

Queue Management & Cost Allocation DER Readiness 4/27/23

An initiative spearheaded by the Solar Energy Technologies Office and the Wind Energy Technologies Office

Meeting Notes

Notes synthesizing keys points, insights and questions from the meeting can be found here:<u>https://app.box.com/s/ujyut6jpc8t9ce6bigbjrjv3uu8jcxaq</u>

Interconnection Innovation e-Xchange (i2X)

Mission: To enable a simpler, faster, and fairer interconnection of clean energy resources while enhancing the reliability, resiliency, and security of our distribution and bulk-power electric grids

Stakeholder Engagement

Nation-wide engagement platform and collaborative working groups

Data & Analytics

Collect and analyze interconnection data to inform solutions development

Strategic Roadmap

Create roadmap to inform interconnection process improvements

Technical Assistance

Leverage DOE laboratory expertise to support stakeholder roadmap implementation

The first half of this Teams call is being recorded and may be posted on DOE's website or used internally. If you do not wish to have your voice recorded, please do not speak during the call. If you do not wish to have your image recorded, please turn off your camera or participate by phone. If you speak during the call or use a video connection, you are presumed consent to recording and use of your voice or image.

- 1. Assume good faith and respect differences
- 2. Listen actively and respectfully
- 3. Use "Yes and" to build on others' ideas
- 4. Please self-edit and encourage others to speak up
- 5. Seek to learn from others

Mutual Respect . Collaboration . Openness

Key Outcomes from i2X e-Xchange Meetings

nan Anana

- Inform and formulate a *publicly available*, strategic roadmap for interconnection
 - Topical challenges and issues
 - Practical solutions to implement and scale
 - Knowledge and data gaps and new solutions to pilot
 - Success goals and measures of success
- Summary documentation for each meeting regarding ideas discussed and opportunities for targeted stakeholder action
- Provide platform for ongoing engagement before and after meetings
- Longer term vision → Solution e-Xchanges to continue building a national forum for all stakeholders as a community of practice, excellence, and innovation

i2X Solution e-Xchange Topic Areas

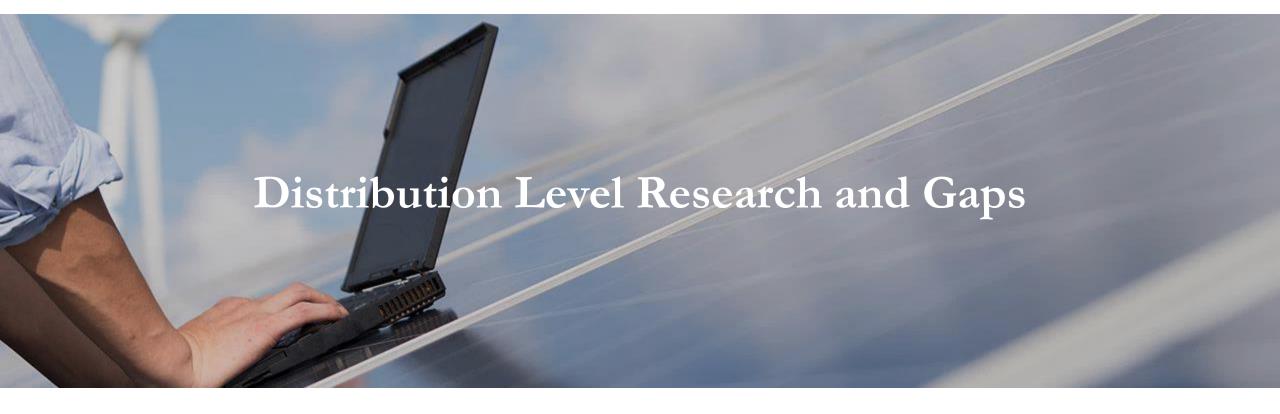
Queue Management and Cost Allocation

- Technology, regulation, administration, and organizational change focus
- *What* innovative interconnection solutions exist?
- Grid Engineering Practices and Standards
 - Engineering and technology focus
 - *How* can proposed solutions be executed?
- Equity and Energy Justice
 - Multidisciplinary
 - Who is impacted by and benefits from proposed solutions?
- Data Transparency
 - Multidisciplinary
 - What transparency concerns must be addressed?
- Interconnection Workforce and Training
 - Multidisciplinary

Additional subjects, like capacity maps, cross these topics and will be addressed from these different perspectives. Follow the schedule of events on the i2X website.

Agenda

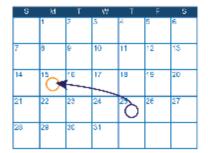
- Distribution Research and Gaps
 - Jeff Cook, NREL
 - Todd Wall, PNNL
- Innovation Panel
 - Radina Valova, Interstate Renewable Energy Council
 - David Gahl, Solar and Storage Industries Institute
 - Tamer Rousan, Electric Power Engineers
- Interactive Discussion



Upcoming Solution e-Xchanges

- 1. May 3rd (Wed) 2-4PM ET: Distribution System Protection with High DER Adoption Levels
- 2. May 11th (Thurs) 2-4PM ET: Managing the Bulk Power System Interconnection Study Process
- 3. May 17th (Wed) 2-4pm ET: EEJ Interconnection Considerations and Approaches
- 4. May 24, (Wed) 2-4 p.m. ET: DER Interconnection Approaches & Flexible Interconnection

Follow the schedule of events on the i2X website.


Interconnection Requirement and Timeline Data Analysis

Jeff Cook, PhD

NREL Permitting, Inspection, and Interconnection Research Agenda

Analysis

- Identify PII-related process requirements, cycle times, and cancellations across all municipalities.
- Provide technical assistance to support decision makers
- Resource development to improve IX processes nationwide

Shorter project timelines

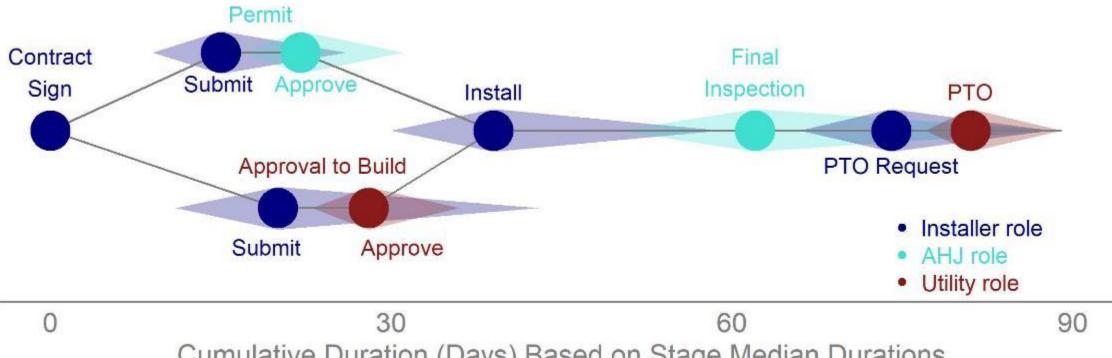
A typical SolarAPP+ project is permitted, installed, and inspected around 13 business days sooner than traditional projects Based on differences in median durations

Staff time savings

NREL estimates SolarAPP+ saved around 9,900 hours of jurisdiction staff time through automated permit reviews in 2022 Potential inspection benefits (further research required)

SolarAPP+ projects have been about 29% less likely to fail inspections than traditional projects Based on data from 12 jurisdictions

NREL's Timeline Analysis


https://solarapp.nrel.gov/solarTRACE https://www.nrel.gov/solar/marketresearch-analysis/permitting-inspectioninterconnection-timelines.html

SolarTRACE Project-Level Dataset

Res. PV-only projects from 13 installers Installed 2017-2021

WA 154	ID 26	MT 0	ND 0	MN 40	WI 193			NY 13,151	VT 1,387	NH 395	ME 0	
OR 331	UT 3,237	WY 0	SD 0	IA 0	IL 12,523	MI 143	PA 4,559	NJ 13,250	CT 6,120	MA 15,717		
CA 165,130	NV 20,616	CO 10,818	NE 0	MO 90	IN 0	OH 57	WV 0	MD 9,535	DE 457	RI 1,417		
	AZ 40,067	NM 5,795	KS 0	AR 0	KY 0	TN 0	VA 1,171	DC 97	NC 1,433	Dataset covers: ~19% of U.S. installs 2017-2021 ~8-37% of installs fo top 15 install states		
			OK 0	LA 0	MS 9	AL 0	GA 1,121	SC 5,327				
AK 0	HI 1,184		TX 10,452					FL 9,670				

Residential PV Adoption Process

Cumulative Duration (Days) Based on Stage Median Durations

Since 2019, a typical residential PV project took **10-22 weeks** between contract and operation

- A typical permit took **1-2 weeks**
- Inspections took **2-3 weeks or more**

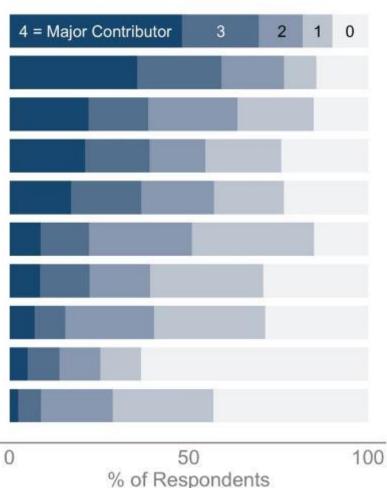
Major Project Delay Contributors (Installer Survey)

AHJ permit and utility interconnection application reviews were the most-cited reasons for major project delays AHJ application review (N=131) Interconnection review (N=132)

Permit rejection (N=132)

Utility required upgrades (N=128)

Inspection delays (N=128)

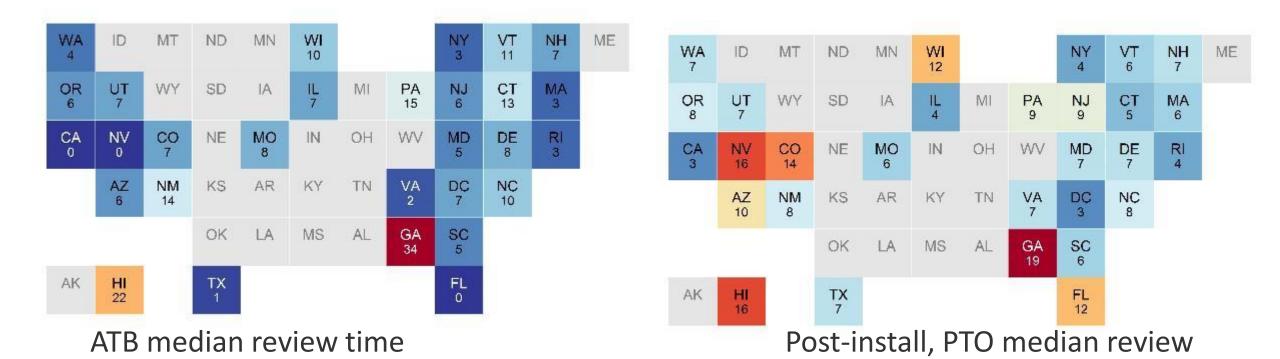

Weather (N=126)

Customer-driven system design change (N=130)

Hardware delays (N=129)

Other (N=79)

Crew availability (N=125)

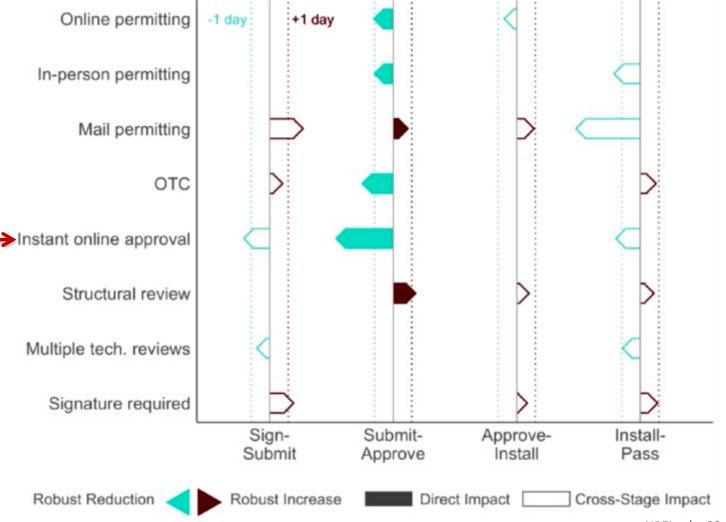

Utility Pre-Install Review Timelines

PV-Only | 1-10kW Installed 2017-2019

- 80-State Requirement Median 60-**Business days** 40-20-TX VA MA RI NC NY SC WA MD AZ NJ OR UT DE NM NV VT CO IL CT PA HI CA FL
- Most projects at most utilities meet state-mandated maximum review times for pre-install IX applications
- More stringent statelevel requirements not strongly associated with faster review times

ATB Review and Post Install Review

- Utilities in some states have streamlined approval to build (ATB) processes and post-install review.
- Others have longer ATB and post-install reviews.



Permitting Factors Affecting Timelines

Online-instant permitting (like SolarAPP+) shows the most robust timeline decreases

→ No negative impact on post-install timelines

It is unclear how IX requirements influence timelines and costs.

Call to Action

- NREL is actively looking for partners to:
 - Review SolarTRACE and provide feedback/suggestions for functionality and visualization improvements
 - Provide project-level data, with an emphasis on:
 - 2022 data to update SolarTRACE
 - PV+Storage projects
 - PV projects installed on new homes
 - PV projects at time of re-roof
 - AHJ permitting data (i.e. code years and online permitting processes)

NREL's Technical Assistance relative to Interconnection

Interconnection Cohort States: AR, KY, MA, NJ, UT

Project Overview

In collaboration with Cohort states (AR, KY, MA, NJ, UT) develop interconnection priority topics, agendas and present virtual public workshops.

Accomplishments

- Workshop #1 (12/12/2022): "Bulk Power System Considerations and Coordination: Aggregation and FERC Order 2222"
- Workshop #2 (03/08/2023): "Modern DER Capabilities and Deployment Considerations"
- Workshop #3 (mid/late May): "Improving the Interconnection Process"
- All materials are posted @ https://www.nrel.gov/grid/ieee-standard-1547/workshops.html

Workshop Goals

- Increase awareness of existing materials & available support to help state PUCs move forward on DER interconnection activities
- Help participants make connections to colleagues with similar challenges (and solutions!)
- Help project team understand context and implementation challenges

NREL's IEEE 1547-2018 Resources Website

nrel.gov/grid/ieee-standard-1547

An online platform with educational resources to aid stakeholders in the successful adoption and implementation of IEEE 1547-2018.

Sponsored by: Solar Energy Technologies Office

Partners and Advisors:


- Sandia National Laboratories
- Institute of Electrical and Electronics Engineers
- Electric Power Research Institute
- National Association of Regulatory Utility Commissioners
- National Rural Electric Cooperative Association
- Interstate Renewable Energy Council
- Regulatory Assistance Project
- Western Interstate Energy Board

NREL's well-catalogued and publicly accessible online platform includes presentations, industry white papers, and topic-specific NREL technical reports for utilities, states, solar developers, transmission operators, and other stakeholders.

Resources on the Site

E 1547-2018 Res	5001005		REL ing ENERGY
out Educational Materials	Workshops Suggested Reading Contact Us		
	Se	earch IEEE Std 1547	Re SEARCH
	Educational Materials		
	Learn about the revised Institute of Electrical and Electronics Engineer 1547-2018) through these educational materials, which include webing resources.		
	The revised version features new concepts and new technical requirements, wh distributed energy resources to improve performance of the electric grid during grid resilience during abnormal grid conditions.		
	The revised standard was published in April 2018 and is now available from IEE discounted copy.	E. Qualified parties r	nay request a
	Show 10 entries	Search:	
		Search: Publication	Resource Type
		Publication Date 11 2022	
	Educational Resource Background Information on the Protection Requirements in IEEE Std 1547- 2018 (Mahmud, Ingram) This NREL report provides informative material on the requirements related to electrical protection in IEEE Std 1547-2018 as well as context and background	Publication Date 11 2022	Туре

Suggested Reading

Suggested reading lists are available for stakeholders with roles in implementing Institute of Electrical and Electronics Engineers Standard 1547-2018.

The revised standard contains 11 chapters (clauses) and 8 annexes that comprise 136 pages. The revision is significantly different from the 2003 version, and it contains new concepts and new technical requirements. Each clause specifies information or requirements that apply to certain aspects important to the interconnection of distributed energy resources to the electric power system. Implementing the requirements necessitates a careful study of the underlying technical concept and requires the appropriate information to calculate relevant settings and configurations.

Suggested Reading Lists

Authorities Governing Interconnection Requirements

Electric Power System Operators

Portions of the standard are directed toward a specific audience that must possess specialized information and technical training to use and apply the requirements. These suggested lists of references provide an initial knowledge base of information to help stakeholders wishing to implement the standard.

Full List of Publications

See the full list of educational materials.

nrel.gov/grid/ieee-standard-1547

An NREL Guide for Authorities Governing Interconnection Requirements

A Guide to Updating Interconnection Rules and Incorporating IEEE Standard 1547-2018 presents a structured, stepby-step approach to help governmental authorities that oversee interconnection requirements and other stakeholders develop and update interconnection rules. The NREL-published report considers the incorporation of the new standard from both process and technical standpoints.

• Three main sections to report:

- Key considerations include:
 - Has the governing authority sufficiently identified motivations for updating the interconnection rule? How do the identified technical requirements relate to the desired outcome?
 - Has the governing authority allowed for the use of DER capabilities (even if they are to be used in the future)?

Any state or local jurisdictions that are interested in adopting IEEE Standard 1547-2018 should consult this resource!

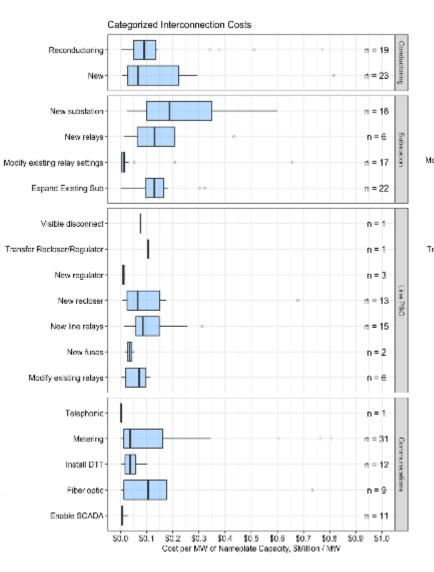
https://www.nrel.gov/solar/market-research-

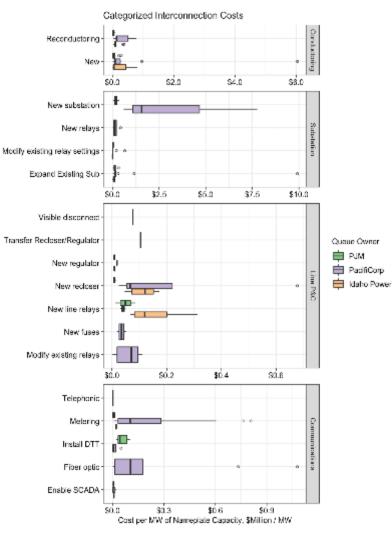
analysis/permitting-inspection-interconcentry ions and Thank You! timelines.html

> For more information contact: jesse.cruce@nrel.gov and jeff.cook@nrel.gov

www.nrel.gov

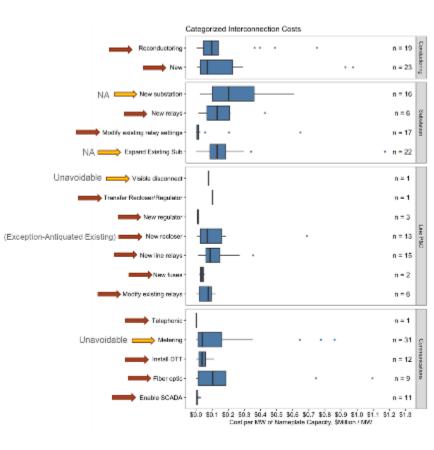
This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by the U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

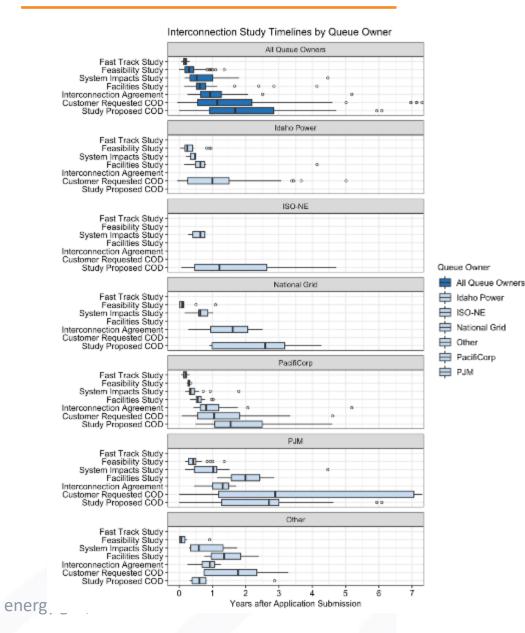




Network Upgrade Cost Benchmarking

System	Subdivided System	Samples
Category	Upgrade Classes	
	New Conductors	23
Conductoring*	Upgrade Existing	19
	Conductors	
	Expand Existing Substation	17
	New Substation	6
Substation*	New Relays	22
	Modify Existing Relay	16
	Settings	
	New Regulator	3
	New Recloser	13
	New Line Relays	15
Line Protection and Control*	Modify Existing Relays	6
	New Fuses	2
	Visible disconnect	1
	Transfer Recloser/Regulator	1
	Fiber Optic Cable	9
Comm*	Telephonic Connection	1
	Enable SCADA	11
	Install DTT Capability at	12
	Neighboring Subs/Control	
	Centers	
Metering*		31


*Various technology options may mitigate (some of) these upgrade costs


IEEE 1547.7 - IEEE Guide for Conducting Distribution Impact Studies for Distributed Resource Interconnection

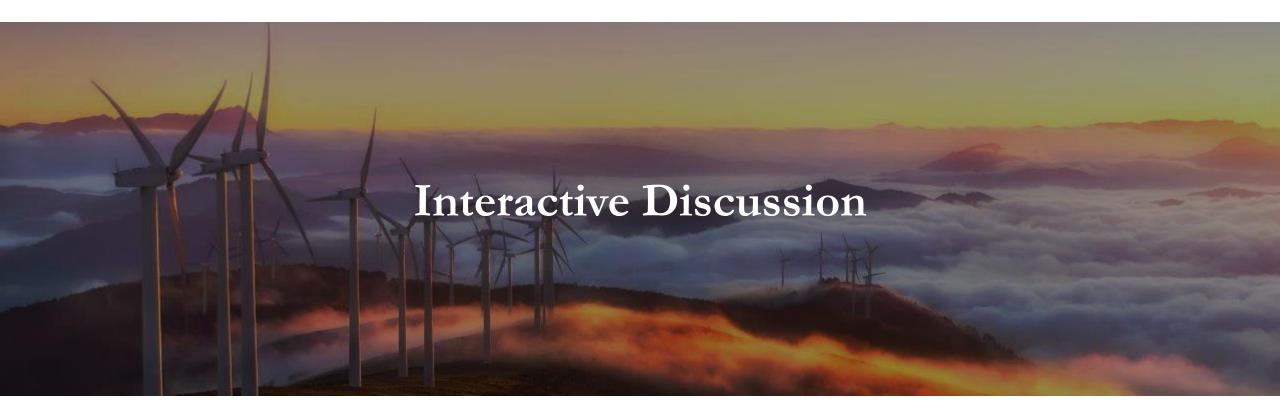

Criteria ID	Preliminary Review Criteria and Sub-Criteria	Conventional Upgrades	Proposed
P1	Use of certified DR equipment	NA	No Upgrade
P2	Potential for Unintentional Island		
P2.1	DR does not export power to area EPS at the PCC	No update required	No Upgrade
P2.2	DR production relative to served load (penetration) is small	Conductor upgrades, Voltage Regulators, Capacitor Banks, Protection & Control (Recloser)	Flexible PCC Closer to Concentrated Loads
P2.3	DR interconnection incorporates acceptable anti-islanding protective features	Enable SCADA (Remote Terminal Unit, Comm Upgrades, Direct Transfer Trip (DTT, fiber-optic lines)	PE advanced island detection, proximity to existing grid reclosing device, SCADA available
P3	Impact on EPS equipment loading under all steady state conditions		
P3.1	Gross kVA rating of aggregate DR is no greater than the kVA rating of the EPS transformer serving the facility on a per phase basis.	NA	NA
P3.2	Gross kVA rating of aggregate DR on a particular feeder or substation is no greater than the feeder or substation rating.	New substation, substation expansion , conductor upgrades, protection & control (\$\$\$)	DER Sized for PCC Location
P4	Impacts on system protection, fault conditions, and arc flash rating		
P4.1	to 90% of the short circuit interrupting capability	or Repositioning	DER Operating Under Same Config as existing recloser, Accept Control Signals from Recloser, PE not able to provide short circuit current
P4.2	Aggregate DR on circuit does not contribute more than 10% of the circuit's maximum fault current at the primary voltage point nearest the PCC.	New Relays, Relay Mods, DTT, SCADA/Comms, Conductor Upgrades, Reclosing Device Modification or Repositioning	DER Operating Under Same Config as existing recloser, Accept Control Signals from Recloser, PE not able to provide short circuit current
P4.3	DR will interconnect with an Area EPS having radial topology	Assumed	Assumed
P4.4	DR will not cause temporary over-voltages during a phase to ground fault	New Relays, Relay Mods, DTT, SCADA/Comms, Conductor Upgrades, New reclosing device modification or repositioning	PE able to provide fast response, PE not able to supply short circuit current
P4.5	5	New Relays, Relay Mods, DTT, SCADA/Comms, New Recloser, Recloser Modification/Repositioning	DER operating under same protection settings as existing recloser, accepts control signals from existing Recloser/SCADA
P5	Impacts on voltage regulation within the EPS under steady state conditions		
P5.1		New Relays, Relay Mods, DTT, SCADA/Comms, Conductor Upgrades, New reclosing device, Recloser modification or repositioning	Flexible PCC physically closer to concentrated loads and more stiff distribution facilities
P5.2	DR would not be anticipated to result in voltage rising above specified limits in the Area EPS	New Relays, Relay Mods, DTT, SCADA/Comms, New/Reposition Voltage Regulators, New/Reposition Capacitor Banks	PE Enabled Fast Response and Voltage Support, Absort Reactive Power, More Stiff PCC
P5.3		New Relays, Relay Mods, DTT, SCADA/Comms, New/Reposition Voltage Regulators, New/Reposition Capacitor Banks	PE Enabled Fast Response and Voltage Support, Possible voltage affect in case of unanticipated trip
P5.4	Variation in output of DR would not be anticipated to necessitate changes of settings of Area EPS voltage regulating devices.	New/Reposition Voltage Regulators, New/Reposition Capacitor Banks, New/Modify Relays	PE Enabled Fast Response and Voltage Support, DR located in more stiff location,
P5.5	DR is not expected to result in high voltage on shared secondary.	NA, primary interconnection assumed	NA, Primary interconnection assumed
P6	Impacts on EPS power quality		
P6.1		New/Reposition Voltage Regulators, New/Reposition Capacitor Banks, New/Modify Relays	PE Enabled Fast Response and Voltage Support
P6.2	Real and reactive power flow from DR will not cause Area EPS voltage sags and swells	New Regulators, New Capacitor Banks	PE Enabled Fast Response and Voltage Support
P6.3	DR operation will not cause harmonics at the PCC to exceed allowed limits	UL Certification, Further Testing	To be determined

Network Upgrade Timeline Benchmarking

Of note:

- System Impact Study and securing an IA are long lead-time items
- Majority of reviews target Commercial Operation Dates (CODs) within 3 years
- Delays between customer requested and study proposed CODs are common
- Less delays between requested and proposed CODs for withdrawn projects than in-service projects suggest that timeline delays are not influencing the decision to pursue a project

Innovation Panel



Panel Questions

- Who is testing and implementing the most innovative approaches to DER QMCA today?
- What are the common IX innovation objectives for developers and utilities?
- What is needed <u>generally</u> to successfully implement innovative queue management and cost allocation approaches for the majority of future DERs?
- What do IX stakeholders want <u>from DOE and i2X</u> regarding queue management and cost allocation?

Interactive Questions

- If you could magically change one thing about IX, what would it be?
- One word answers:
 - What are the most EXPENSIVE IX-related costs?
 - What is most UNCERTAIN about IX?
- Rank cost and occurrence of common upgrades
- What innovative and emerging approaches to queue management and cost allocation are the most
 PROMISING? What are the most CONCERNING?
- What do IX stakeholders want from DOE and i2X regarding queue management and cost allocation?

