

DOE BIOENERGY TECHNOLOGIES OFFICE (BETO) 2023 PROJECT PEER REVIEW

SWIFT: SINGLE-PASS, WEATHER INDEPENDENT FRACTIONATION TECHNOLOGY

April 4th, 2023 Technology Area Session

Dr. Matthew Digman (PI) Dr. Kevin Shinners (Co-PI, Presenter) University of Wisconsin

PROJECT OVERVIEW

PROBLEM STATEMENT

An estimated 60% of the available corn stover will be collected in excess of 20% moisture resulting in a lack of ability to produce a reliable feedstock with conventional harvest and storage systems.

https://poet.com/bioethanol

CURRENT SOT

SOT ISSUES

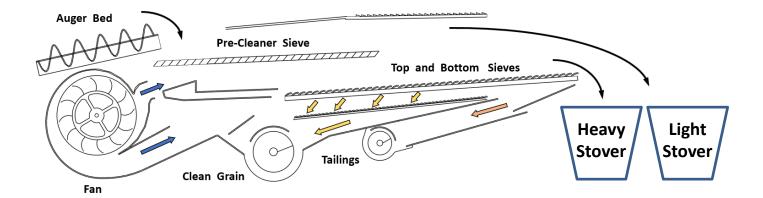
- Inconsistent stover fractions captured.
- Too many non-value-added operations.
- Fall weather challenges.
- Inconsistent & excessive moisture content.
- High ash content.
- Poor transport density.

PROJECT GOALS

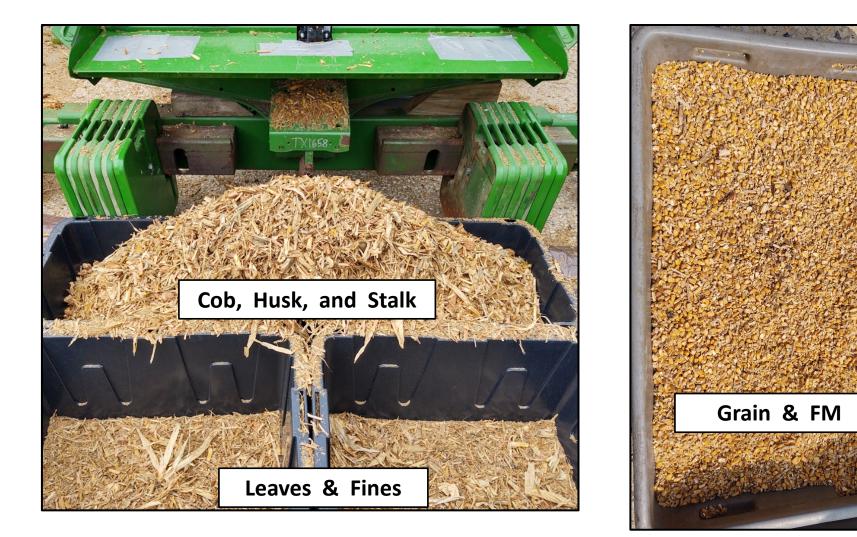
- Overcome issues with current bale-based SOT.
- Develop a single-pass corn stover harvest process with improved chemical and physical property control.
- Reduce corn stover feedstock delivery cost to \$70 per dry ton (2016\$).

SWIFT INNOVATIONS

- Stover and grain co-harvested, co-stored and co-transported:
- Target aggregate moisture of ~30% 45%.
- Direct harvest increases control of feedstock properties.
- Stable anerobic storage doesn't require field wilting.
- Higher transport density to end-utilization.



SWIFT INNOVATIONS


Separating grain and stover & stover fractions:

SWIFT INNOVATIONS

Approach

- 1. Reduce harvest risk with modified harvesting machines and header configurations.
- 2. Utilize anaerobic storage to minimize storage loss.
- 3. Fractionate stover to reduce pretreatment severity.
- 4. Characterize material properties for scale-up.
- 5. Evaluate the cost-benefit.

PROGRESS AND OUTCOMES

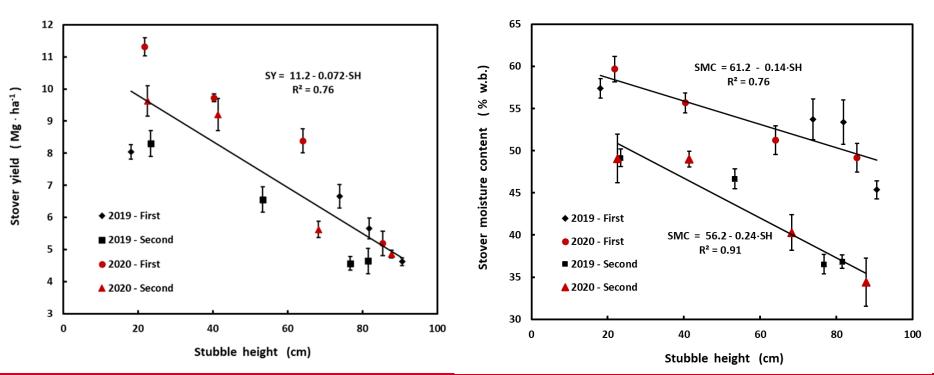
Modifications:

Note our Weather Independent Harvest

- Whole-plant or ear-snapper headers, w/ higher cutting height.
- To reduce loss of grain integrity:
 - Reduced cutterhead speed.
 - Longer cut length (35 mm)

Modified combine harvester: single-pass co-harvest that maintains grain integrity.

Whole-Plant Header



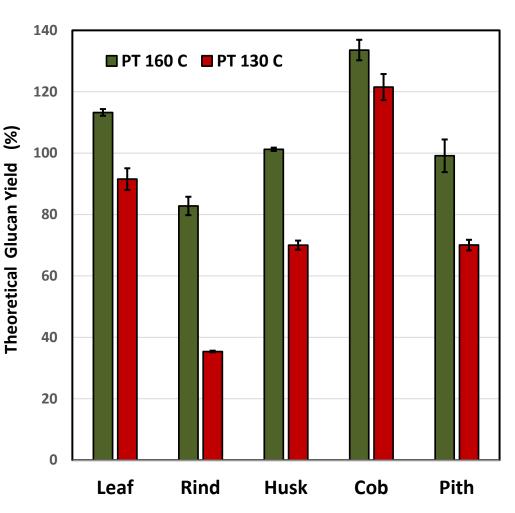
Modified Ear-Snapper Header

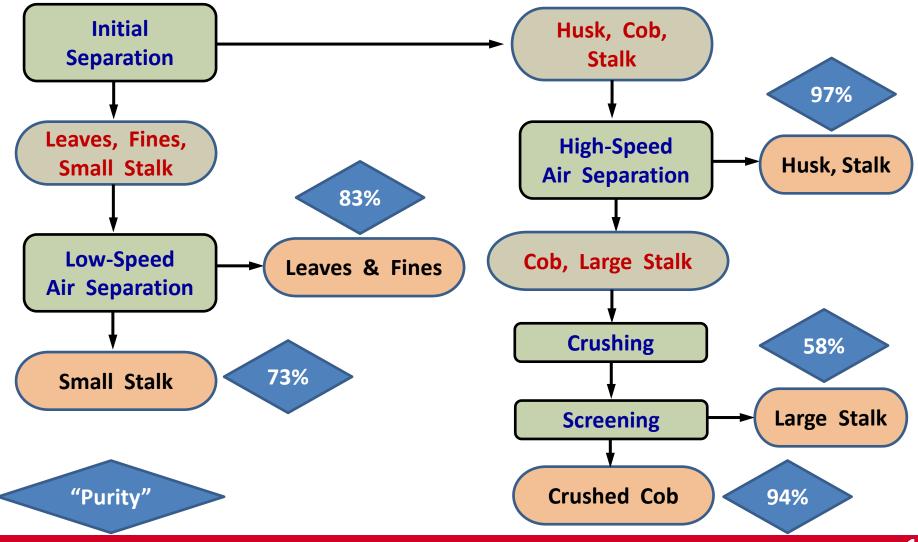
- Yield controlled: 41% to 85% of available stover collected
- Aggregate moisture controlled: 36% to 41% (w.b.)
- Ash content controlled: < 6% of DM</p>

Glucan and xylan controlled:

2ND APPROACH: ANAEROBIC STORAGE

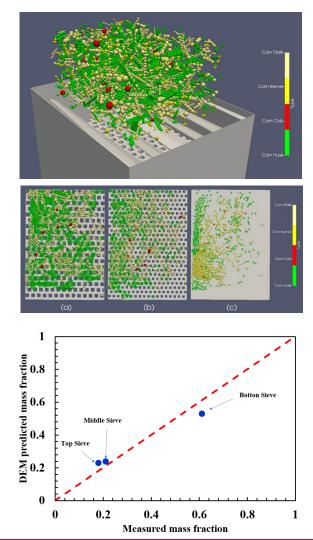
- Harvested and stored:
 - 0.30 tonne DM in 19 L mini-silos
 - 1.7 tonne DM in 200 L pilot-scale silos
 - 22 tonne DM in wrapped bales
 - 30 tonne DM in silo bags
- Losses limited to less than 6% of DM.
- Grain gains moisture during storage.

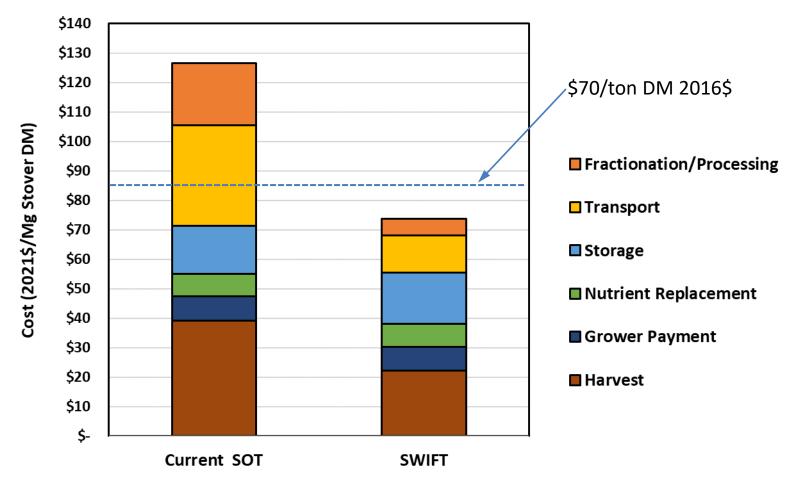



3RD APPROACH: REDUCED PRETREATMENT COSTS

- Dilute acid pretreatment.
- Leaf & cob fractions:
 - Least recalcitrant at 130°C
 - ~30 to 40% of stover mass.
 - .:. preferred fractions were:
 - Leaves and Cob
 - Husk and Stalk

3RD APPROACH: REDUCED PRETREATMENT COSTS


3RD APPROACH: REDUCED PRETREATMENT COSTS


4TH APPROACH: MATERIAL PROPERTIES

- DEM models developed for each anatomical fraction.
- Material interaction optimized using mechanical sieving.
- Current work focuses on introducing material into a CFD environment.
- Fermented kernel physical properties quantified.

5TH APPROACH: COST – BENEFIT

Hemmelgarn, A. B., Lin, Y., Wendt, L. M., Hartley, D. S., & Digman, M. F. (2022). Techno-economic assessment of single-stream feedstock logistics supply chain for corn stover and grain. Biofuels, Bioproducts and Biorefining. <u>https://doi.org/10.1002/bbb.2459</u>

IMPACT

- A single-pass system with clear demonstration of reduced weather risk will improve grower participation.
- Demonstration of anerobic storage stability reduces on-farm and biorefinery risk.
- Reduction in pretreatment costs and lower ash will reduce conversion costs to biorefineries.
- Material property data will allow further optimization of fractionation, handling, and storage.

SUMMARY

- The single-pass harvest process could be utilized to alter stover yield, moisture, glucan, and xylan while minimizing ash content.
- Combining leaves and cob reduced pretreatment severity by 30% on ~30 – 40% of the biomass.
- A mechanical fractionation process was developed to separate leaves and cob from husk and stalk.
- Virtual material models were developed for stover anatomical fractions.

QUAD CHART OVERVIEW

Time	line

- 10/01/2019
- 06/30/2023

		with defined and mea	
	FY22 Costed	Total Award	superior conversion p
DOE Funding	\$337,404	\$1,248,747	End of Project
Project Cost Share *	\$11,518*	\$316,653	• DE-FOA-000202
	t Project Start: t Project End: 4		Project PartnerIdaho NationalIowa State Uni

*Cost share was front-loaded in this project via equipment donations.

Project Goal

Develop a corn stover harvest, storage and transportation process that is less weather dependent and produces a corn stover feedstock asurable characteristics for performance,

Milestone

value and sustainability of

anism

29, Topic 2a

rs

- l Labs
- niversity

DOE BIOENERGY TECHNOLOGIES OFFICE (BETO) 2023 PROJECT PEER REVIEW

SWIFT: SINGLE-PASS, WEATHER INDEPENDENT FRACTION TECHNOLOGY

April 4th, 2023 Technology Area Session

Dr. Matthew Digman (PI) Dr. Kevin Shinners (Presenter) University of Wisconsin

PUBLICATIONS

PUBLICATIONS:

- Hemmelgarn, A. B., Lin, Y., Wendt, L. M., Hartley, D. S., & Digman, M. F. (2022). Techno-economic assessment of single-stream feedstock logistics supply chain for corn stover and grain. Biofuels, Bioproducts and Biorefining. <u>https://doi.org/10.1002/bbb.2459</u>
- Hemmelgarn, A. B., Shinners, K. J., Timm, A. J., & Digman, M. F. (2023). Anaerobic storage characteristics of whole-ear corn and stover. AgriEngineering, 5(1), 173-181. <u>https://doi.org/10.3390/agriengineering5010012</u>
- Pike, B.C., K.J. Shinners, K.J., Timm, A.J., Friede, J.C. & Digman, M.F. (2023). Coharvest and anaerobic co-storage of corn grain and stover as biomass feedstocks. Journal of the ASABE. In Press
- Hemmelgarn, A. B., K.J. Shinners, A.J. Timm, & Digman, M. F. (2023). Single-pass, single-stream harvest of corn grain and stover: a comparison of two harvest methods. BioEnergy Research. Submitted, January 2023.

PUBLICATIONS

PUBLICATIONS:

- Blazer, K.J., Shinners, K.J., Timm, A.J., Tekeste, M. & Digman, M.F. (2023). Physical properties of fermented corn kernels. Processes. Submitted March 2023.
- Blazer, K.J., Shinners, K.J., Timm, A.J., Tekeste, M. & Digman, M.F. (2022). Physical properties ground fermented corn grain. To be submitted to Materials. In Preparation.
- Blazer, K.J., Shinners, K.J., Timm & Digman, M.F. (2023). Fractionation of ensiled corn stover and grain. To be submitted to Applied Engineering in Agriculture. In Preparation.

STUDENTS TRAINED

THESES:

- Blazer, K.J. (2022). Anatomical Fractionation of Corn Grain and Stover to Produce Biomass Feedstocks. Masters of Science – Biological Systems Engineering. University of Wisconsin.
- Pike, B.C. (2022). Co-Harvest of Corn Grain and Stover For Improved Property Control of Biomass Feedstocks. Masters of Science – Biological Systems Engineering. University of Wisconsin.
- Kluge, Z.A. (2024) Separation of Corn Stover into Anatomical Fractions. Masters of Science (Expected) – Biological Systems Engineering. University of Wisconsin.

TECHNICAL PRESENTATIONS

2021 ASABE INTERNATIONAL MEETING:

- Pike, B.C., K.J. Shinners, and M.F. Digman. Fractional harvest of corn stover for improved property control as part of the Single-pass, Weather Independent Fractionation Technology (SWIFT) process.
- Blazer, K.J., K.J. Shinners, and M.F. Digman. Anatomical fractionation for improved property control as part of the Single-pass, Weather Independent Fractionation Technology (SWIFT) process.
- Hemmelgarn, A.B., K.J. Shinners and M.F. Digman. Harvest and storage of ear corn and chopped stover as a biomass feedstock.

TECHNICAL PRESENTATIONS

2022 ASABE INTERNATIONAL MEETING:

- Zhao, Y., M.Z. Tekeste, M.W. Schramm, and M.F. Digman. Discrete element method simulation of separation of whole-plant corn fractions using mechanical sieving.
- Hemmelgarn, A.B., L. Yingqian, D.S. Hartley, L.M. Wendt, M.F. Digman. A comparative techno-economic analysis of whole-plant corn to state-of-technology biomass feedstock supply systems.
- Blazer, K.J., K.J. Shinners, A.J. Timm, M.F. Digman. Grain fractionation as part of the Single-pass, Weather Independent Fractionation Technology (SWIFT) process.
- Pike, B.C., K.J. Shinners, and M.F. Digman. Fractional harvest of corn stover for improved property control as part of the Single-pass, Weather Independent Fractionation Technology (SWIFT) process.

TECHNICAL PRESENTATIONS

2023 ASABE INTERNATIONAL MEETING:

• Kluge, Z.A., K.J. Shinners, A.J. Timm, M.F. Digman. Method for anatomically fractionating corn stover to increase biofuel conversion efficiency.