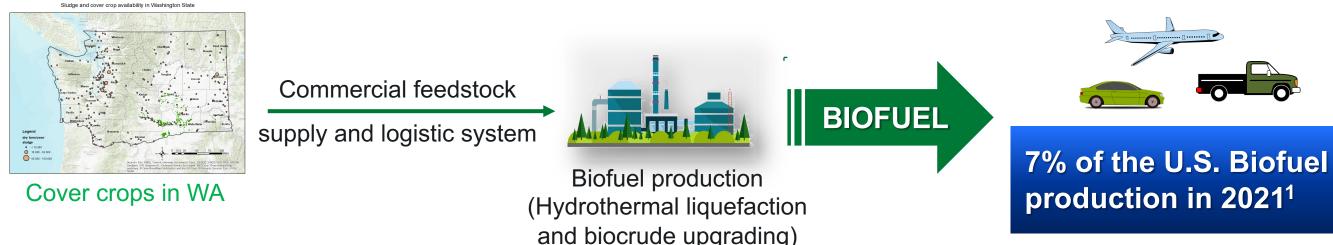
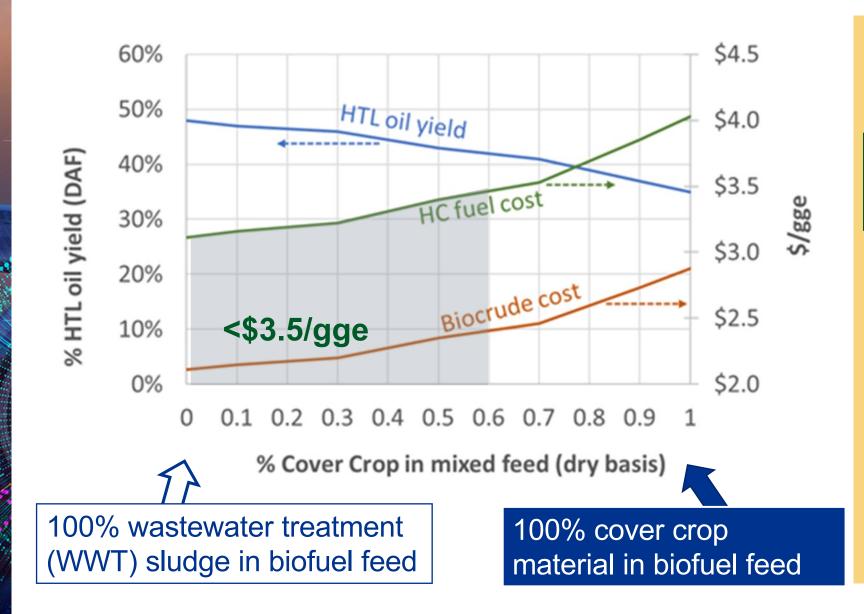


Maximizing the value of cover crops in the Pacific Northwest

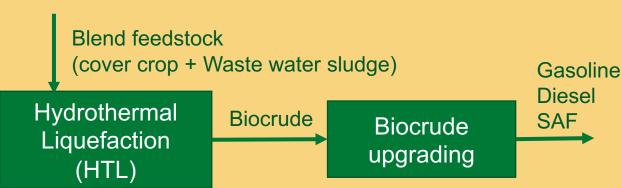
DOE Bioenergy Technologies Office (BETO) Purposed Crop to SAF workshop June 2023

Doug Collins*, Daniel Santosa, Aye Meyer, Francesca Pierobon, Chad Kruger*, Teal Porter* Steve Norberg*, Aaron Esser*, Jonathan Male* Pacific Northwest National Laboratory *Washington State University


This presentation does not contain any proprietary, confidential, or otherwise restricted information


Background on COVER CROPS as **BIOFUELS**

- Cover crops have multiple benefits- soil health is the most important benefit
- Cover crops as a feedstock for biofuels?



- Economic opportunity to benefit local and regional farmers that are part of minority groups and for energy production (used only in 3.9%² of all U.S. cropland in 2017; <1% in WA state³). Rural community rarely have access to research.
- Primary challenges to adoption are uncertainties in use of cover crops across states includes relative roles of climate, soil type, production practices, and policy²

Key Strategy BLENDING OF COVER CROPS FOR BIOFUEL FEEDSTOCK IS Northwest **PRACTICAL TOWARD ACHIEVING <\$3/GGE** NATIONAL LABORATORY

Pacific

fuel production cost

- Cover crop has high carbohydrate and lignin content and have limited seasonal availability
- Blend is key to promote sustainability
- <\$3.50/gge model cost achieved from blending up to 60% of cover crop

Feedstock cost and availability is a key driver in

Conclusion **COVER CROPS CAN INCREASE OVERALL PRODUCTIVITY OF THE LAND AND PROVIDE (+) BENEFIT FOR BIOFUELS PRODUCER**

- Field experimental data from 1st year shows positive impact on growing cover crops
 - No negative impact on cash crop or soil health
 - (+) revenue from cover crops when sold as biofuel
 - Legume cover crops shows the lower CI due to less or no fertilizer requirement
- TEA for 1st year shows up to 60% blending of cover crops with sewage sludge can achieve modeled cost <\$3.5/gge and >70% CI reduction.
 - Increased cover crops adoption can help fill-in gap of feedstock availability.
 - Enable deployment of additional conversion pathways such as HTL to help meet the SAF volume goal by 2030.
 - HTL can 3.9 billion gal/y of SAF (Supply >20% of 2019 US aviation demand)

https://www.energy.gov/sites/default/files/2022-09/beto-saf-gc-roadmap-report-sept-2022.pdf

