

Low-Cost Dynamic Glazing with Custom Colors

Performing Organization: PI Name and Title: PI Tel and/or Email: Project #:

Polyceed, Inc. dba Glass Dyenamics Anoop Agrawal, CTO 520 230 2140, anoop@dyenamics.com NREL SUB-2022-10374

Project Summary

The start: Low Cost, Proven Durability		Objective: Color & Manufacturing Optimization				
1.	Low cost: Device simplicity, low capex due to the use of standard glass process equipment.	1.	Increased product marketability with neutral color dyes, and			
2.	Durability : Demonstrated highly durable dye- based EC products with liquid electrolytes which cycle > 150k times over 5,000 hours under ASTM E2141 exposure conditions.	2.	Increase manufacturing readiness with solid electrolyte chemistry			
Team and Partners		Key Milestones / Demonstrations				
Tea	am and Partners	Ke	y Milestones / Demonstrations			
Tea 1.	am and Partners Glass Dyenamics	<u>Ke</u>	y Milestones / Demonstrations Solid electrolyte devices			
1.	am and Partners Glass Dyenamics NREL	1.	Solid electrolyte devices Neutral coloring devices			

Problem:

Buildings account for ~40% of our total energy use

- 35% of our carbon emissions

Windows influence up to 50% of building energy use

- Heating
- Cooling
- Lighting

Solution: Dynamic glass can modulate solar heat > 50%

Dynamic glass tints and untints upon application of an electric charge

> Keeps the heat out during summer

Energy Efficient Glass Market: Proven climate impact & adoption

<u>2B sqft/yr low-e glass sales</u>¹:

- Static, energy efficient low emissivity glass ("Low-E") R&D began in the mid-1970's in response to the 1973 oil embargo
- 50% commercial / 50% residential
- 50% new build / 50% remodel
- Contributed to 40% building energy reduction

Existing Dynamic Glass Solutions: Metal oxide systems

Three companies have commercialized dynamic architectural windows:

- 99% visible light blockage
- Up to 100,000+ cycles with minimal degradation
- Passed ASTM E2141

Challenge: Demonstrating economics suitable for mass adoption

Existing Dynamic Glass Solutions: Dye systems

Two companies have commercialized dynamic mirrors and aircraft windows:

- 99.99% visible light blockage¹
- 500,000 cycles with minimal degradation²
- Robust economics and scalability: 40M products sold annually, 30% EBITDA margins

- Challenge: Demonstrating durability to ASTM E2141 standard
 - 1. *https://www.mobilityengineeringtech.com/component/content/article/adt/pub/features/articles/27502
 - 2. Data generated by AJJER LLC

Glass Dyenamics Solution: Dye systems that can pass ASTM

Glass Dyenamics collaborated with the DOE to develop UV-durable organic dye-based EC technology (BENEFIT 2018)

- Emphasis placed on low toxicity electrolytic materials and device recyclability
- Multilayer "Transparent Conductor" solutions avoided to keep attractive economics
- Size scalability addressed by modifying electrolytic properties

BENEFIT 2018 Results: <u>150k Cycles</u> under ASTM E2141 conditions

Glass before and after 150,150 cycles, 5005 hours (ASTM E2141)

After 150,150 cycles

Glass Dyenamics Solution: UV-stable Dyes

Projections show that BENEFIT 2018 program success can lead to favorable product economics:

- 1. 90% /sqft capex reduction
- 2. 75% /sqft COGS reduction
- 3. Custom colors with NIR bloackage without changing the manufacturing process.

Current Program w/NREL Color & Manufacturing Optimization

The objective of the current program is to increase commercial viability of the products developed under BENEFIT 2018:

Two objectives:

Increased product marketability with neutral color dyes, and

2. Increase manufacturing readiness, eliminate hydrostatic pressure with solid electrolyte chemistry

Electrolyte Transparent conductor Substrate 1

For each development to demonstrate cyclic durability at 90C for 2,000 to 5,000 times and Submit cells to NREL for ASTM E2141 testing

Transparent conductor

Substrate 2

• Demonstrate devices that color to a more neutral color characterized by c*<15

 Demonstrate preliminary durability by cycling the devices at 90C between 2000 and 5000 cycles

Large value of c* represents increasing blue, red, green or a yellow color

Objective 1 Results Achieved: Neutral Color

Remaining Task: Final Report

 Demonstrate devices where the electrolyte is solid, rather than a liquid or a viscous liquid

 Demonstrate preliminary durability by cycling the devices at 90C for 2,000 and 5,000 cycles

Objective 2 Results Achieved: Solid Electrolyte

Remaining Task: Final Report

Cells have been submitted to NREL for ASTM Testing

Progress & Future Work

We have met both the program's major milestones

These devices will be cycled at NREL for 250-1,000 hours of exposure, to measure performance gap if any

Remaining program tasks:

Final Technical Report

Technical plans beyond the Project focus

Preparation for commercial scaleup in the next 12 months

Emerging superior low-cost product in the dynamic glass industry

Installation

Thank You

Performing Organization(s): Glass Dyenamics Inc dba Glass Dyenamics PI Name and Title: Anoop Agrawal, CTO PI Tel and/or Email: 520 230 2140, anoop@dyenamics.com Project # NREL SUB-2022-10374

	2022-23			
Planned Budget	\$381,000			
Spent Budget	\$348,014	91%		
Past Work	Q1	Q2	Q3	Q4
Milestone 1: Report on cycling performance of solid electrolyte devices at 90C			•	
Milestone 2: Report on cycling performance of neutral coloring devices at 90C		•		
Current and future work				
Submission of devices to NREL for testing			•	
Final Report			•	