Scaling Up the Industrial Hemp Supply Chain as Carbon Negative Feedstock for Fuel and Fiber

Partnerships for Climate-Smart Commodities Sustainable Aviation Fuel (SAF)

Justin Eisenach, Hemp Biofuel Project Director

Justin@unionharvest.us 303-525-3954

Hemp provides an unparalleled opportunity towards solutions for lowering the carbon intensity of fuel

Industrial Hemp:

Conservation Crop Rotation in major Corn, Soybean growing Regions

Illinois, Iowa, Minnesota, Soybeans

Iowa, Illinois, Nebraska, Corn

Cover crop well suited in Hard Red Winter Wheat (HRWW) Growing Regions

Kansas, Oklahoma, Texas, Washington, Colorado, Nebraska

~20M idle acres available-summer fallow is not utilized for food production Focus of Climate Smart Grant

Hemp genetics can yield substantially greater amounts of oil per acre than commonly grown oil seed feedstocks

- Amplify from New West Genetics can yield at least 80 gallons of oil per acre
- Frost Tolerant hemp, planted on summer fallow land in Feb harvested in July and ground is ready for winter wheat planting in Sept
- Grow non-food oil seed crop on idle farmland
 Hemp can be the highest yielding oil non-food crop planted in the US!

Hemp is an ideal annual crop for carbon negative supply chains for fuel. <u>Industrial Hemp:</u>

- Hemp has lower N requirements and create deeper, more massive root systems that can make annual biomass feedstock production C negative (Paustian et al. 2016)
- Using annual cropping systems for soil C sequestration is the least expensive and most environmentally friendly, with near-term technological readiness to go to scale
- Adoption of hemp crops with enhanced root phenotypes in annual cover crop and conservation cropping systems is one of the most promising and scalable technologies
- Hemp's massive root system encourages efficient water utilization when compared to corn, the deep and extensive root mass allows and encourages efficient utilization of existing soil nutrients.
- Hemp has another key trait for C sequestration, population density, where > 500k individuals per hectare leads to more root systems and greater C input and deep root mass stores CO2 in the soil
 - Genetically enhanced roots will improve soil function, soil health and agroecosystem sustainability and resilience and will contribute to other environment benefits (e.g., water quality)

Action items to grow Hemp as a Purpose Grown Energy Crop

Steps for Hemp as a preferred Energy Crop

1.Implement Climate Smart Energy Grant, "Scaling Up the Industrial Hemp Supply Chain as Carbon Negative Feedstock for Fuel and Fiber"

- a. \$5M 3-year grant focused on limited acres in Missouri-
- b. Focus on cropping systems, genetics for maximizing grain and fiber production with root structures to sequester carbon.
- c. Designed to minimize GHG emissions and to maximize C sequestration with minimum water and fertilizer inputs.
- d. Utilize fiber for building materials and other best uses.
- 2. Need to expand grower participation in the corn belt and HRWW growing regions
 - a. Meeting scheduled with Colorado NRCS to develop a strategy to utilize the increased funding opportunities for increased Hemp production. (IRA funding)
 - b. NRCS and DOE should collaborate to enhance growing strategies for Purpose-Grown Energy Crops for SAF

3. Govt Program funding from DOE and USDA to create regional processing centers which extract oil from seeds and fiber

- a. Climate Smart Grant did not allow for processing investment
- b. Govt investment can attract private capital partnership
- c. Oil is sent to SAF refinery and then into supply chain

