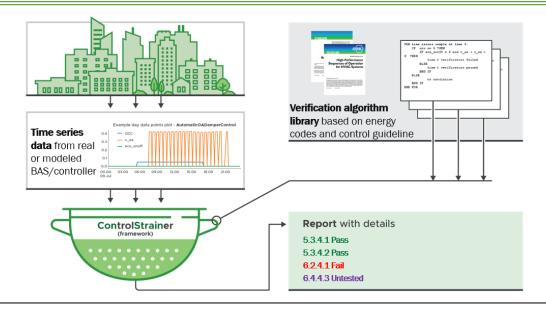

Control Strainer: A Data-driven Control Verification Framework

Pacific Northwest National Laboratory, Lawrence Berkeley National Laboratory Yan Chen, Ph.D., PNNL

yan.chen@pnnl.gov

WBS # 3.2.6.67

Project Summary


Objective and outcome

- To enable fully automated control verification by developing a data-driven knowledge-integrated framework.
- This solution is targeted for the commercial building stock: both existing buildings and new construction.
- Open-source framework is developed and tested via simulated and real building data in collaboration with industry stakeholder.

Team and Partners

PNNL: Conceptualization, framework development, verification library development, application test case development, semantic modeling

LBNL: Semantic modeling, framework testing,

Status

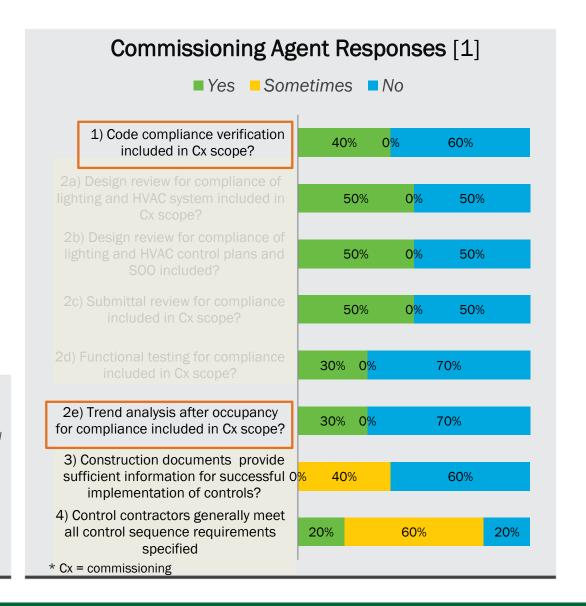
Performance Period: FY2020-FY2023

DOE budget: \$825k, Cost Share: \$0k

- Milestone 1: Automated control performance testing for simulated and real building.
- ✓ Milestone 2: Performing 100+ tests in parallel
- ✓ Milestone 3: Vendor-neutral API

Problem - Urgent Need to Verify Control

Controls Advanced in Codes and Guideline


- 90.1: Since 2004, ~30% of new requirements controls-related [1]
- Guideline 36: Advanced sequences require expertise to interpret, implement, and verify

Saving potential: Installing known, properly tuned control sequences can cut commercial building energy use by ~29%, saving 4-5 quads [2]



Only 50% of observed buildings have controls correctly configured to meet energy code requirement [1]

- [1]. Rosenberg, M. I., Hart, P. R., Hatten, M., Jones, D., & Cooper, M. (2017). Implementation of Energy Code Controls Requirements in New Commercial Buildings (No. PNNL-26348). Pacific Northwest National Lab, Richland, WA
- [2]. Fernandez, N. E., Katipamula, S., Wang, W., Xie, Y., Zhao, M., & Corbin, C. D. (2017). Impacts of commercial building controls on energy savings and peak load reduction (No. PNNL-25985). Pacific Northwest National Lab, Richland, WA

Problem - Challenges in Current Verification Process

Human error can affect the control system at each stage of the building life cycle [1].

Lack of systematic interpretation of energy codes and control guidelines regarding how control shall be verified.

Building energy codes control requirements are sometimes unverifiable.

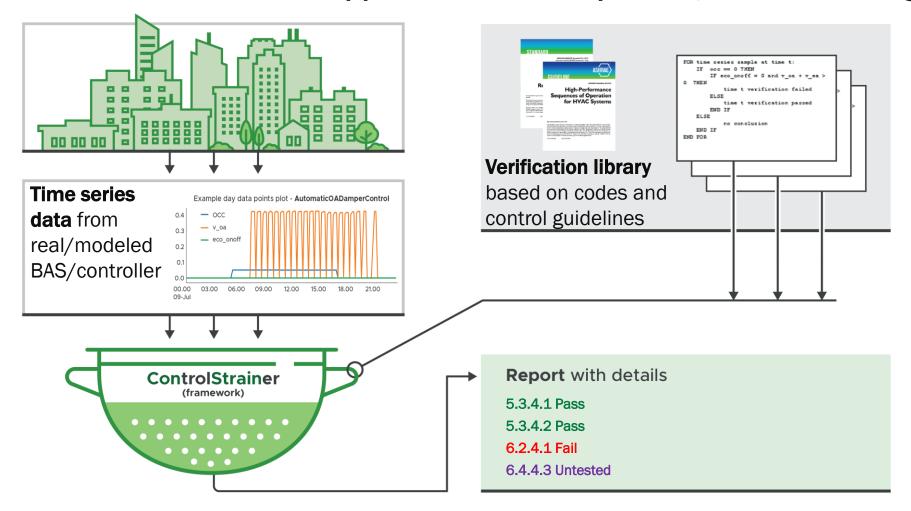
Manual control verification is ad-hoc, error-prone, incomplete, and time-consuming.

[1] Torabi, N., Gunay, H. B., O'Brien, W., & Barton, T. (2022). Common human errors in design, installation, and operation of VAV AHU control systems—A review and a practitioner interview. Building and Environment, 109333.

How should I verfiy this control requirement?

EXAMPLE

6.4.3.5 Heat Pump Auxiliary Heat Control


Heat pumps equipped with internal electric resistance heaters shall have controls that prevent supplemental heater operation when the heating load can be met by the heat pump alone during both steady-state operation and setback recovery. Supplemental heater operation is permitted during outdoor coil defrost cycles. (ASHRAE 90.1-2016)

Building Energy Codes

Vision

A data-driven knowledge-integrated framework that automatically verify that controls function as intended. Applications to compliance, commissioning, and BPS.

Overall Plan

Phase 1: (FY20-22) (basic technology research)

- Initial development of the framework
- Proof of concept
- Preliminary test cases

Phase 2: (FY23-25) (research to prove feasibility)

- API development, testing with industry partners
- Expansion of the library to cover all control requirements in 90.1 and Guideline 36
- Fully implementation of semantic information integration
- Initial deployment

Phase 3: (FY26-beyond) (development & demonstration)

- Industry deployment
- Continuous maintenance based on practitioner feedback

Industry/stakeholder engagement
FY23 Q4 Host workshops for ConStrain
testing with potential users (from both
building modelers and building operators)

Stakeholders / Interested Parties

Actual Building Operation

Building operator, Cx Agents, analysts (GSA, TRC, Edo, MacDonald-Miller)

Building modeling and simulation engines EnergyPlus, Modelica, other BEM tools that simulate HVAC operation and control

Building analytics tools
TSPR, DOE prototype building models

Other relevant projects
OpenBuildingControl, BOPTEST

Communities reach out ASHRAE

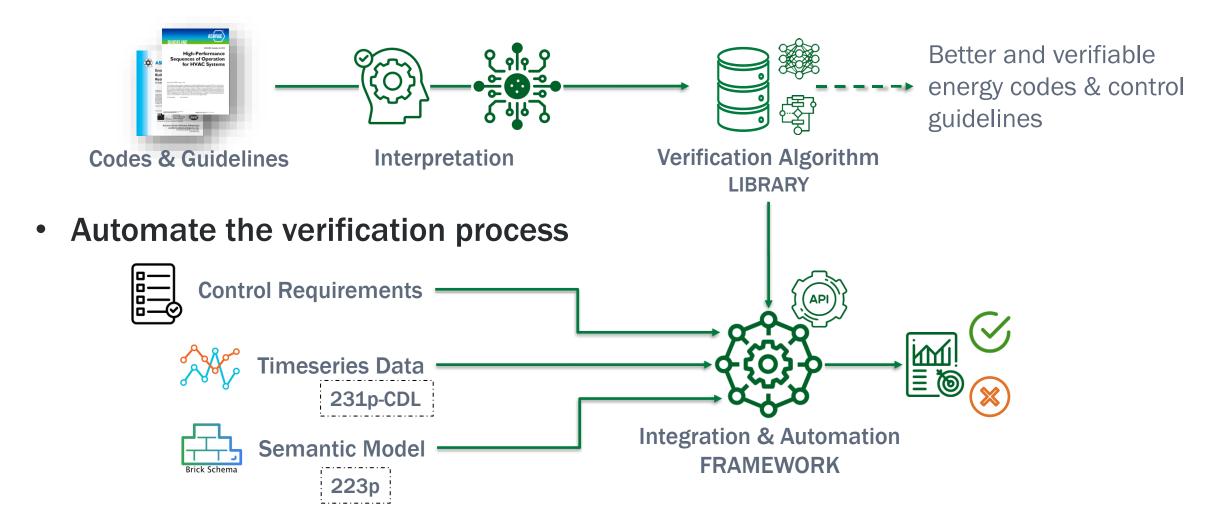
Alignment and Impact

DOE/BTO

- Increase the code compliance rate for controls (currently ~50%) bringing control systems into compliance is probably the most effective upgrade we can apply to existing buildings at scale in the near term.
- Reduce cost and improve effectiveness of commissioning (Cx) going forward.
- "Close the loop" of digitized control delivery from design to the operation.

ConStrain provides value to different industry stakeholders

- Cx agent reduce effort and cost, while increasing rigor
- Building operator implement Continuous Commissioning (CCx) to avoid performance drift
- AHJ achieve better compliance rates for control provisions in code
- Mechanical engineer/energy modeler ensure that chosen systems and their controls will comply with code.
- Energy code/control guideline developer -- identify ambiguity in code languages.
- BEM software developer -- identify control related issues in simulation engine.



Energy Codes

Approach – Overview

Develop the library of control verification algorithms

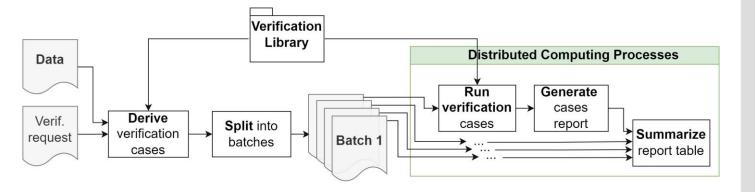
Approach – Verification Library

- Reviewed control requirement in energy codes and control guidelines.
 - ASHRAE Standard 90.1
 - International Energy Conservation Code (IECC)
 - Guideline 36
- Identified three methods to carry out verification [1].
 - Logical expressions
 - Procedural knowledge
 - Machine learning-based verification

Interpret code language into pseudo code and python script

6.4.3.4.2 Shutoff Damper Controls (90.1-2016)

...Ventilation outdoor air and exhaust/relief dampers shall be capable of and configured to *automatically shut off* during preoccupancy building warm-up, cooldown, and setback, except when ventilation reduces energy costs or when ventilation must be supplied to meet code requirements.


Pseudo Code

```
if Occ <= 0 + tol
   if eco_onoff = 0
and (m_oa > tol or
m_ea > tol)
    return false
   else
    return true
   endif
else
   return untested
endif
```

[1] Chen, Y., Lerond, J., Lei, X., Rosenberg, M. and Vrabie, D., A Knowledge-based Framework for Building Energy Model Performance Verification. Proceedings of Building Simulation 2021: 17th Conference of IBPSA, 2021

Approach – A Parallel Verification Process

- Developed a parallel process to handle many verification cases simultaneously.
 - Real building data can easily have 100+ verification cases (See Example).
- Parallel verification workflow

A **verification case** is defined to verify one control action for a specific controller (e.g., to verify zone temperature reset in Room 101)

Example: PNNL's Systems Engineering Building has 33 thermal

zones, 5 AHUs, 3 FCUs

Each zone:


- Temperature setback control
- The number of Temperature setpoint dead band
- Off hour control

verification cases adds up quickly.

Each AHU:

- Supply Air Temperature Control
- **Economizer High Limit**
- **Integrated Economizer Control**
- **Shutoff Damper Controls**
- **VAV Static Pressure Sensor Location**

Approach: End-to-End Workflow (SAT Reset Example)


```
class SupplyAirTempReset(RuleCheckBase):
    points = ["T_sa_set", "T_z_coo"]
Verification logic (.py)
} library.json > {} SupplyAirTempReset
                                Library metadata
                                                                                            Case definition
                                                                "no": 2,
                                                                "run simulation": false,
  "SupplyAirTempReset": {
                                                                "simulation IO": {
                                                                                                                        def verify(self):
      "library item id": 1,
                                                                                                                             t_sa_set_max = max(self.df["T_sa_set"])
      "description brief": "Cooling supply air temperature
                                                                "expected result": "pass",
                                                                                                                             t_sa_set_min = min(self.df["T_sa_set"])
      "description detail": "Multiple zone HVAC systems mu
                                                                "datapoints source": {
      "description index":
                                                                    "idf output variables": {
          "Section 6.5.3.5 in 90.1-2016"
                                                                                                                             self.result = (t sa set max - t sa set min) >= (
                                                                        "T_sa_set": {
                                                                                                                                  self.df["T_z_coo"] - t_sa_set_min
                                                                            "subject": "VAV_2 Supply Equipment Out
      "description datapoints": {
                                                                            "variable": "System Node Setpoint Tem
                                                                                                                             ) * 0.25 * 0.99 # 0.99 being the numeric threshold
          "T sa set": "AHU supply air temperature setpoint
                                                                            "frequency": "detailed"
          "T z coo": "Design zone cooling air temperature
                                                                                                                    Verification Results:
                                                                                                                                                 6.5.3.5 (no SAT reset found)
      "description assertions": [
                                                                    "parameters": {
                                                                                                                                                          Example day data points plot - SupplyAirTempReset
          "Max(T sa set) - Min(T sa set) >= (T z coo - Mir
                                                                        "T_z_coo": 24.0
      "description verification type": "rule-based",
                                                                                                                                                                               ____ T_z_coo
      "assertions type": "pass"
                                                                "verification_class": "SupplyAirTempReset"
                                                                                                                      Case report
```

GitHub Repository: https://github.com/pnnl/ConStrain

Approach – Barriers, Challenges, and Risks

Adoption challenges:

- Insufficient industry interest to drive wide adoption and integration in existing market available systems and tools.
- Framework flexibility to satisfy the diverse needs and configurations of the entire commercial building stock.

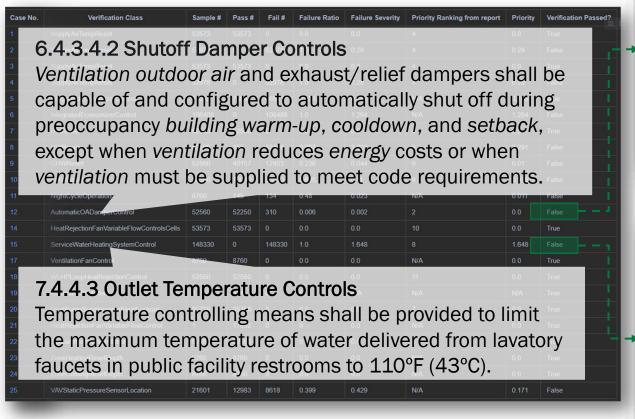
Mitigation strategies:

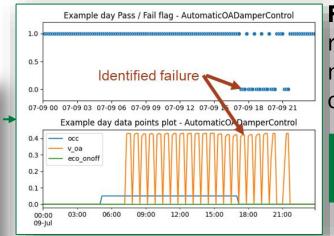
- ✓ Test the framework with both simulated dataset and real building dataset.
- ✓ Formed a technical advisory panel to engage the industry and academia from the start of the project to inform the development process.
- ✓ Quarterly check-ins and updates with industry stakeholders, and sustained engagement with PNNL's Technology, Deployment & Outreach Office to identify early adopters in industry.

Progress – Verification Algorithm Library

	Control Items	FY21	FY22	FY23					
AHU	6.5.3.5* Supply Air Temperature Control	Yes							
	6.5.1.1.3 Economizer High Limit	Yes							
	6.5.1.3 Integrated Economizer Control	Yes							
	6.4.3.4.2 Shutoff Damper Controls		Yes						
	6.5.3.2.3 Fan Static Pressure Reset Controls	Fan Static Pressure Reset Controls							
	6.5.3.2.2 VAV Static Pressure Sensor Location	Location Yes							
	6.4.3.4.4 Ventilation Fan Controls		Yes						
	6.5.4.4 Hot Water Temperature Reset	Yes							
Plant	6.5.4.4 Chilled Water Temperature Reset	Yes							
	6.5.5.2.1 Economizer Humidification System Impact		Yes	Focus on					
	Water-side Economizer		103	ASHRAE					
	6.4.3.5 Heat Pump Supplemental Heat Lockout		Yes	Guideline 36					
	6.5.5.2.2 Heat Rejection Fan Variable Flow Controls		Yes	Guideline 30					
	6.5.2.2.3 Water Loop Heat Pump Heat Rejection Controls		Yes						
SWH	7.4.4.3 Service Water-heating System Controls-outlet Temperature Control		Yes						
Zone	6.4.3.1.2 Zone Temperature Control - Dead Band	Yes							
	6.4.3.3.2 Zone Temperature Control - Setback Controls	Yes							
	6.4.3.3 Off Hour Automatic Temperature Setback And System Shutoff		Yes						
	6.4.3.3.5 Guest Room Control		Yes						

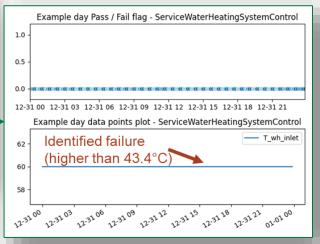
Selection of the control verification is based on **energy impact** from the list of control requirements identified by Rosenberg et al. (2017)


Rosenberg, Michael I., et al. *Implementation of Energy Code Controls Requirements in New Commercial Buildings*. No. PNNL-26348. Pacific Northwest National Lab.(PNNL), Richland, WA (United States), 2017.


^{*} Section number (e.g., 6.5.3.5) is based on ASHRAE 90.1-2016

Progress - Applications with Simulated Data & Result

Dataset: Building simulation models


Result Summary Table

Failed: Outdoor air flow rate was non-zero and night cycling was not operating correctly.

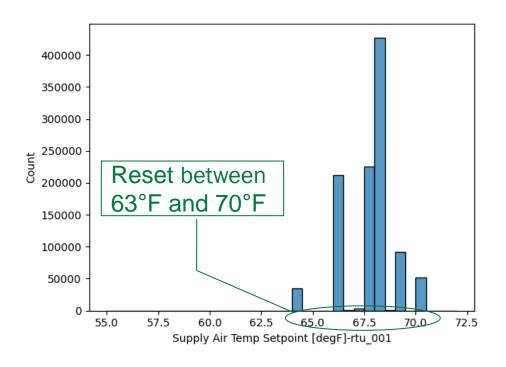
Simulation engine error.

Failed: Water heater setpoint temperature schedule was set to 60°C, which is greater than 43°C.

Model input error.

Progress - Applications with Real Building Data & Result

Dataset: OpenEl Dataset, LBNL Building 59^[1]


Control Verification item:

6.5.3.5 Supply Air Temperature Reset Controls Multiple zone HVAC systems shall include controls ... to automatically reset the supply air temperature ... The controls shall reset the supply air temperature at least 25% of the difference between the design supply air temperature and the design room air temperature.

Assumptions: current verification algorithm needs design zone cooling air temperature, which is unavailable within this dataset. Based on zone thermostat setpoints, assumed 73°F.

Result:

Verification passes → confirmed that AHU supply air temperature is reset based on outdoor air temperature or representative building loads.

[1] Data source: Hong, T., and Luo, N., Lawrence Berkeley National Laboratory Building 59, Berkeley, CA. United States. 2021 DOI: 10.25584/1763770

Lessons Learned

- The process of interpreting control requirements in codes and guidelines into verification algorithms evaluates the formality and ambiguity of energy code and control sequence language.
- The collection of data points for verification needs can serve as the minimum requirement for BAS trending and data acquisition.
- Testing with data sets from both actual buildings and simulation models further informs the robust design of the ConStrain verification framework.

EXAMPLE 1: Identify ambiguity issue

6.4.3.5 Heat Pump Auxiliary Heat Control Heat pumps equipped with internal electric resistance heaters shall have controls that prevent supplemental heater operation when the heating load can be met by the heat pump alone during both steady-state operation and setback recovery. Supplemental heater operation is permitted during

outdoor coil defrost cycles.(ASHRAE 90.1-2016)

What does
"can be met"
mean? In 5
minutes? In an
hour?

EXAMPLE 2: Data matrix to inform minimum trending

	Verification items									
Data Point	Supply Air Temp Reset	Economizer High Limit A	Economizer High Limit B	Integrated Economizer Control						
AHU supply air temperature setpoint	•	1	1	Ť						
Design zone cooling air temperature	•			Î						
Return air temperature		ł	•	İ						
OA dry bulb temperature		•	•	1						
OA dry bulb upper threshold		•	1							
Cooling demand				4						
OA airflow rate										
OA minimum airflow setpoint		•	•	•						

ConStrain Summary

- A data-driven knowledge-integrated framework that automates verification of control based on energy codes and control guidelines.
- Provides benefits to different stakeholders: commissioning agents, building operators, building owners, mechanical engineers and energy models, BEM software developers, energy code developers.
- More verification algorithms will be developed, and more tests will be conducted in real buildings with stakeholders targeting deployment.

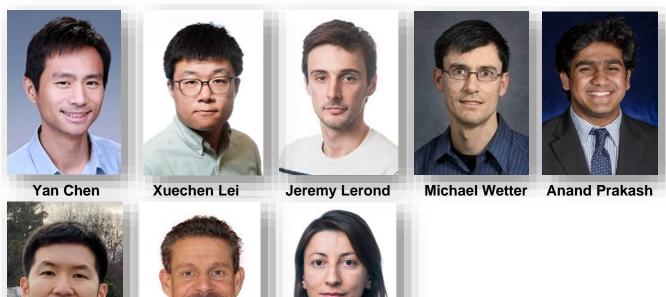
Thank You

Performing Organization(s), PNNL, LBNL Yan Chen, Ph.D.

yan.chen@pnnl.gov

WBS # 3.2.6.67

REFERENCE SLIDES


Project Execution

	FY2020			FY2021			FY2022				FY2023					
Planned budget		75k			200k			250k			300k					
Spent budget	75k			193k			215k			188k						
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work																
Q4 Milestone: Initial development of automated verification																
framework and test via a case study.															$ldsymbol{f eta}$	
Q1 Milestone: Form a small panel to advise the automated control															1	
performance verification framework development																
Q3 Milestone: Developed a preliminary version of the control															1	
performance verification library																
Q4 Milestone: Demonstration and testing of automated															1	
verification framework via building simulation models																
Q2 Milestone: In-parallel evaluation process developed for															1	
analyzing large scale (100+) models/cases simultaneously																
Q3: An expanded control performance verification library that															1	
covers the key requirement selected from 90.1					Ш										<u> </u>	
Q4: Documentation of a set of key performance indicator (metrics)															1	
for control performance verification																
Current/Future Work																
Q2 Milestone: Development of a vendor neutral API for using														(
ANIMATE.					Ш											
Q3 Milestone: Expanded control verification library that include																
the key control specifications from Guideline 36					Ш											
Q4 Milestone: Development of local loop control verification																
algorithms for building system.																
Q4 Milestone: Host workshop for ANIMATE with potential users															1	
(from building modelers and building operators)															<u> </u>	

 Go/no-go decision points

Team

Project team includes experts in **energy codes**, **building energy modeling**, **control**, **semantic modeling**.

Engaging with subject matter experts, industry stakeholders and earlier adopters.

Lawrence Berkeley National Laboratory

Yun Joon Jung

EERE/BTO goals

The nation's ambitious climate mitigation goals

Greenhouse gas emissions reductions

50-52% reduction by 2030 vs. 2005 levels

Net-zero emissions economy by 2050

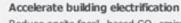
Power system decarbonization

100% carbon pollutionfree electricity by 2035

Energy justice

40% of benefits from federal climate and clean energy investments flow to disadvantaged communities

EERE/BTO's vision for a net-zero U.S. building sector by 2050



Support rapid decarbonization of the U.S. building stock in line with economyide net-zero emissions by 2050 while centering equity and benefits to communities

Increase building energy efficiency

Reduce onsite energy use intensity in buildings 30% by 2035 and 45% by 2050, compared to 2005

Reduce onsite fossil -based CO₂ emissions in buildings 25% by 2035 and 75% by 2050, compared to 2005

Transform the grid edge at buildings

Increase building demand flexibility potential 3X by 2050, compared to 2020, to enable a net-zero grid, reduce grid edge infrastructure costs, and improve resilience.

Prioritize equity, affordability, and resilience

Ensure that 40% of the benefits of federal building decarbonization investments flow to disadvantaged communities

Reduce the cost of decarbonizing key building segments 50% by 2035 while also reducing consumer energy burdens

Increase the ability of communities to withstand stress from climate change, extreme weather, and grid disruptions