Sustainable Herbaceous Energy Crop Production in the Southeast United States

L. T. (Ted) Wilson, Y. Yang, F. Dou, T. Bera, J. Knoll, H. Araji, J. Jifon, J. Brady, W. Rooney, O. Obayomi, B. Baldwin, J. Morrison, A. Wright, C. Odero, S. Harvev, A. Hale, P. Illukpitiya, H. Mula-Michel, S. Li, C. Radtke

Overriding Goals

- To characterize the seasonal dynamics of biomass sorghum and energycane production as purpose-grown energy crops
- To assess the economic viability and environmental sustainability of energy crop production and potential impact on conventional crop production
- To develop site-specific best management practices and operational plans to optimize biomass production, harvest and storage E

Biomass Production as Purpose-Grown Energy Crops

June 7, 2023 - DOE Purpose-Grown Energy Crops Workshop Supported by DOE Bioenergy Technologies Office (BETO)

Sustainable Herbaceous Energy Crop Production in the Southeast United States

Environmental sustainability of energy crop production

- Soil C and N by layer
- Water percolation and runoff including sediment load and dissolved N
- NOx and CH₄ emissions
- *N*, *P* and *K* nutrient removal by bioenergy crops and the dominant conventional crop at each research site
- Energy use in biomass sorghum and energycane production using the GREET model
- Arthropod and microbial biological diversity

Sustainable Herbaceous Energy Crop Production in the Southeast United States

Economic viability and potential impact on conventional crop production

- To develop site-specific BMPs and operational plans to optimize biomass production, harvest and storage
- To determine the putative impact of a bioenergy industry on conventional crop production

Beta Test for a Comprehensive Southeast U.S. Bioenergy Facility Site Selection Analysis Focusing on Texas

Biorefinery Footprint to Produce 200 M Liters Ethanol/Yr

Table 4. Analysis of variance for the proportion of conventionally planted crop acreage in Texas that would putatively convert to producing either biomass sorghum or energycane as cellulosic feedstock.

source	DF	Sum of Squares	Mean Square	F Ratio ^b
Model	12,859	170,976,444,975	13,296,247	13,296,247
Year	29	1,467,117,506	50,590,259	26,678
County	253	30,491,086,462	120,518,128	63,554
Soil Type	10	451,732,745	45,173,274	23,821
Irrigation Practice	1	2,571,350,864	2,571,350,864	1,355,976
Original Crop	12	11,823,607,181	985,300,598	519,588
Commodity Price Scalar	4	5,612,903,334	1,403,225,834	739,977
Biomass Price (\$/Mg)	4	11,818,281,592	2,954,570,398	1,558,064
2-Way Interactions	12,546	106,740,365,292	1,726,507,617	4,487
Error	6,455,765	12,242,127,979	1.896	
Total	6,468,624	183,218,572,954		

Successful establishment of a bioenergy economy will likely be determined by government seed funds and development of regional commodity grant support programs to promote increasingly more efficient bioenergy crop production and management systems