Native plant Grows in high desert Resin in flowers and stems AKA Gumweed

SAF from Native Crops on Arid Lands: the Case for Grindelia

University of Nevada, Reno University of Nevada Cooperative Extension Washington State University (Pullman) Chuck Coronella coronella@unr.edu

Felipe Barrios Masias Loretta Singletary

Hongfei Lin

Grindelia (gumweed)

Strengths

- Grindelia is indigenous in the high desert (NV, OR, ID, UT, WA)
- Grows on ma little water /
 - Doesn't confeed
- 1800 kg bioc shown- high
- Biocrude cor grindelic acid н

CH₃ UNUCH₃ CH₃ OH H₃C CH₃

 Preliminary studies with biphasic catalyst have demonstrated success in upgrading

Challenges

(2030)

• Not a commercial plant

)p

 Significant work is needed to develop agronomic models

ers are unfamiliar with

evelopment is at an early

ork to date is based on plants n from wild seeds

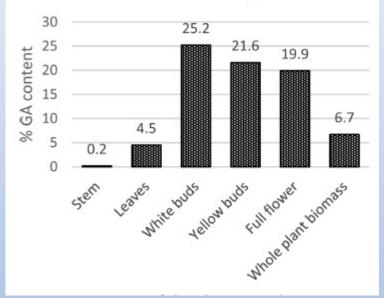
a long-term strategy

Neupane et al. (2017) *ACS Sustain. Chem. Eng.* 5: 995–1001. Yang et al. (2018) *ACS Sustain. Chem. Eng.* 6:10108–10119.

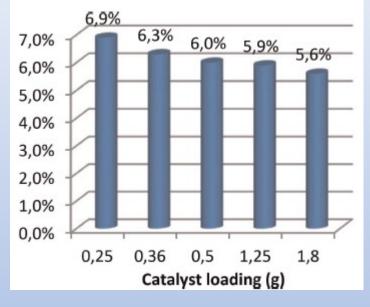
Grindelia (gumweed)

Opportunity

- Yields are likely to increase substantially
- Biocrude is readily converted to jet-fuel-like molecules
- Low requirement for hydrogen
- Make good use of underutilized marginal lands in Western US
- Provide cash crop in rural areas facing challenges from draught and climate change


Path for development

- Screen accessions for biocrude yield
- Develop agronomic models
 - Common gardens
 - Field studies
- Develop enterprise budget for commercial production
- Evaluate markets for bagasse
- Develop supply chain / logistics
- Optimize catalytic upgrading
- Perform TEA and LCA to identify path of successful development


Grindelia (gumweed)

Location of biocrude in Grindelia plant

Grindelic acid in G. squarossa

Effect of catalyst loading on oxygen content of upgraded biofuel

HHV of upgraded biofuel

Table 7. Higher heating value test of the biocrude and the oil phase products after the reactions at various temperatures.

Sample	Reaction Conditions	HHV (MJ/Kg) ^[a]
1	Fresh Grindelia squarrosa EBC	31.20±0.6
2	180 °C 200 °C	39.10±0.9 39.20±0.5
4	220°C	40.33 ± 1.2
6	240 °C 260 °C	42.64±0.6 42.65±0.5
7	280 °C	42.82±0.6

Contact coronella@unr.edu