the HP-TES except
 - o Discharging
 - Outdoor HX replaced with secondary loop
 - Only indoor weather data are used
 - \circ Charging
 - Indoor HX replaced with secondary loop
 - Only outdoor weather data are used at nighttime

- Lowest COP time slots during the day
 - Cooling: 2:00 pm 4:00 pm
 - Heating: 6:30 am 8:30 am
- Time slots for peak hours in Southern California TOU
 - 4:00 pm 6:00 pm
 - 6:00 pm 8:00 pm
- Key metrics: COP improvement & demand reduction
- Key assumption: HP-TES water pump power is the same as outdoor fan power

Heating Mode

Cooling Mode

Fabrication and Test Timelines

Thermal Battery Fabrication

- Fabrication & coating of 32 all-aluminum HXs (04-05/2023) (Rheem, Rahn)
- Manifold construction & overall assembly (05-06/2023) (HTT, Insolcorp, ORNL, EPRI)
- Baseline system testing
 - ORNL Laboratory (03-04/2023)
 - EPRI Laboratory (05-06/2023)
- Integrated system testing
 - 06-09/2023 (ORNL, EPRI)
- Field test site selection
 - 09/2023

Stakeholder Engagement

- **Project partners (sub-recipients)**
 - Rheem Manufacturing
 - Baseline heat pump system hardware & test data
 - HP-TES components: all-aluminum tube-fin HXs for thermal battery, plate HX for secondary loop, compressors & expansion devices
 - Commercialization advisor
 - Insolcorp
 - PCM manufacturer
 - Thermal battery assembly
 - Commercialization advisor
- Industry involvement
 - Rahn Industries
 - All-aluminum HX coating for thermal battery

Next Steps

- Model smooth switch between HP & HP-TES operation
- Analyze the HP+TES for summer, winter, & shoulder season for all 7 climate zones
- Conduct full transient seasonal simulations
- Fabricate/assemble battery (Ongoing)
- Test baseline system (Ongoing)
- Test integrated system
- Validate model using laboratory test data

Thank You

Performing Organizations: University of Maryland, Oak Ridge National Laboratory, Electric Power Research Institute, Rheem Manufacturing, Insolcorp, Heat Transfer Technologies Professor Reinhard Radermacher, Dr. Vikrant Aute, Dr. James Tancabel vikrant@umd.edu

REFERENCE SLIDES

Project Execution

					Project Schedule																					
	BP1								BP2								BP3									
Tasks		1		Q2		Q3	_	Q 4		Q1		Q2		Q		Q			Q1	_	Q2		Q3		Q4	
	1 2	2 3	4	5	6 7	7 8	9 1	.0 11	12 1	1 2	3	4 5	6	7 8	9	10 1	1 12	1	2 3	4	5 6	5 7	8 9	10	11 12	
Task 0: Develop PMP plan																										
Milstone 0.1: PMP / IPMP			>																							
Task 1: Component and System Design, Prototyping, and Component Testing																										
Milestone 1.1: Baseline heat pump model + quasi-steady state integrated system model		\diamond	>																							
Milestone 1.2: Feasibility analysis using quasi-steady state model				<	\diamond																					
Milestone 1.3: Thermal battery design									<	\diamond																
Milestone 1.4: Integrated system transient model with thermal loads and weather data									(\diamond																
Milestone 1.5: Fabrication of the thermal batteries according to agreed-upon final designs and BOM													\diamond													
Milestone 1.6: Component testing, performance evaluation, and model validation													\diamond													
Milestone 1.7: Field-test site selection																										
Go/No-Go 1									\bigcirc																	
Task 2: Full-Scale System Construction and Laboratory Testing																										
Milestone 2.1: Integrated systems assembly													<	\diamond												
Milestone 2.2: Test setup, test matrix, and shakedown tests																										
Milestone 2.3: System level tests in laboratory (baseline + two integrated systems)															\diamond											
Milestone 2.4: Model validation																	\diamond									
Go/No-Go 2																	\circ									
Task 3: Field Testing and Validation																										
Milestone 3.1: Field test cold season and model validation																				>						
Milestone 3.2: Field test shoulder season and model validation																					<	\geq				
Milestone 3.3: Field test hot season and model validation																										
Milestone 3.4: Data analyses, commercialization plan, and final report																										

♦ Milestone OGo/No-Go

Team

- University of Maryland (Prime recipient)
 - System modeling/design, data analysis, project management
- Oak Ridge National Laboratory (Sub-recipient)
 - System modeling, system assembly, laboratory testing, technical advisor
- Electric Power Research Institute (Sub-recipient)
 - System assembly, laboratory testing, technology demonstration lead, technical & code/regulation advisor
- Rheem Manufacturing (Sub-recipient)
 - System/component supplier, technical & commercialization advisor
- Insolcorp (Sub-recipient)
 - PCM supplier, system assembly, technical & commercialization advisor
- Heat Transfer Technologies (Sub-recipient)
 - Thermal battery design, assembly, technical advisor
- Southern California Edison (EPRI's partner)
 - Cost share contributor, technology demonstration promoter
- Rahn Industries (industry partner)
 - Heat exchanger coating for thermal battery