Separate Sensible and Latent AC System

(1)

DCHE-RG

Tank

Oak Ridge National Laboratory PI: Kashif Nawaz, Section Head of Building Technologies Research 865-241-0972, nawazk@ornl.gov

Oak Ridge National Laboratory Presenter: Kai Li, Research Staff (Multifunctional Equipment Integration)

Project Summary

Objective and outcome

Development of an infrastructure to realize separate sensible and latent cooling in a costeffective manner. The project team will develop desiccant coated heat exchangers and will demonstrate SSLC with 20% COP improvement compared to the state-of-the-art dehumidification systems.

Team and Partners

Oak Ridge National Lab Kashif Nawaz, Kai Li, Lingshi Wang, Kyle Glusenkamp, Ahmed Elatar, Tony Gehl, Zhenning Li Purdue University Ming Qu, Tomas Venegas

<u>Stats</u>

Performance Period: Oct 2019 – March 2024 DOE budget: \$250K/year, Cost Share: \$75K/year Milestone 1: Thermodynamic analysis of various configurations Milestone 2: Development and performance evaluation of coated heat exchangers Milestone 3: System level deployment

Problem

- On average, about 33% of energy consumption is attributed to dehumidification processes.
- Separate sensible and latent cooling (SSLC) systems offer significant improvements in the overall performance of cooling/dehumidification systems compared with conventional vaporcompression air-conditioning systems.
- Key to the energy efficiency of such systems is the performance of the heat and mass exchangers, which provide sensible cooling and dehumidification.
- The proposed work focuses on developing a novel technology to handle sensible as well as latent loads for buildings: a heat and mass exchanger deploying a metal foam as the substrate, coated with appropriate desiccant materials.

Approach

• Conventional dehumidification technology relies on a single vapor compression system to handle both sensible and latent loads.

- **Desiccant-coated enthalpy wheels** have some inherent disadvantages, including large size, inefficient process, and no effective control mechanism.
- The substrate is merely a support structure (polymer-based materials).

Approach

Impact of Technology

- An improved dehumidification system deploying SSLC ٠
 - Ultra-compact infrastructure to control the moisture content of supply air • (>30% reduction in size)
 - At least 20% improvement in COP is expected compared with existing systems (single vapor compression).
 - At least 25% CO₂ emissions (>80 MMton) reduction due to improved performance
 - At least 40% cost saving compared to state of the art
- Enabling development for deployment of small-scale residential systems
 - Reduced cost of the working fluid
 - Reduced required maintenance due to compact design
- At least 800TBtu energy saving in air conditioning technologies

Reduce onsite energy use intensity in buildings 30% by 2035 and 45% by 2050, compared to 2005

Accelerate building electrification

Reduce onsite fossil -based CO₂ emissions in buildings 25% by 2035 and 75% by 2050, compared to 2005

Aligned with BTO goal to develop energy efficient technology to cause 50% energy saving by 2030 compared to 2010 technologies and zero carbon foot-prints by 2050.

Project Progress — Substrate Evaluation

Heat exchangers developed at ORNL deploying high surface areas substrates

Improvement in Heat and Mass Transfer Coefficient

Improvement in Transfer Area

Metal foams with varying porosity (irregular porous media)

Coated vs. uncoated metal foam samples

 $f_{D_p} = \frac{\Delta P}{L} \frac{\overline{\rho}}{G^2} \frac{D_p}{2} = 1.975 \operatorname{Re}_{D_h}^{-0.1672} \left(D_p / D_h \right)^{-3.708}$ $j_{D_p} = \frac{h}{\overline{\rho c_p} V} \frac{D_p}{D_h} \operatorname{Pr}^{2/3} = 2 \operatorname{Re}_{D_h}^{-0.5611} \left(D_p / D_h \right)^{0.3213}$

Project Progress — Desiccant Evaluation

Project team has analyzed more than 15 materials including zeolites, aerogels, activated carbon

fibers and hybrid materials!!

Project Progress — Desiccant development and coating

- Developed <u>new desiccant materials</u> with high moisture absorption capacity and low regeneration temperature
- Development one step polymerization induced desiccant coating on metal foam

Project Progress — Desiccant development and coating

Uncoated and coated heat exchanger

Close-up views of coated heat exchangers

- Development of appropriate surface morphology for coating process
- Uniform coating without blocking the pores is critical for successful deployment
- The coatings should be durable in order to ensure sustainable process

Project Progress — Performance evaluation

Project Progress – Performance evaluation

- SAP coated metal foam shows stable desorption and absorption behavior during <u>50</u>
 <u>cyclic regeneration and dehumidification cycles</u>
- Coating are durable in the during the cyclic desorption and absorption experiments

Project Progress – Modeling

System level modeling

Project Progress – Modeling

Evaluation of various SSLC configuration

$$C_1 = h_{fg} (w_{ID} - w_{LHX})$$
 $C_2 = \frac{T_{ODB} - T_{LHX}}{T_{LHX}}$

Publications and Implications

Several conference/journal publications

- T. Venegas, M. Qu, K. Nawaz, L. Wang, "Effect of Geometry and Operational Parameters on the Dehumidification Performance of a Desiccant Coated Heat Exchanger", Science and Technology for the Built Environment, 2022, 28, 6, 729-741 (<u>https://doi.org/10.1080/23744731.2022.2077595</u>)
- T. Venegas, M. Qu, K. Nawaz, L. Wang, "Critical review and future prospects for desiccant coated heat exchangers: materials, design, and manufacturing," Renewable and Sustainable Energy Reviews, 2021, 151, 111531 (<u>https://doi.org/10.1016/j.rser.2021.111531</u>).
- M. Qu, K. Nawaz, T. Venegas, L. Wang, "Effect of geometry and operational parameters on the dehumidification performance of a desiccant coated heat exchanger," 2020 Building Performance Analysis Conference and SimBuild (Virtual- co-organized by ASHRAE and IBPSA-USA).
- K. R. Gluesenkamp, K. Nawaz, "Separate sensible and latent cooling: Carnot limits and system taxonomy," International Journal of Refrigeration, July 2021, 127, 128–136 (<u>https://doi.org/10.1016/j.ijrefrig.2021.02.019</u>).
- Z. Li, K. R. Gluesenkamp, K. Nawaz, "Analysis of basic airflow configurations for separate sensible and latent cooling systems with indoor air recirculation," International Journal of Refrigeration, July 2021, 127, 78–88 (<u>https://doi.org/10.1016/j.ijrefrig.2020.12.026</u>).
- K. Nawaz, K. Gluesenkamp, "Separate sensible and latent cooling systems: a critical review of the state-of-the-art and future prospects," 17th International Refrigeration and Air Conditioning Conference at Purdue, July 9–12, 2018, Purdue University, Lafayette, IN.
- K. Li, J. Brechtl, K. Nawaz, Desiccant coated heat exchanger for moisture management, ACS Spring 2023, March 26-30, Indianapolis, IN
- Separate sensible and latent cooling using Metal complex coated metal foam (In progress)
- Salt-in-hydrogel coated metal foam for dehumidification (In progress)
- US nonprovisional patent application 16/942,853, "Metal Foam Heat Exchangers for Air and Gas Cooling and Heating Applications."

Stakeholders Engagement

• New IEA Annex and workshop "Comfort and Climate Box solutions for warm and humid climates".

Major Tasks

Task name:	Task description:
Desiccant characterization	This task will focus on the procurement, development, and deployment of various desiccants, and on evaluating their performance as solids and coatings.
Test facility for heat/mass exchanger	A dedicated test facility will be established to conduct thermal-hydraulic
performance evaluation	testing of HXs. The same facility will be used for mass exchanger analysis as well.
Thermal-hydraulic characterization of	Metal foam HXs will be tested under various operating conditions, and their
metal foam heat exchangers	performance will be summarized as correlations.
Performance modeling	Based on findings from the previous tasks, a performance model will be
	developed to predict the performance of a coated mass exchanger.
Thermal-hydraulic characterization of	This task will focus on extensive experimentation in a wind tunnel to observe
coated conventional and metal foam	the moisture adsorption capacity of the coated mass exchanger. In addition,
heat/mass exchangers	characteristics such as sensible heat transfer rate and regeneration process will be analyzed.
Parametric analysis	Various parameters of the substrate and desiccant coating thickness will be investigated for potential effects on coated mass exchanger performance.
CRADA partnership	Engagement with OEMs to evaluate the performance in field

Thank you

Oak Ridge National Laboratory

Kashif Nawaz, Section Head of Building Technologies Research; Group Leader of Multifunctional Equipment

865-241-0972 | nawazk@ornl.gov

ORNL's Building Technologies Research and Integration Center (BTRIC) has supported DOE BTO since 1993. BTRIC is comprised of 60,000+ ft² of lab facilities conducting RD&D to support the DOE mission to equitably transition America to a carbon pollution-free electricity sector by 2035 and carbon free economy by 2050.

Scientific and Economic Results

236 publications in FY22
125 industry partners
54 university partners
13 R&D 100 awards
52 active CRADAs

BTRIC is a DOE-Designated National User Facility

REFERENCE SLIDES

Project Execution

		FY20XX			FY20 <mark>YY</mark>				FY20ZZ			
Planned budget												
Spent budget												
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Past Work												
Q1 Milestone: Example 1												
Q2 Milestone: Example 2 (🔶 is planned date of milestone)												
Q3 Milestone: Example 3												
Q4 Milestone: Example 4												
Q1 Milestone: Example 5												
Current/Future Work												
Q3 Milestone: Example 6												
Q4 Milestone: Example 7												
Insert more Milestones as needed												

- Go/no-go decision points
- Explanation for slipped milestones and slips in schedule