Appendix A

Supplemental Groundwater Information

This page intentionally left blank

Contents

- Attachment A.1 **Operational Assessment** Assessment of Total Uranium Results Attachment A.2 Attachment A.3 Groundwater Elevations and Capture Assessment Non-Uranium Final Remediation Level Results Attachment A.4 **On-Site Disposal Facility Monitoring Results** Attachment A.5 Subattachment A.5.1 Cell 1 Subattachment A.5.2 Cell 2 Subattachment A.5.3 Cell 3 Subattachment A.5.4 Cell 4 Subattachment A.5.5 Cell 5
 - Subattachment A.5.6 Cell 6
 - Subattachment A.5.7 Cell 7
 - Subattachment A.5.8 Cell 8

This page intentionally left blank

Appendix A presents groundwater data and analysis in support of Section 3.0, "Groundwater Pathway." This appendix consists of the following five attachments:

- Attachment A.1 provides operational data for the South Field Module, the South Plume Module, and the Waste Storage Area Module
- Attachment A.2 provides groundwater monitoring total uranium results, including summary statistics and plume maps
- Attachment A.3 provides groundwater elevation data and quarterly water-level maps
- Attachment A.4 provides an analysis of the non-uranium final remediation level exceedances both inside and outside the current Operational Design Remediation Footprint
- Attachment A.5 provides results for the On-Site Disposal Facility leak detection and leachate monitoring program

Groundwater analytical data are available through the U.S. Department of Energy Office of Legacy Management's Geospatial Environmental Mapping System (https://gems.lm.doe.gov/).

This page intentionally left blank

Attachment A.1

This page intentionally left blank

Contents

Abbre	viations			iv
Measu	rement	Abbreviat	ions	iv
A.1.0	Operat	tional Asso	essment	1
	A.1.1	Operation	nal System Overview	1
	A.1.2	Wellfield	l Shutdowns in 2022	5
	A.1.3	South Fie	eld Module	5
	A.1.4	South Plu	ume Module	6
		A.1.4.1	Current Condition of Recovery Wells RW-1, RW-2, and RW-3	7
		A.1.4.2	Current Condition of Recovery Well RW-7	8
		A.1.4.3	South Plume Modeling in 2022	8
		A.1.4.4	Operational Path Forward for Existing South Plume Wells	8
		A.1.4.5	Paddys Run Road Site	9
	A.1.5	Waste St	orage Area Module	9
	A.1.6	Total Ura	anium Data	10
		A.1.6.1	Total Uranium Concentration Data	13
		A.1.6.2	Model	14
		A.1.6.3	95% UCL	14
	A.1.7	Total Ura	anium Data Discussion	14
	A.1.8	DOE Nat	tional Laboratory Network Collaboration	17
		A.1.8.1	Results of Focus Group 1: Aging Wellfield System	17
		A.1.8.2	Results of Focus Group 2: Improve Efficiency of the Aquifer	
			Cleanup	18
	A.1.9	Pumping	Rates	19
	A.1.10	CAWW	Capacity Reduction and Backwash Basin Replacement	21
	A.1.11	Referenc	es	22

Tables

Table A.1-1. Aquifer Restoration System Operational Summary	23
Table A.1-2. Extraction Well 31550 (EW-18) Operational Summary for 2022	24
Table A.1-3. Extraction Well 31560 (EW-19) Operational Summary for 2022	25
Table A.1-4. Extraction Well 31561 (EW-20) Operational Summary for 2022	26
Table A.1-5. Extraction Well 33326 (EW-17a) Operational Summary for 2022	27
Table A.1-6. Extraction Well 32276 (EW-22) Operational Summary for 2022	28
Table A.1-7. Extraction Well 32446 (EW-24) Operational Summary for 2022	29
Table A.1-8. Extraction Well 32447 (EW-23) Operational Summary for 2022	30
Table A.1-9. Extraction Well 33061 (EW-25) Operational Summary for 2022	31
Table A.1-10. Extraction Well 33262 (EW-15a) Operational Summary for 2022	32
Table A.1-11. Extraction Well 33264 (EW-30) Operational Summary for 2022	33
Table A.1-12. Extraction Well 33298 (EW-21a) Operational Summary for 2022	34
Table A.1-13. Extraction Well 3924 (RW-1) Operational Summary for 2022	35
Table A.1-14. Extraction Well 3925 (RW-2) Operational Summary for 2022	36
Table A.1-15. Extraction Well 3926 (RW-3) Operational Summary for 2022	37
Table A.1-16. Extraction Well 3927 (RW-4) Operational Summary for 2022	38
Table A.1-17. Extraction Well 32308 (RW-6) Operational Summary for 2022	39

Table A.1-18. Extraction Well 32309 (RW-7) Operational Summary for 2022	40
Table A.1-19. PRRS Groundwater Summary Statistics and Trend Analysis	41
Table A.1-20. Extraction Well 32761 (EW-26) Operational Summary for 2022	43
Table A.1-21. Extraction Well 33062 (EW-27) Operational Summary for 2022	44
Table A.1-22. Extraction Well 33347 (EW-33a) Operational Summary for 2022	45
Table A.1-23. Stretch Exponential Regression Equations for Uranium Concentration	
Data Collected at Extraction Wells—Through December 31, 2022	46
Table A.1-24. Estimate of Pounds of Uranium to Be Removed to Achieve	
Concentration-Based FRL Goals	47
Table A.1-25. Comparison of Model-Predicted Versus Actual Total Uranium	
Concentrations	48
Table A.1-26. Comparison of Model-Predicted Versus Actual Total Uranium	
Concentrations in Selected Monitoring Wells	50
Table A.1-27. Comparison of Model-Predicted Versus Actual Total Uranium	
Concentrations with Select Wells Removed	51
Table A.1-28. Extraction Well Target Pumping Rates	52

Figures

Figure A.1-1. Well Locations for South Plume, South Field, WSA, and PRRS Monitoring	
Activities	53
Figure A.1-2. Operational Design	54
Figure A.1-3. Pounds of Uranium Removed from the GMA	55
Figure A.1-4. Clean Pump (Top) Versus Iron-Fouled Pump (Bottom)	56
Figure A.1-5. Potassium Concentration Versus Time Plot for Monitoring Well 2898	57
Figure A.1-6. Potassium Concentration Versus Time Plot for Monitoring Well 2899	57
Figure A.1-7. Potassium Concentration Versus Time Plot for Monitoring Well 3898	58
Figure A.1-8. Potassium Concentration Versus Time Plot for Monitoring Well 3899	58
Figure A.1-9. Sodium Concentration Versus Time Plot for Monitoring Well 2898	59
Figure A.1-10. Sodium Concentration Versus Time Plot for Monitoring Well 2899	59
Figure A.1-11. Sodium Concentration Versus Time Plot for Monitoring Well 3898	60
Figure A.1-12. Sodium Concentration Versus Time Plot for Monitoring Well 3899	60
Figure A.1-13. Total Uranium Concentration Versus Time Plot for Extraction Well 3924	
(RW-1) with Regression Analysis	61
Figure A.1-14. Total Uranium Concentration Versus Time Plot for Extraction Well 3925	
(RW-2) with Regression Analysis	61
Figure A.1-15. Total Uranium Concentration Versus Time Plot for Extraction Well 3926	
(RW-3) with Regression Analysis	62
Figure A.1-16. Total Uranium Concentration Versus Time Plot for Extraction Well 3927	
(RW-4) with Regression Analysis	62
Figure A.1-17. Total Uranium Concentration Versus Time Plot for Extraction Well 32308	
(RW-6) with Regression Analysis	63
Figure A.1-18. Total Uranium Concentration Versus Time Plot for Extraction Well 32309	
(RW-7) with Regression Analysis	63
Figure A.1-19. Total Uranium Concentration Versus Time Plot for Extraction Well 32761	
(EW-26) with Regression Analysis	64

Figure A.1-20.	. Total Uranium Concentration Versus Time Plot for Extraction Well 33062	
	(EW-27) with Regression Analysis	54
Figure A.1-21.	. Total Uranium Concentration Versus Time Plot for Extraction Well 31550	
	(EW-18) with Regression Analysis	55
Figure A.1-22.	. Total Uranium Concentration Versus Time Plot for Extraction Well 31560	
-	(EW-19) with Regression Analysis	55
Figure A.1-23.	. Total Uranium Concentration Versus Time Plot for Extraction Well 31561	
-	(EW-20) with Regression Analysis	56
Figure A.1-24.	. Total Uranium Concentration Versus Time Plot for Extraction Wells 31562	
-	(EW-21) and 33298 (EW-21a) with Regression Analysis	56
Figure A.1-25.	. Total Uranium Concentration Versus Time Plot for Extraction Wells 31567	
-	(EW-17) and 33326 (EW-17a) with Regression Analysis	57
Figure A.1-26.	. Total Uranium Concentration Versus Time Plot for Extraction Well 32276	
-	(EW-22) with Regression Analysis	57
Figure A.1-27.	. Total Uranium Concentration Versus Time Plot for Extraction Well 32446	
0	(EW-24) with Regression Analysis	58
Figure A.1-28.	. Total Uranium Concentration Versus Time Plot for Extraction Well 32447	
-	(EW-23) with Regression Analysis	58
Figure A.1-29.	. Total Uranium Concentration Versus Time Plot for Extraction Well 33061	
-	(EW-25) with Regression Analysis	59
Figure A.1-30.	. Total Uranium Concentration Versus Time Plot for Extraction Well 33264	
-	(EW-30) with Regression Analysis	59
Figure A.1-31.	. Total Uranium Concentration Versus Time Plot for Extraction Well 33262	
-	(EW-15a) with Regression Analysis	70
Figure A.1-32.	. Total Uranium Concentration Versus Time Plot for Extraction Well 33347	
-	(EW-33a) with Regression Analysis	70
Figure A.1-33.	. Estimate of Yearly Pounds of Uranium to Be Pumped from Aquifer to	
J	Achieve Concentration-Based FRL Goals (Model Predictions Versus Measured	
	Concentration Trends) Data Collected Through 2022	71
	· · · · · · · · · · · · · · · · · · ·	

Abbreviations

CAWWT	Converted Advanced Wastewater Treatment
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
EVS	Earth Volumetric Studio
FRL	Final Remediation Level
GMA	Great Miami Aquifer
Ohio EPA	Ohio Environmental Protection Agency
PRRS	Paddys Run Road Site
WSA	Waste Storage Area

Measurement Abbreviations

95% UCL	95% upper confidence limit
amsl	above mean sea level
ft	feet
gpm	gallons per minute
K _d	partition (or distribution) coefficient
lb	pounds
Mgal	million gallons
Mg/L	milligrams per liter
µg/L	micrograms per liter

A.1.0 Operational Assessment

This attachment provides operational data for the South Field Module, the South Plume Module, and the Waste Storage Area (WSA) Module at the Fernald Preserve, Ohio, Site, including:

- Operational data for the 20 extraction wells pumping in 2022.
- Uranium concentration trends for each extraction well compared to model-predicted concentration trends.
- Uranium concentrations at selected monitoring wells compared to model-predicted concentrations.
- Pounds of uranium removed from the aquifer.
- Estimates of the pounds of uranium remaining to be removed from the aquifer to complete the pumping stage of the aquifer remedy.

From July 1, 2014, through June 2018, extraction wells were operated to achieve a design pumping rate of 5,075 gallons per minute (gpm). The design pumping rate is the pumping rate used in the groundwater model to estimate cleanup times for the aquifer remedy. Beginning in July 2018, the design pumping rate was reduced to 4,975 gpm because of a decreased pumping rate from 200 to 100 gpm in recovery well RW-4 (Section A.1.9). Groundwater modeling predicted that the design pumping rate reduction would have no effect on the estimated cleanup times for the aquifer remedy. Figure A.1-1 depicts the locations of the extraction and former reinjection wells and identifies surrounding monitoring wells. Table A.1-1 provides summaries of gallons of water pumped, total uranium removed, and uranium removal indexes for 2022 and for the duration of the remedy to date (August 1993 through December 2022).

Information in this attachment is organized into the following subsections:

- Operational System Overview (Section A.1.1)
- Wellfield Shutdowns in 2022 (Section A.1.2)
- South Field Module (Section A.1.3)
- South Plume Module (Section A.1.4)
- Waste Storage Area Module (Section A.1.5)
- Total Uranium Data (Section A.1.6)
- Total Uranium Data Discussion (Section A.1.7)
- DOE National Laboratory Network Collaboration (Section A.1.8)
- Pumping Rates (Section A.1.9)
- CAWWT Capacity Reduction and Backwash Basin Replacement (Section A.1.10)

A.1.1 Operational System Overview

The current Operational Design and associated target design pumping rates to achieve cleanup for the groundwater remedy has been in effect since design changes were implemented on

July 1, 2014. Under the 2014 Operational Design, modeling predictions indicated that the pumping stage of the aquifer remedy would be achieved as follows:

- 2022 for the South Plume and Southern South Field
- 2030 for the Northern South Field
- 2035 for the former WSA

As shown below, progress was made in decreasing the South Plume between 2014 and the end of 2022.

Area	Total Uranium Plume Size 2014 (acres)	Total Uranium Plume Size 2022 (acres)	Percent Reduction
South Plume	29.8	14.6	51%
South Field	62.0	47.1	24%

Although progress was made reducing the uranium plume, uranium concentration data measured in the aquifer indicated that model-predicted cleanup goals for the South Plume and southern South Field would not be reached by 2022. In early 2022, the groundwater model was rerun to determine what the new cleanup times would be if uranium concentrations measured in the first half of 2021 were loaded into the model as initial conditions.

As was done for past model runs, modeled-predicted cleanup date uncertainty, due to changes in the elevation of the water table in the aquifer over time, was bracketed by modeling three different sets of boundary conditions for the elevation of the water table (i.e., wet, nominal, and dry). During wet boundary conditions, the water table elevation is at its historic high, and during dry boundary conditions, the water table elevation is at its historic high, and during elevation of the water table. The model-predicted cleanup years are as follows:

Plume Area	Wet Boundary Conditions	Nominal Boundary Conditions	Dry Boundary Conditions
South Plume	2024	2025	2024
South Field	2035	2033	2038
Waste Storage Area	2040	2040	2045

As in previous modeling runs, the maximum model-predicted cleanup year for each boundary condition was selected as the new targeted cleanup year, resulting in the following new predicted cleanup years.

- South Plume: 2025
- South Field: 2038
- WSA: 2045

Figure A.1-2 illustrates how the 2022 model run predicts that the cleanup will progress under nominal boundary conditions (the most conservative boundary condition for cleanup of the south

plume). Figure A.1-3 illustrates the pounds of uranium removed from the Great Miami Aquifer in 2013 (year before pumping changes) and 2022. More information concerning the new modeling predictions is provided in Sections is provided in Sections A.1.6 and A.1.7.

The current Operational Design (implemented in 2014) is more aggressive than the previous design because the target system design pumping rate is higher. The 2014 design is also more efficient than previous designs because pumping is more concentrated where the pumping is needed and when it is needed. The 2014 design introduced the strategy of decreasing design pumping rates as the remedy progresses.

The more-aggressive pumping rates required more maintenance (due to iron fouling of the pumps and well screens) than earlier less-aggressive pumping rates required. Figure A.1-4 shows the difference between a clean pump and one removed from an active pumping well at the Fernald Preserve after it had been operating for some time. As shown in the bottom photo, the pump pulled from the well is coated with iron, which interfered with operation of the pump and motor.

Operational experience was used to create and refine an aggressive and initially successful well maintenance program to address this iron fouling. Extraction wells are treated with a chemical solution called liquid acid descaler when operational parameters indicate that cleaning is warranted. As shown in the following table, the number of extraction wells decreased from 23 to 20 in 2014, but the number of chemical treatments increased after 2014 as a result of more-aggressive pumping rates and aging well infrastructure.

There were some exceptions to the increase in the number of treatments. The number of treatments was down in 2016, but 2016 was not a normal operating year due to an unplanned wellfield shutdown discussed in the 2016 Site Environmental Report (DOE 2017). The number of treatments was also down in 2018 and 2019. In 2018, it was due to the impact that the Converted Advanced Wastewater Treatment (CAWWT) construction project had on the availability of the backwash basin for wastewater generated by well treatment. In 2019, it was due to a construction project to replace the CAWWT backwash basin.

In 2021, the site began reducing the number of liquid acid descaler treatments due to the realization that the long-term use of liquid acid descaler over time was harmful to metal components of an aging wellfield system. In 2022, the decrease in treatments continued with the realization that the use of liquid acid descaler was causing pitless adaptor problems in the off-property wells. Operating experience also indicated that the wellfield was experiencing other problems that would not be responsive to treatments. For example, the same iron fouling that was occurring in the pumps and well screens was also occurring in the discharge piping. The iron fouling restricted flow through the discharge pipes creating backpressure on the flow from the wells.

Year	Number of Extraction Wells	Number of Chemical Treatments
2022	20	17
2021	20	30
2020	20	43
2019	20	19 ^a
2018	20	28 ^b
2017	20	35
2016	20	22 ^c
2015	20	41
2014	23/20 ^d	32
2013	23	38

^a Number of chemical treatments was affected by replacement of the CAWWT backwash basin.

^b Number of chemical treatments was affected by the CAWWT construction project.

^c Number of chemical treatments was affected by an extended unplanned shutdown (DOE 2017).

^d The number of operating extraction wells was reduced in July 2014.

In 2021, the situation became even more apparent when the seals of the pitless adaptor on South Plume Recovery Well RW-3 were discovered to be weakened by a combination of age and the continued use of liquid acid descaler such that that some of the water being pumped from the well was able to cascade back down into the well. More maintenance and pump replacements will be required in the future.

In 2022, the South Plume recovery wells continued to experience operational challenges. Because of their advanced age, having been continually operated for over 28 years and exposure to liquid acid descaler, during periodic well treatments and rehabilitations damage to the seals and pitless adaptors increased. Recovery wells RW-3, RW-4, and RW-6 experienced operational problems. Operators were able to repair South Plume recovery well RW-3 to be operational again in 2022, but RW-4 and RW-6 were permanently shut down. After repairing RW-3, liquid acid descaler treatments in the off-property wells were discontinued in 2022 to prevent further damage to the wells.

South Plume recovery well RW-4 was able to maintain its design setpoint of 200 gpm from 1993 to 2018. As discussed in Section A.1.9, the target pumping rate of RW-4 was lowered to 100 gpm in 2018. In June 2022, the well was no longer able to maintain 100 gpm and was turned off on June 6, 2022. A new pump and motor replacement was scheduled. In July 2022, a new pump and motor was installed, but the pitless adaptor was not able to be seated on the well screen causing the well to leak. In August 2022, the pump and motor were replaced again, and once again the pitless adaptor would not seat properly. June 6, 2022, is recognized as the official date that this well was permanently turned off.

South Plume recovery well RW-6 was shut down permanently on July 25, 2022, after 23 years of operation. From 1998 to 2022, the well met its design setpoint of 300 gpm. In July 2022, an underground leak developed, and the well was shut down. Groundwater modeling conducted in 2022 demonstrated that the well was no longer located where it was needed to efficiently clean up the remaining South Plume. Given that DOE was already planning a replacement for this well at a more optimal location, U.S. Department of Energy (DOE) decided to direct resources toward the new well rather than investigating the cause of the underground leak and implementing repairs on a well that was in the process of being replaced.

DOE also made efforts to address the iron fouling that extraction wells experience through the choice of equipment. DOE purchased 12 new stainless steel pumps in 2016 to help alleviate some of the maintenance challenges associated with operating the pumps continuously. Installation of the stainless steel pumps occurred as older pumps were removed for maintenance. As of 2021, all 12 of the pumps had been put into service. Based on the maintenance history, the stainless steel pumps have proven to last longer.

DOE continues to work with recognized wellfield maintenance experts to determine whether the well maintenance program can be improved to extend the life of the pumps. The issue of well maintenance was discussed in a DOE National Laboratory Network collaboration that was held in 2021. More information is provided in Section A.1.8.

A.1.2 Wellfield Shutdowns in 2022

The planned annual wellfield shutdown in 2022 lasted 43 days (June 6 to July 18, 2022). During this shutdown, recovery well RW-2 continued to pump at the leading south edge of the uranium plume. The other South Plume recovery wells normally remain on during the shutdown; however, in 2022, wells RW-1, RW-3 and RW-4 were down due to maintenance issues.

In addition to the annual planned wellfield shutdown, the wellfield is shut down whenever the Great Miami River reaches a river stage of 14 feet at the U.S. Geological Survey measurement gauge at Miamitown, Ohio. When flow in the river reaches this level, gravity flow from the site discharge pipe is affected. The wellfield remains off until the river stage falls below 14 feet. This approach was discussed with the U.S. Environmental Protection Agency (EPA) and the Ohio Environmental Protection Agency (Ohio EPA) during the March 14, 2018, regulatory meeting. These temporary wellfield shutdowns have not had a negative impact on remediation progress and could actually be beneficial from a rebound perspective. The total number of days the wellfield was shut down due to high river stage from 2018 to 2022 was as follows:

	Wellfield Shut Down Due to River Stage
Year	(days)
2018	10
2019	7
2020	4
2021	0
2022	4

A.1.3 South Field Module

Eleven extraction wells were operational in the South Field Module in 2022. The 11 active extraction wells were 31550 (EW-18), 31560 (EW-19), 31561 (EW-20), 33326 (EW-17a), 32276 (EW-22), 32446 (EW-24), 32447 (EW-23), 33061 (EW-25), 33262 (EW-15a), 33264 (EW-30), and 33298 (EW-21a).

The target combined pumping rate for the South Field Module wells in 2022 was 2,875 gpm. Table A.1-1 presents the combined performance data for the South Field Module. Tables A.1-2 through A.1-12 provide individual extraction well performance data for the South Field Module wells in 2022. Target pumping rates are reported on each individual extraction well performance table, and footnotes explain individual extraction well outages of greater than 24 hours.

During 2022, 1,277.30 million gallons (Mgal) of groundwater were pumped from the active extraction wells in the South Field Module, resulting in the removal of 237.13 pounds (lb) of uranium from the Great Miami Aquifer (GMA). Since startup in July 1998, the South Field Module has removed 29.082 billion gallons of water and 9,659.69 lb of uranium from the GMA.

A.1.4 South Plume Module

2022 was a year of operational change for the South Plume Module. In 2022, recovery wells RW-4 and RW-6 were permanently turned off, and the target pumping rate for RW-7 was reduced from 300 gpm to 200 gpm.

Six recovery wells were operational in the South Plume Module at the start of 2022: 3924 (RW-1), 3925 (RW-2), 3926 (RW-3), 3927 (RW-4), 32308 (RW-6), and 32309 (RW-7). These wells are south of Willey Road and north of New Haven Road. The target combined pumping rate for the South Plume Module wells in 2022 was 1,300 gpm.

In June 2022, recovery well RW-4 was no longer able to maintain 100 gpm. It was turned off on June 6, 2022, and a new pump and motor replacement was scheduled. In July 2022, a new pump and motor was installed, but the seal to the pitless adaptor leaked. In August 2022, the pump and motor were replaced again, and once again, the pitless adaptor could not be seated properly. Because the pitless adaptor was leaking, it was decided to leave the well turned off permanently. As discussed in Section A.1-9, RW-4 was no longer needed to capture and remediate the South Plume.

South Plume recovery well RW-6 was shut down permanently on July 25, 2022, after 23 years of operation. From 1998 to 2022, it was capable of meeting its design setpoint of 300 gpm. In July 2022, an underground leak developed and the well was shut down. Groundwater modeling conducted in 2022 demonstrated that RW-6 was no longer located where it was needed to efficiently clean up the remaining South Plume. Given that DOE was already moving forward with a replacement for this well at a more optimal location, DOE decided to direct resources toward the new well rather than investigating the cause of the underground leak and implementing repairs. In 2022, RW-7 could not maintain its target pumping rate of 300 gpm. In 2021, RW-7 was chemically treated, but when the pump and motor were restarted, sand was entering the well screen. This can damage the pump and indicates that there is a hole in the well screen. Using a downhole camera, no visible holes were detected in the screen; therefore, the problem was believed to be with the casing at the bottom of the screen. A cement plug was installed in the base of the screen, which corrected the problem. With the addition of the concrete plug, the well struggled to maintain 300 gpm in 2022, so the target pumping rate was lowered to 200 gpm.

With the shutdown of RW-4 and RW-6, and reduced flow in RW-7, the target combined pumping rate for 2023 will be 800 gpm, which is 500 gpm lower than it was in 2022. As discussed further below, DOE is in the process of installing two new extraction wells that will

take the place of all remaining South Plume recovery wells (i.e., RW-1, RW-2, RW-3 and RW-7) once the wells are operational.

Table A.1-1 presents the combined performance data for the South Plume Module. Tables A.1-13 through A.1-18 provide individual extraction well performance data for the South Plume Module wells in 2022. Target pumping rates are reported on each individual extraction well performance table, and footnotes explain individual extraction well outages of greater than 24 hours.

During 2022, 398.11 Mgal of groundwater were pumped from the active extraction wells in the South Plume Module, resulting in the removal of 56.44 lb of uranium from the GMA. Since its startup in August 1993, the South Plume Module has removed 19.207 billion gallons of groundwater and 3,627 lb of uranium from the GMA.

During 2022, the South Plume Module continued to meet the primary objectives of:

- Preventing further southward movement of the total uranium plume while capturing the main lobe of the South Plume without adversely affecting the Paddys Run Road Site (PRRS) plume (wells 3924 [RW-1], 3925 [RW-2], 3926 [RW-3], and 3927 [RW-4]).
- Actively remediating the higher-concentration region of the off-property plume (32308 [RW-6] and 32309 [RW-7]).

Attachment A.3 presents additional details concerning capture, along with supporting data.

A.1.4.1 Current Condition of Recovery Wells RW-1, RW-2, and RW-3

Recovery wells RW-1, RW-2, and RW-3 have been operating for over 28 years. The wells were originally installed downgradient of the leading edge of the South Plume, with the objective of capturing the South Plume before the plume could mix with a downgradient plume associated with other business operations (i.e., PRRS). Data collected over the course of well operation demonstrate that the wells were successful in achieving this objective.

Groundwater modeling conducted in 2022 demonstrates that recovery wells RW-1, RW-2, and RW-3 are no longer needed to remediate and capture the remaining South plume if two new extraction wells are installed further north. Metal components in RW-1, RW-2, and RW-3 have been weakened by the long-term use of liquid acid descaler, and the use of additional treatments will risk permanently damaging the pitless adaptors.

Given that wells RW-1, RW-2, and RW-3 are no longer needed for capture and remediation of the South Plume once two replacement wells are installed to the north and given that additional liquid acid descaler treatments presents the risk of damaging the pitless adaptors rendering the wells inoperable, RW-1, RW-2, and RW-3 will be operated at a target pumping rate of 200 gpm each until they fail. It should be noted that RW-1, RW-2, and RW-3 are 10-inch diameter wells, which require 8-inch diameter pumps and motors. All other wells in the aquifer remediation system use pumps and motors that are larger than 8 inches in diameter. Because continued operation of the existing South Plume wells is no longer needed, DOE does not plan to purchase any additional 8-inch diameter pumps and motors. Efforts will be made to repair the 8-inch diameter pumps and motors, until the supply is exhausted.

A.1.4.2 Current Condition of Recovery Well RW-7

Recovery well RW-7 has been operating for over 23 years. It was installed to support remediation of the South Plume. Data collected over the course of operation demonstrates that it has been successful in helping to remediate the South Plume. Groundwater modeling conducted in 2022 demonstrates that RW-7 is no longer situated in an optimal location to complete remediation of the remaining South Plume. A concrete plug was installed in RW-7 in 2021 to stop sand from entering the screen, resulting in the need to lower the pumping rate from 300 gpm to 200 gpm in 2022. DOE is in the process of replacing RW-7. RW-7 will be operated at a target pumping rate of 200 gpm until it fails, or the replacement well is ready.

A.1.4.3 South Plume Modeling in 2022

Conservative groundwater modeling conducted in 2022 (based just on the movement of groundwater, and the current location of the South Plume) indicates that all of the South Plume wells (RW-1, RW-2, RW-3, RW-4, RW-6, and RW-7) can be shut down approximately 3 years before plume capture is breached. If two replacement wells are installed at locations identified in the 2022 modeling, remediation and capture of the remaining South plume will be achieved without continued operation of RW-1, RW-2, RW-3, and RW-7. DOE is planning to install the two new extraction wells at locations identified by the groundwater model. DOE plans to have the two new wells operational in early 2024, well ahead of 3 years.

A.1.4.4 Operational Path Forward for Existing South Plume Wells

Operational experience has shown that if a rate of 100 gpm can be maintained in the South Plume wells they continue to operate fairly well, but once the pumping rate falls below 100 gpm, the pumping rate deteriorates rapidly and the well needs to be rehabilitated. Because two new replacement wells are planned to be operational in early 2024, there is no need to rehabilitate RW-1, RW-2, RW-3, and RW-7 to extend their operational life should they no longer be able to achieve a pumping rate of 100 gpm. The steps presented below will be taken to operate these wells at or above 100 gpm for as long as possible before they are permanently shut down. It should be noted that all extraction wells develop their own unique operational challenges; therefore, the steps are not intended to be all inclusive, rather focus on the main challenges that have been encountered historically. If a unique challenge is encountered that is not mentioned in these steps, then appropriate action will be taken, short of conducting excavation and well redevelopment.

The following steps will be taken before RW-1, RW-2, RW-3, and RW-7 are permanently turned off. No action will be taken at these wells until the pumping rate falls below 100 gpm. In addition to the operational reasons presented above, this will also provide for seasonal water table changes. If the pumping rate at RW-1, RW-2, RW-3, and RW-7 falls below 100 gpm, the following steps will be taken:

- [1] Pull the pump and motor from the well.
- [2] Inspect the pitless adaptor.
 - [a] If the pitless adaptor is damaged such that it cannot be repaired without excavation, then permanently shut down the well.

- [b] If the pitless adaptor is not damaged or can be repaired without excavation, repair the pitless adaptor and proceed to replace the pump or motor, or both.
- [3] Replace the pump and motor.
 - [a] If after replacement of the pump and motor the well cannot maintain 100 gpm, then permanently turn off the well.

A.1.4.5 Paddys Run Road Site

In 2022, as in previous years, PRRS constituents of concern (arsenic, phosphorus, potassium, sodium, and volatile organic compounds) were monitored at 10 monitoring well locations immediately south of the South Plume Module to ensure that the operation of the system does not adversely impact the PRRS plume. The 10 wells monitored were 2128, 2636, 2898, 2899, 2900, 3128, 3636, 3898, 3899, and 3900 (Figure A.1-1).

The Mann-Kendall test for trend was run on PRRS constituent data collected from these wells. As indicated in Table A.1-19, the following two parameters monitored for PRRS constituents of concern in four different wells had "up" trends:

- Potassium in monitoring wells 2898, 2899, 3898, and 3899
- Sodium in monitoring wells 2898, 2899, 3898, and 3899

Figures A.1-5 through A.1-12 provide plots of concentration versus time for these constituents and wells.

Groundwater flow directions are reported in Attachment A.3 in the form of groundwater elevation maps (Figures A.3-1 through A.3-4). The groundwater elevation maps for 2022 indicate that flow to monitoring wells 2898, 2899, 3898, and 3899 was from the northeast to the southwest. This indicates that the increasing concentrations at these locations were moving toward the PRRS plume, not away from it.

The monitoring activity for PRRS constituents of concern also included sampling for volatile organic compounds. These compounds are monitored because they were present in the PRRS plume, which is not of Fernald site origin (ERM Midwest Inc. 1994). No volatile organic compounds were detected in 2022.

Monitoring water levels appears to be more effective than monitoring water quality for determining whether pumping in the South Plume is pulling the PRRS plume toward the South Plume recovery wells.

A.1.5 Waste Storage Area Module

Three extraction wells were operational in the former WSA Module in 2022. The three extraction wells were 32761 (EW-26), 33062 (EW-27), and 33347 (EW-33a).

The target combined pumping rate for the WSA Module wells in 2022 was 800 gpm. The combined performance data for the WSA Module are presented in Table A.1-1. Tables A.1-20 through A.1-22 provide individual extraction well performance data for the WSA Module wells

for 2022. Target pumping rates are reported on each individual extraction well performance table, and footnotes explain individual extraction well outages of greater than 24 hours.

During 2022, 332.11 Mgal of groundwater were pumped from extraction wells in the WSA Module, resulting in the removal of 60.26 lb of uranium from the GMA. Since startup in May 2002, the WSA Module has removed 8.771 billion gallons of water and 2,540.23 lb of uranium from the GMA.

A.1.6 Total Uranium Data

In 2022, water samples were collected monthly from the extraction wells and analyzed for total uranium. The total uranium concentrations were used to calculate an annual mass of uranium removed from the well. The data are also used to determine whether a well needs to be routed to treatment.

The current aquifer remedy is able to achieve uranium discharge limits (i.e., average monthly concentration of less than 30 micrograms per liter $[\mu g/L]$ and 600 lb annually) established in the Operable Unit 5 Record of Decision (DOE 1996) without routine groundwater treatment. Routine groundwater treatment has not been needed since 2010. Since 2010, groundwater was occasionally sent to treatment for very short periods. The reasons for the short periods of treatment varied. For instance, treatment can be needed when wells pumping low uranium concentrations are turned off for maintenance and wells pumping higher uranium concentrations continue pumping. With conversion to the smaller 50 gpm treatment system (which became operational on April 3, 2018), a small amount of groundwater is routed to treatment each month and blended with water from the backwash basin to dilute anion concentrations in the backwash basin water before treatment.

In 2022, 2.008 billion gallons of groundwater were pumped from the GMA, and 4.48 Mgal (0.22%) of groundwater was treated. The following table provides a summary of how much groundwater was treated each month. The minimum and maximum total uranium concentrations provided are for individual wells. The average is for all wells operating that month.

Month	Water Treated (gallons)	Minimum Total Uranium (µg/L)	Maximum Total Uranium (µg/L)	Average Total Uranium (µg/L)
January	867,915	3.8	35.2	20.9
February	554,020	3.0	34.0	20.6
March	138,210	3.3	31.5	20.2
April	229,425	3.9	33.7	22.9
May	303,810	3.3	30.4	19.5
June	310.835	6.0	77.6	23.5
July	212,845	8.7	35.2	17.3
August	320,695	9.6	29.8	17.7
September	288,900	5.7	28.6	17.3
October	415,660	8.3	36.4	20.1
November	386,920	8.9	34.2	18.5
December	450,590	7.7	30.3	16.3
Total	4,479,825	-		

A data assessment exercise is conducted each year and reported in the Site Environmental Report where uranium concentration data collected from the extraction wells are tracked graphically and statistically to assess how the concentrations are trending. Uranium concentrations are plotted over time and fitted with a regression line. In previous years, expressions used for regression of extraction well data included power functions, exponential functions, and polynomials. These functions were fit to uranium concentration data using Microsoft Excel.

The assessment exercise reported for this year is changed from the previous years. A collaborative effort between the DOE and the National Laboratory Network resulted in recommendations to reduce risk involved with the ongoing aquifer remedy. One recommendation was the use of alternative mathematical expressions to project remedial time frames through (1) implementation of new statistical projection methods for uranium concentration data as an alternative to the current methods used, and (2) refining the calculation approach for confidence intervals on the time projections. The objective for making these changes is to improve the accuracy of groundwater cleanup projections, including uranium mass removal projections for extraction wells and remedial time frame projections for the uranium plume. This recommendation was completed in 2022 and a draft report is expected to be issued in 2023.

The report will describe (1) how dual exponential functions were evaluated for use at the Fernald Preserve, and the resulting selection of stretched exponential functions to conduct regression analysis of extraction well datasets each year to project uranium mass removal, and (2) the use of bootstrapping to calculate 95% confidence intervals for the stretched exponential functions. Beginning with this year's Site Environmental Report, National Laboratory Network recommendations were implemented, and stretched exponential functions and the bootstrapping method were used.

Figures A.1-13 through A.1-32 are uranium concentration versus time plots for each extraction well. Each graph displays uranium concentration data measured at the well, a regression trend of the uranium concentration dataset using stretched exponential equations, a 95% confidence level

about the stretched exponential trend prepared using a bootstrapping approach, and groundwater model predictions.

The data in Figures A.1-13 through A.1-32 illustrate that as pumping continues, the uranium concentration of the pumped groundwater decreases. The slope of a fitted regression curve through the uranium concentration dataset at each extraction well provides a prediction of how pumping concentrations will continue to decrease and can be used to make uranium mass removal predictions over time for each extraction well.

EPA guidelines found in *General Methods for Remedial Operation Performance Evaluations* (EPA 1992) suggest that a 95% upper confidence level (UCL) of the measured uranium concentration dataset should also be used to help evaluate the uncertainty of the predicted trend. Figures A.1-13 through A.1-32 display both the upper and lower 95% confidence level, with the 95% uncertainty region shaded gray.

The Fernald Preserve aquifer remediation was designed using the Variable Saturated Analysis Model in Three Dimensions (also called VAM-3D). When the site transitioned to the Office of Legacy Management in 2006, the remediation was operating to a design that was established in 2005 called the WSA Phase II Design (DOE 2005). As explained in Section A.1.1, a new design, called the current Operational Design, was implemented in July 2014 (DOE 2014). Groundwater model predictions for both designs assume that an equilibrium linear isotherm adequately describes the partitioning of total uranium between the sorbed and dissolved phases.

The Fernald Preserve groundwater model predicts the future average pounds of uranium that will be removed from the aquifer for each year of the modeled remedy to eventually achieve concentration based final remediation levels (FRL) goals. This prediction (broken down by year) is used to judge how closely the actual remediation is tracking the model predictions. The actual pounds of uranium removed from the aquifer are compared to the model predictions to assess how reasonable the model predictions were. Stretched exponential equations based on measured concentration data collected at the extraction wells are used to provide a prediction of the number of pounds of uranium that will be removed from the aquifer in future years to achieve concentration-based FRL goals. Stretched exponential equations based on uranium concentration data collected at extraction wells through December 31, 2022, are summarized in Table A.1-23.

Changing water levels in the aquifer result in cleanup prediction uncertainty. Modeling is therefore conducted under low water-level conditions, high water-level conditions, and nominal water-level conditions to bracket the uncertainty in model-predicted cleanup times. Until 2021, this tracking exercise used model predictions for high water-level conditions, because they were the most conservative (i.e., presented the longest predicted cleanup times for the overall remedy). As discussed below, new model predictions for 2022 and beyond use nominal boundary conditions because this is the most conservative boundary condition for cleanup of the off-property South Plume (i.e., presented the longest predicted cleanup time for the South Plume).

Every year, the average uranium concentration data used to create the stretched exponential curves for each extraction well are updated with the data for the current reporting year. This results in the equations for each well changing slightly from year to year in response to the incorporation of the new data. At the end of December 2022, data indicated that 15,751 net lb of uranium had been removed from the GMA by the pump-and-treat remedy. Net pounds of

uranium includes a small amount of uranium that was reinjected into the aquifer between 1998 and 2004.

Groundwater modeling conducted in 2012 predicted that under the current pumping rates, pumping would continue until 2022 in the South Plume and Southern South Field, 2030 in the northern South field, and 2035 in the former WSA. Annual monitoring results used to track remedy progress indicate that these dates would not be achieved. In early 2022, the groundwater model was re-run to determine what the new cleanup times would be if uranium concentrations measured in the first half of 2021 were loaded into the model as initial conditions.

As was done for past model runs, modeled predicted cleanup date uncertainty due to changes in the elevation of the water table in the aquifer over time was bracketed by modeling three different sets of water table boundary conditions (i.e., wet, nominal, and dry). During wet boundary conditions the water table elevation is at its highest, and during dry boundary conditions the water table elevation is at its lowest. Nominal is the average elevation of the water table. The results were as follows:

Plume Area	Wet Boundary Conditions	Nominal Boundary Conditions	Dry Boundary Conditions
South Plume	2024	2025	2024
South Field	2035	2033	2038
Waste Storage Area	2040	2040	2045

As in previous modeling runs, the maximum model predicted cleanup date for each boundary condition was selected as the new target cleanup date, resulting in the following new predicted cleanup years.

- South Plume: 2025
- South Field: 2038
- WSA: 2045

Since the longest model predicted cleanup date for the South Plume (2025) was determined using nominal boundary conditions, and the immediate objective of the aquifer remedy is to clean up the South Plume first, it was decided to present cleanup predictions for nominal boundary conditions for the 2022 model run in this Site Environmental Report. Table A.1-24 provides a yearly breakdown of the pounds of uranium to be removed from 2023 to 2040 to achieve concentration-based FRL goals, based on three predictions (i.e., uranium concentration data, model predictions, 95% UCL). Figure A.1-33 illustrates the relationship between the three predictions. Each prediction is further discussed below.

A.1.6.1 Total Uranium Concentration Data

Using stretched exponential functions, the estimate of pounds or uranium to be removed from the aquifer between 2023 and 2040 to achieve remediation goals increased from 2,502 pounds to 3,305 lb which is an increase of 803 lb.

A.1.6.2 Model

Modeling conducted in 2022 predicts that from 2023 through 2040 an additional 2,355 lb of uranium will need to be removed from the GMA to achieve concentration-based cleanup goals under nominal boundary conditions. It should be noted that, by loading the 2021 plume concentrations into the groundwater model, the predicted pounds of uranium needing to be removed to achieve remediation goals increased by 1,812 lb over the previous modeling runs (2,890 - 1,078 lb = 1,812 lb).

A.1.6.3 95% UCL

Use of a bootstrapping approach to calculate a 95% confidence interval resulted in an estimate for the upper confidence level that is more reasonable than the previous used method. The previous method estimated that between 2023 and 2040 an additional 9,603 lb of uranium would need to be removed from the aquifer to achieve remediation goals. The new estimate is 4,314 lb, which is more in line with the actual data.

A summary of the three predictions is provided below.

Net pounds of uranium extracted through December 2022	15,751		
	Data	Model	95% UCL
Predicted pounds of uranium to be extracted between 2023 and the end of the pump-and-treat stage of the aquifer remedy (in accordance with the current Operational Design, nominal boundary conditions)	3,305	2,355	4,314
Total predicted pounds of uranium to be removed to achieve concentration-based FRL goals		18,106	20,065
Estimated percent complete (based on pounds of uranium to be removed)	83%	87%	79%

Results shown above indicate that as of December 31, 2022, the estimated percent complete (based on pounds of uranium to be removed to achieve concentration-based FRL goals) are 83%, 87%, and 79% for the data, model, and 95% UCL of the data, respectively. Following the EPA guidelines mentioned earlier, the estimated percent complete based on pounds of uranium removed is between 79% and 83%. The groundwater model prediction indicates 87% complete.

Tracking pounds of uranium removed against groundwater modeling predictions provides an indirect status on progress being made to attain cleanup goals. Other methods (mapping Ricker Method and Earth Volumetric Studio [EVS] software) of tracking reduction in the plume size are presented in Attachment A.2.

A.1.7 Total Uranium Data Discussion

In early 2022, the groundwater model was re-run with updated uranium plume concentrations consistent with monitoring results for the first half of 2021. The groundwater model run previously was based on an initial mass loading of 16,000 lb of uranium. As can be seen from Table A.1-24, both monitoring data and modeling now predict that between 18,106 to 19,056 lb of dissolved uranium will need to be pumped from the aquifer in order to achieve cleanup objectives. The 95% UCL estimate is even higher at 20,065 lb.

A comparison of groundwater model-predicted uranium concentrations and the actual uranium concentrations measured at each extraction well is provided in Table A.1-25. The 2021 Site Environmental Report (DOE 2022) marked the seventh year this comparison had been completed for the current Operational Design using model predictions made in 2014. This year, the 2022 model predictions shown in Figure A.1-25 were made with the updated model run that used initial uranium plume concentrations measured in 2021.

The comparison this year shows that the average model-predicted total uranium concentration for 2022 (20.85 μ g/L) is higher than the actual average concentration measured in December 2022 (16.3 μ g/L). The residual average uranium concentration (actual uranium concentration minus model-predicted uranium concentration) was -4.5 μ g/L. The standard deviation for the residual dataset was 27.7. As reported in Section A.1.8, DOE continues to work on ways to improve the predictive capability of the site groundwater model.

A comparison of groundwater model-predicted concentrations and actual observed concentrations measured at selected monitoring wells in 2022 is provided in Table A.1-26. It should be noted that in the 2021 Site Environmental Report, the 2021 model predictions that were shown in Table A.1-26 were made in 2012 when the groundwater model was run to implement the 2014 operational changes. The 2022 model predictions shown in Table A.1-26 were made with the updated model run that used initial uranium plume concentrations measured in 2021.

Actual uranium concentrations measured in the first half of 2022 are compared against model-predicted uranium concentrations for April 2022. Changing water levels in the aquifer result in model-predicted cleanup variations and uncertainty. Modeling is, therefore, conducted under low water-level conditions, high water-level conditions, and nominal water-level conditions. The comparison shown in Table A.1-26 represents nominal water-level conditions. Groundwater modeling conducted under nominal water-level conditions resulted in the longest cleanup time predictions for the South Plume; therefore, they are the most conservative for the South Plume. Comparing observed uranium concentrations against the model-predicted concentrations began in 2016. It should be noted that starting in 2017, the comparison is based on 13 fewer data points as a result of the monitoring reductions implemented in 2017.

As shown in Table A.1-26, the average residual uranium concentration in 2022 was 29.55 μ g/L. As was presented in previous years, Table A.1-27 shows the average residual uranium concentration for 2022 with five monitoring wells that were the main contributors to the difference (2049, 2387, 23276, 23281, and 83294_C2) removed. Those five wells are in the South Field. The average residual uranium concentration decreases from 29.55 μ g/L (all measured wells) to 6.19 μ g/L (five wells removed). These larger discrepancies found at these five wells are indicators that the model predictions are less reasonable for these five locations. As reported below in Section A.1.8, DOE continues to work on ways to improve the predictive capability of the site groundwater model.

Decreasing efficiency in mass removal is a common challenge for pumping operations. Uranium concentration curves are trending asymptotic. It was this trend, in part, that resulted in DOE optimizing the remediation operation and implementing a more aggressive cleanup design in 2014.

As discussed in Attachment A.2, calculations show that more uranium is sorbed to aquifer sediments than is dissolved in the water. The slow desorption process controls how much uranium is dissolved each year into the water and subsequently pumped out of the aquifer by the extraction wells. As the remedy proceeds, the desorption rate becomes slower and the remedy becomes less efficient, regardless of how much water is flushed through the sediments. Finding the right balance between desorption rate and pumping rate is difficult.

Collectively, this information indicates that additional work is needed to optimize the performance of the system again (as was done in 2014). Additional groundwater conceptualization and modeling work is being conducted based on recommendations made during a DOE National Laboratory Collaboration that was conducted in early 2021. More information is provided in Section A.1.8.

It should be recognized that pumping may only progress the remediation to a certain point and there may be recalcitrant areas remaining that will need to be addressed using a different approach. For instance, progress in achieving a concentration-based cleanup is being assessed in part by attributing uranium concentration declines being measured to the pounds of uranium being removed from the aquifer through active pumping. Reducing conditions in the aquifer that caused uranium to sorb to sediments could also contribute to lower dissolved uranium concentrations in the groundwater. Reducing conditions could therefore also be a factor in why some areas of the aquifer might not respond to pump-and-treat as well as other areas. As the aquifer remedy progresses and the plume decreases in size, such that only recalcitrant areas are left, the need to have a better understanding of the geochemical conditions within the recalcitrant areas (such as oxidation-reduction conditions) could become more important for completing cleanup in those areas.

Some recalcitrant areas in the GMA are likely the result of sediment grain size variations that are present within the aquifer and are common to braided stream depositional environments like the GMA. The presence of areas of finer grained sediment may be limiting the success of pumping dissolved uranium from all impacted areas of the aquifer. Uranium will tend to sorb more to finer-grained sediments, because there is more surface area available. Movement of groundwater, due to pumping, will be easier through coarser-grained sediments, and groundwater will tend to move around areas where finer-grained sediments are present. Essentially the finer-grained areas are not flushed as easily as the coarser-grained areas. In effect, uranium slowly de-sorbs from the areas of finer-grained sediments as the water moves past and around them. This slow desorption process lengthens aquifer cleanup times.

As the groundwater remedy progresses, additional work to define the uranium partitioning coefficient (K_d) may also be deemed beneficial to help refine cleanup efforts in recalcitrant areas of the uranium plume. Selecting a K_d for uranium in the groundwater model that reflects actual site conditions everywhere in the uranium plume over the life of the groundwater remediation effort might not be appropriate. Groundwater model predictions for the Fernald Preserve assume that an equilibrium linear isotherm adequately describes the partitioning of total uranium between sorbed and dissolved phases. One K_d value ($K_d = 3$) is used to represent the entire model domain and time frame. This value was determined empirically by the Sandia National Laboratory using core samples of aquifer sediment collected from contaminated areas across the Fernald site (SNL 2004). It is considered to be a good representative K_d value overall, but it might not reflect reality in all areas of the plume.

A.1.8 DOE National Laboratory Network Collaboration

In early 2021, a DOE National Laboratory Network collaboration was conducted concerning the Fernald Preserve Groundwater Remediation. EPA and Ohio EPA participated, with the understanding that any official input or endorsement for any of the recommendations would be reserved for if DOE decides to pursue implementation of a recommendation at the site. The objective of the collaboration was to present recommendations to improve the ongoing aquifer remediation at the Fernald Preserve.

The collaboration involved two focus groups. Focus Group 1 was challenged with developing recommendations on how to maintain and keep an aging wellfield system operating efficiently. Focus Group 2 was challenged with developing recommendations to improve the efficiency and success of the existing pumping remedy and to improve the aquifer cleanup predictions for planning purposes while considering the following three site priorities:

- 1. Focus first on the off-property plume
- 2. Focus second on the southern South Field plume
- 3. Focus third on the recalcitrant areas of the plume in the South Field and former WSA

A.1.8.1 Results of Focus Group 1: Aging Wellfield System

Focus Group 1 did not identify anything that is currently being done to maintain the aging wellfield system at the Fernald Preserve that should stop being done. Focus Group 1 acknowledged that operating an aging wellfield system efficiently is somewhat of an art in that there is no one proven method or process that seems to always work. Success involves a degree of trial and error to determine the optimal operational practice for any given well. Given the operational challenges at the Fernald Preserve, the current operation and maintenance program was determined to be sound. When the DOE National Laboratory Network Collaboration personnel contacted area experts for information, those familiar with the Fernald site's wellfield maintenance program emphasized that they often refer to the Fernald Preserve when they need an example of how to approach the challenge. Focus Group 1 presented the following three consensus recommendations:

- 1. Test the use of automated biofilm and scale control in the extraction wells.
- 2. Test the use of carbon dioxide to rehabilitate extraction wells.
- 3. Enhance rehabilitation contact (i.e., use of satellite wells to deliver treatments).

Working with EPA, Ohio EPA and stakeholders, DOE moved forward in November 2021 with a small-scale manual test of the biofilm and scale-control recommendation.

Implementation of the automatic biofilm and scale-control recommendation consists of the routine administration of peracetic acid instead of the current practice of doing periodic administration of liquid acid descaler. Routine administration of the peracetic acid would require infrastructure modifications to the wellheads of the extraction wells. Before making these wellhead modifications, DOE conducted a manual test on two wells.

With concurrence from EPA and Ohio EPA, the manual test began in November 2021 and lasted for 6 months. Specific capacity data collected during the 6-month manual test indicated that the routine use of peracetic acid on aged wells (that were recently rehabilitated) resulted in no improvement in the wells' specific capacity compared to the improvement realized through the periodic use of liquid acid descaler. The National Laboratory Network recommendation for the routine use of a biocide like peracetic acid called for starting the routine treatment in a new extraction well that had not yet undergone iron fouling. Therefore, the routine use of a biocide remains a potential option for newly installed extraction wells.

All three National Laboratory Network recommendations from Focus Group 1 pertain to extending the life of an extraction well. Considering the age of the existing extraction wells, rather than trying to prolong their lives further, the best option may be to just begin to strategically replace them. DOE will revisit all three Focus Group 1 National Laboratory Network recommendations as deemed appropriate when replacement of an extraction well is being considered.

A.1.8.2 Results of Focus Group 2: Improve Efficiency of the Aquifer Cleanup

Focus Group 2 did not identify anything that is currently being done to improve efficiency of the aquifer cleanup at the Fernald Preserve that should be stopped. Six recommendations were presented. Four recommendations involved doing things that are *not* currently being done at the Fernald Preserve. Two recommendations involved things that are being done at the Fernald Preserve, but should be supplemented with something that the Fernald Preserve is *not* doing.

What the Fernald Preserve is not doing but should be doing:

- 1. Use alternative mathematical expressions to predict cleanup time frames.
- 2. Conduct targeted data mining of available site information for enhanced understanding of prior fate and transport behavior and improved predictions of future behavior.
- 3. Prepare three-dimensional visualizations of key hydrogeologic and geochemical parameter distributions over time.
- 4. Conduct algorithm-based optimization for future remedy operation and design.

What the Fernald Preserve is doing that should continue, and should be supplemented with something else:

- 1. Refine plume metric calculations to reduce uncertainty.
- 2. Continue to port the site groundwater model to a modern hydrologic software platform.

DOE began implementation of these Focus Group 2 recommendations in 2022, and it is anticipated that full implementation will take from 1 to 4 more years. Implementation of any National Laboratory Network recommendation is subject to availability of resources, stakeholder coordination (as appropriate), and regulatory approval.

DOE completed two of the Group 2 National Laboratory Network recommendations in 2022:

(1) Alternative Mathematical Expressions for Projecting Remedial Time Frame, and

expressions was briefly discussed in Section A.1.6, and Four-Dimensional Mapping and Interpretation is briefly discussed below.

A four-dimensional mapping tool was developed using EVS software. This tool facilitates interpretation and communication of extensive environmental datasets. The tool can be used for both visual, qualitative, and quantitative analysis. A three-dimensional geologic model, a time series of water table surfaces, and a time series of volumetric plume models were generated. Water table mapping and streamline analysis were used to assess the capture influence of the remediation system. This evaluation indicated that the current operational design achieves full containment of the uranium plume. This is discussed further in Attachment A.3. Uranium plume mapping and calculation of bulk metrics was used to assess plume stability. The results demonstrate that the lateral and vertical dimensions of the plume are contracting, the total dissolved uranium mass is decreasing, and the center of mass has not migrated downgradient. These results are further discussed in Attachment A.2. With the four-dimensional mapping implementation complete, incorporating additional site data into the EVS tool is straightforward. DOE plans to update this tool as deemed appropriate and use it for ongoing evaluation and communication of data for the Fernald Preserve site, as well as update the site groundwater model as needed.

A.1.9 Pumping Rates

Target design extraction well pumping rates for 2022 are provided in Table A.1-28. The target design pumping rate has changed over time. From July 1, 2014, through June 2018, the target design pumping rate was 5,075 gpm (DOE 2014). The target design pumping rate is the pumping rate used in the groundwater model to estimate cleanup times for the aquifer remedy. Beginning in July 2018, the target design pumping rate was reduced to 4,975 gpm because of a decreased pumping rate from 200 to 100 gpm in recovery well RW-4.

In 2018, extraction well 3927 (RW-4) was no longer able to maintain its design setpoint of 200 gpm. This well is in the South Plume Module off DOE property (Figure A.1-1), is 26 years old, and has a hole in the screen that has been repaired with a concrete plug. Rehabilitation attempts are no longer effective in getting the pumping rate back up to 200 gpm. Previous modeling had extraction well 3927 (RW-4) pumping until 2022. Given the limited time that this well was projected to be needed, DOE completed modeling to determine whether a replacement well was warranted.

The modeling indicated that extraction well 3927 (RW-4) could be turned off in 2018 without impacting the model-predicted cleanup times and that capture of the remaining uranium plume would be maintained. Particle track maps showed that water supplying extraction well 3927 (RW-4) was coming mostly from outside the remaining uranium plume footprint. Based on the modeling results, DOE took a conservative approach and continues to pump extraction well 3927 (RW-4) at 100 gpm, rather than 200 gpm, and plans to continue to operate the well until it fails. The continued pumping at the lower rate should help to further flush the aquifer in this area. This approach was discussed with EPA and Ohio EPA at an update meeting on July 11, 2018, at the Fernald Preserve. Both EPA and Ohio EPA concurred with this revised operational approach for extraction well 3927 (RW-4).

In June 2022, recovery well RW-4 was no longer able to maintain 100 gpm. It was turned off on June 6, 2022, and a new pump and motor replacement was scheduled. In July 2022, a new pump and motor was installed, but the drillers could not get the pitless adaptor to seat on the well screen causing the well to leak. In August 2022, the pump and motor was replaced again, and once again the drillers could not get the pitless adaptor to seat properly. June 6, 2022, is recognized as the official date that this well was turned off permanently. As reported above, through 2022 the target pumping rate for this well was recognized as 200 gpm. On January 1, 2023, it will be removed from the South Plume Module and removed from Table A.1-28.

Beginning in January 2023, the target design pumping rate for the South Plume on Table A.1-28 will be reduced by an additional 400 gpm due to loss of RW-6 and a decrease in pumping rate at RW-7. The 2023 target design pumping rate will be 4,475 gpm. As the remedy proceeds, pumping rates may change as efforts are made to maximize the effectiveness of each module.

As discussed earlier, RW-6 was permanently shut down in 2022 and the target design pumping rate of RW-7 was decreased from 300 gpm to 200 gpm. Overall, these two pumping adjustments amount to a total decrease of 400 gpm. For operational tracking purposes, the previous target pumping rates (before the changes noted above) are recognized in the report. Beginning January 1, 2023, RW-4 and RW-6 were officially removed from the list of operating wells in the South Plume Module, and the target pumping rate for RW-7 became 200 gpm.

Modeling conducted in 2022 demonstrates that if the six existing South Plume recovery wells are replaced with two new recovery wells (RW-6A and RW-7A) east and northeast of RW-6 and RW-7, then capture of the remaining South Plume will be maintained, and the predicted cleanup time for the South Plume will not increase. The proposed path forward for the operation of remaining South Plume wells was discussed in Section A.1-4. Additional modeling conducted in 2022 demonstrates that all existing South Plume wells can be down for a period of three years before capture of the remaining South Plume is compromised. Using the date when recovery well RW-6 was permanently turned off as the conservative starting point (July 25, 2022), DOE needs to have the new wells operating no later than July 25, 2025. DOE is moving forward with the installation of the two new South Plume recovery wells and anticipates that they will be operational in early 2024.

In September 2012, with concurrence from EPA and Ohio EPA, a pulse pumping exercise was initiated at extraction wells 31550 (EW-18), 31560 (EW-19), 31561 (EW-20), and 33061 (EW-25). At the time, these four wells were equipped with pumps and motors that operated most efficiently at rates of approximately 300 gpm. The WSA Phase II Design called for a target pumping rate of 100 gpm for each of these wells. The 100 gpm rate was being achieved by throttling back on the flow from each of the wells; however, this type of operation was not energy efficient.

With the exception of extraction well 31561 (EW-20), the current Operational Design also calls for a pumping rate of 100 gpm for each of these wells. To be more energy efficient, when weather or temperatures are above freezing, the three wells that remained at 100 gpm under the current Operational Design targets are being pumped at a higher rate for a shorter period each day to remove the daily volume of water prescribed by the current Operational Design. Specifically, the wells are being pumped for 300 gpm for 8 hours a day (a total of

144,000 gallons per day) rather than 100 gpm for 24 hours a day (a total of 144,000 gallons per day). Flow and particle path monitoring predictions indicate that the new pumping schedule will maintain capture of the 30 μ g/L uranium plume. Extraction well 31561 (EW-20) has a target pumping rate of 200 gpm under the current Operational Design, so pulse pumping is no longer being used at this well.

A.1.10 CAWWT Capacity Reduction and Backwash Basin Replacement

As presented in the *Fernald Preserve 2015 Site Environmental Report* (DOE 2016), the CAWWT system had become oversized and had reached the end of its useful life. Additionally, equipment corrosion and corrective maintenance had become ongoing issues for facility operations.

In March 2015, a CAWWT Condition Assessment Report was finalized (Whitman, Requardt & Associates LLP 2015) confirming that many of the treatment system components were at or nearing the end of their useful life. A decision was made to replace the CAWWT system with a 50-gpm system inside the CAWWT building. DOE received concurrence on a path forward in July 2015 from EPA and Ohio EPA and in August 2015 from the Fernald Community Alliance. Planning for the project began in August 2015.

The project was initiated in 2016 and implemented in three steps:

- 1. Treatment media removal and demolition of existing piping and tanks to allow room for the new system in the existing building.
- 2. Design of the new system.
- 3. Construction, installation, and commissioning of the new system.

Step 1 was completed in January 2017. Four multimedia filters, four of the six existing ion-exchange vessels, and associated piping were removed to provide space for installation of the new system. Two ion-exchange vessels and associated piping remained to be available to handle treatments needs until the new system was operational. The current CAWWT building remains to house the smaller treatment system, laboratory, operations control room office, and maintenance shop and to provide storage space.

Step 2, design of the new system, was completed in the spring of 2017. The system was designed to meet the site's wastewater treatment needs through 2039.

Step 3, construction, installation, and commissioning of the new system was completed in 2018. The new system became operational on April 3, 2018.

In 2019, the backwash basin (which is used to hold wastewater from the site before being treated) was refurbished. Refurbishment efforts included the removal, shipping, and disposal of approximately 600 cubic yards of low-level radiological waste at a commercial disposal facility in west Texas. While the backwash basin was being refurbished, wellfield maintenance activities were put on hold until the new backwash basin was available to temporarily store spent well maintenance fluids before being treated in the CAWWT system.

A.1.11 References

DOE (U.S. Department of Energy), 1993. *South Plume Groundwater Recovery System Design, Monitoring, and Evaluation Program Plan,* Fluor Environmental Management Project, Fernald Area Office, Cincinnati, Ohio, April.

DOE (U.S. Department of Energy), 1996. *Record of Decision for Remedial Actions at Operable Unit 5*, 7478 U 007 501.4, Final, Fluor Fernald, Cincinnati, Ohio, January.

DOE (U.S. Department of Energy), 2005. *Waste Storage Area Phase II Design Report*, 52424-RP-0004, Revision A, Draft Final, Fluor Fernald, Fernald Area Office, Cincinnati, Ohio, June.

DOE (U.S. Department of Energy), 2014. *Operational Design Adjustments-1, WSA Phase-II Groundwater Remediation Design, Fernald Preserve*, LMS/FER/S10798, Office of Legacy Management, March.

DOE (U.S. Department of Energy), 2016. *Fernald Preserve 2015 Site Environmental Report*, LMS/FER/S13591, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2017. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2022. *Fernald Preserve 2021 Site Environmental Report*, LMS/FER/S37811, Office of Legacy Management, May.

EPA (U.S. Environmental Protection Agency), 1992. *General Methods for Remedial Operation Performance Evaluations*, Environmental Research Laboratory, Ada, Oklahoma, January.

ERM Midwest Inc., 1994. *Remedial Investigation and Risk Assessment, Paddys Run Road Site*, Revision 1, Volumes 1–5, Crosby Township, Hamilton, Ohio.

SNL (Sandia National Laboratories), 2004. Results of Uranium Adsorption/Desorption Experiments and Microanalytical Studies Characterizing Sediment Samples from the Great Miami Aquifer, Fernald DOE Site, Ohio, SAND2004-4085, Albuquerque, New Mexico, August.

Whitman, Requardt & Associates LLP, 2015. *Fernald Preserve Site Converted Advanced Wastewater Treatment Current Condition Assessment Report*, Final, March.

	Reporting Period					
	January 20	22 Through	December 2022	August 1993 Through December 2022		
	Volume Pumped/ Reinjected (Mgal)	Total Uranium Removed/ Reinjected (lb)	Uranium Removal Index (Ib/Mgal)ª	Volume Pumped/ Reinjected (Mgal)	Total Uranium Removed/ Reinjected (Ib)	Uranium Removal Index (Ib/Mgal)
South Field Module	1277.30	237.13	0.19	29,081.58	9,659.69	0.33
Waste Storage Area Module	332.11	60.26	0.18	8,770.68	2,540.23	0.29
South Plume Module	398.11	56.44	0.14	19,206.77	3,627.04	0.19
Reinjection Module ^a	0	0	NA	1,936.48	76.27	Not Applicable
Aquifer Restoration Systems Totals						
Extraction Wells	2,007.52	353.83	0.18	57,059.02	15,826.93	0.28
(Reinjection Wells ^a)	0	0	NA	(1,936.48)	(76.27)	Not Applicable
Net	2,007.52	353.83	0.18	55,122.54	15,750.66	Not Applicable

^a Reinjection Module was shut down in September 2004.

Table A.1-2. Extraction Well 31550 (EW-18) Operational Summary for 2022

Reference Elevation (feet above mean sea level [ft amsl]): 572.11 (top of well) Northing Coordinate (1983): 477,018.5 Easting Coordinate (1983): 1,348,979.8

Hours in reporting period: 8,760 Hours not pumped: 1,200.0 Hours pumped: 7,560 Target pumping rate: 100 gpm Operational percent: 86.3

Adjusted operational percent^a: 97.83

Monthly Measurements at Wellfield							
Month	Monthly Average Pumping Rate ^b (gpm)	Vol Pun (M	ume nped gal)	Monthly ک Uraniu Concentra (µg/L	Total Im ation ^c .)	Uranium Re (Ib of tota removed/Mg	moval Index Il uranium gal pumped)
Jan	110.2		4.918		35.2		0.29
Feb	101.8		4.105		34.0		0.28
Mar	93.9		4.191		31.5		0.26
Apr	111.0		4.797		33.1		0.28
May	107.6		4.801		25.9		0.22
Jun	19.1		0.823		27.6		0.23
Jul	59.2		2.642		24.8		0.21
Aug	128.0		5.715		27.1		0.23
Sep	109.1		4.714		26.3		0.22
Oct	108.5		4.843		32.9		0.27
Nov	111.8		4.828		32.2		0.27
Dec	110.7		4.943		27.9		0.23
Ave	erage 97.6	Total	51.320	Average	29.9	Average	0.25

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-18 was down from February 18 to February 19 due to high river levels in the Great Miami River.
Well EW-18 was down from February 25 to February 26 due to high river levels in the Great Miami River.
Well EW-18 was down from March 7 to March 9 due to high water levels in the Great Miami River.
Well EW-18 was down from June 6 to July 18 for planned wellfield shutdown.

Well EW-18 was down from October 31 to November 1 for liquid acid descaler chemical treatment. ^c Average is used if more than one concentration measurement is available for a particular month.
Reference Elevation (ft amsl): 574.93 (top of well) Northing Coordinate (1983): 477,403.1 Easting Coordinate (1983): 1,349,028.9

Hours in reporting period: 8,760 Hours not pumped: 1,135.5 Hours pumped: 7,624.5 Operational percent: 87.04 Target pumping rate: 100 gpm

Adjusted operational percent^a: 98.66

	Monthly Measurements at Wellfield											
Month	Monthly Average Pumping Rate ^b (gpm)	Volum (N	e Pumped /Igal)	Monthly Urani Concent (µg/	v Total ium ration ^c ′L)	Uranium Rem (Ib of total removed/Mga	ioval Index uranium al pumped)					
Jan	110.6		4.935		19.9		0.17					
Feb	99.2		3.998		18.2		0.15					
Mar	103.4		4.614		20.2		0.17					
Apr	110.5		4.772		22.1		0.18					
May	110.3		4.922		18.3		0.15					
Jun	18.9		0.817		18.9		0.16					
Jul	71.0		3.168		18.5		0.15					
Aug	110.7		4.944		19.6		0.16					
Sep	110.6		4.778		15.4		0.13					
Oct	110.7		4.940		20.5		0.17					
Nov	107.9		4.661		19.0		0.16					
Dec	111.0		4.955		16.2		0.14					
Avera	ge 97.9	Total	51.504	Average	18.9	Average	0.16					

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-19 was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well EW-19 was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well EW-19 was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well EW-19 was down from June 6 to July 18 for planned wellfield shutdown.

Reference Elevation (ft amsl): 578.77 (top of well) Northing Coordinate (1983): 477,660.8 Easting Coordinate (1983): 1,349,254.5

Hours in reporting period: 8,760 Hours not pumped: 1,263.5 Hours pumped: 7,496.5 Operational percent: 85.58 Target pumping rate: 200 gpm

Adjusted operational percent^a: 97.00

Monthly Measurements at Wellfield											
Month	Monthly Average Pumping Rate ^b (gpm)	Volume Pumped (Mgal)	Monthly Total Uranium Concentration ^c (μg/L)	Uranium Re (Ib of tota removed/Mg	moval Index I uranium jal pumped)						
Jan	263.7	11.771	35.0		0.29						
Feb	225.7	9.102	31.4		0.26						
Mar	206.3	9.211	29.7		0.25						
Apr	218.1	9.424	33.7		0.28						
May	190.1	8.487	30.4		0.25						
Jun	35.6	1.536	32.6		0.27						
Jul	92.1	4.111	29.2		0.24						
Aug	216.6	9.671	29.8		0.25						
Sep	202.9	8.766	28.6		0.24						
Oct	172.8	7.715	36.4		0.30						
Nov	167.9	7.251	34.2		0.29						
Dec	163.4	7.293	30.3		0.25						
Ave	erage 179.6	Total 94.337	Average 31.8	Average	0.27						

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-20 was down from February 18 to February 19 due to high river levels in the Great Miami River. Well EW-20 was down from February 25 to February 26 due to high river levels in the Great Miami River. Well EW-20 was down from March 7 to March 9 due to high water levels in the Great Miami River.

Well EW-20 was down from May 17 to May 19 for liquid acid descaler chemical treatment.

Well EW-20 was down from June 6 to July 18 for planned wellfield shutdown.

Well EW-20 was down from October 24 to October 25 for a Perasan A chemical treatment.

Well EW-20 was down from October 31 to November 1 for liquid acid descaler chemical treatment.

Reference Elevation (ft amsl): 574.84 (top of well) Northing Coordinate (1983): 477,905.5 Easting Coordinate (1983): 1,348,854.1

Hours in reporting period: 8,760 Hours not pumped: 1,289.0 Hours pumped: 7,471.0 Operational percent: 85.29 Target pumping rate: 175 gpm

Adjusted operational percent^a: 96.67

Monthly Measurements at Wellfield											
Month	Monthly Average Pumping Rate ^b (gpm)	Volume Pumped (Mgal)	Monthly Total Uranium Concentration ^c (μg/L)	Uranium (Ib of to removed/	Removal Index otal uranium Mgal pumped)						
Jan	189.5	8.45	57 11.3		0.09						
Feb	173.5	6.99	10.4		0.09						
Mar	176.9	7.89	6 10.7		0.09						
Apr	190.3	8.22	.0 11.9		0.10						
May	186.1	8.30	10.0		0.08						
Jun	31.8	1.37	75 10.4		0.00						
Jul	68.8	3.07	11.8		0.10						
Aug	194.7	8.69	10.2		0.09						
Sep	194.7	8.41	2 9.5		0.08						
Oct	194.8	8.69	5 11.3		0.09						
Nov	191.2	8.25	10.7		0.09						
Dec	195.1	8.70	9 8.7		0.07						
Ave	erage 165.6	Total 87.09	0 Average 10.6	Average	0.08						

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-17Å was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well EW-17A was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well EW-17A was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well EW-17A was down from June 6 to July 18 for planned wellfield shutdown.

Reference Elevation (ft amsl): 567.14 (top of well) Northing Coordinate (1983): 476,447.3 Easting Coordinate (1983): 1,348,857.3

Hours in reporting period: 8,760 Hours not pumped: 1,951.0 Hours pumped: 6,809.0 Targe Operational percent: 77.73

Target pumping rate: 300 gpm

Adjusted operational percent^a: 88.11

Monthly Measurements at Wellfield											
Month	Monthly Average Pumping Rate ^b (gpm)	Volume Pumped (Mgal)	Monthly Total Uranium Concentration ^α (μg/L)	Uranium I (Ib of to removed/	Removal Index otal uranium Mgal pumped)						
Jan	0.0	0.000	0.0		0.00						
Feb	286.3	11.544	17.0		0.00						
Mar	307.6	13.731	17.8		0.15						
Apr	329.8	14.249	20.6		0.17						
May	323.1	14.422	18.2		0.15						
Jun	55.7	2.408	20.2		0.00						
Jul	127.0	5.670	18.9		0.16						
Aug	142.4	6.357	21.6		0.18						
Sep	329.6	14.237	17.8		0.15						
Oct	329.2	14.694	20.2		0.17						
Nov	327.4	14.144	20.4		0.17						
Dec	329.4	14.703	17.2		0.14						
A	verage 240.6	Total 126.159	Average 17.5	Average	0.12						

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-22 was down from January 1 to February 2 due to bad motor, variable frequency drive, and motor cable.
 Well EW-22 was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well EW-22 was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well EW-22 was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well EW-22 was down from June 6 to July 18 for planned wellfield shutdown.

Reference Elevation (ft amsl): 578.37 (top of well) Northing Coordinate (1983): 476,634.5 Easting Coordinate (1983): 1,349,312.4

Hours in reporting period: 8,760 Hours not pumped: 2,631.0 Hours pumped: 6,129.0 Ta Operational percent: 69.97

Target pumping rate: 400 gpm

Adjusted operational percent^a: 79.31

Monthly Measurements at Wellfield											
Month	Monthly Average Volume Pumping Rate ^b Pumped (gpm) (Mgal)				Monthly Total ume Uranium Uranium Reme uped Concentration ^c (Ib of total u gal) (μg/L) removed/Mga						
Jan		374.6		16.723		27.6		0.23			
Feb		38.3		1.544		27.6		0.23			
Mar		9.4		0.419		27.6		0.23			
Apr		379.7		16.403		27.9		0.23			
May		362.6		16.185		23.0		0.19			
Jun		62.7		2.710		24.6		0.00			
Jul		142.4		6.357		21.6		0.18			
Aug		369.4		16.489		21.7		0.18			
Sep		344.9		14.900		22.2		0.19			
Oct		348.3		15.548		26.7		0.22			
Nov		233.0		10.067		25.8		0.22			
Dec		438.8		19.588		22.7		0.19			
A	verage	258.7	Total	136.933	Average	24.9	Average	0.19			

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-24 not meeting setpoint in most of 2022 due to high discharge pressure caused by plugged pipes; pipes were cleaned in November.

Well EW-24 was down from February 4 due to a locked pump.

Well EW-24 was down from February 18 to February 19 due to high river levels in the Great Miami River.

Well RW-24 was down from February 25 to February 26 due to high river levels in the Great Miami River.

Well EW-24 was down from March 7 to March 9 due to high water levels in the Great Miami River.

Well EW-24 was down from June 6 to July 18 for planned wellfield shutdown.

Reference Elevation (ft amsl): 574.53 (top of well) Northing Coordinate (1983): 477,150.2 Easting Coordinate (1983): 1,349,421.2

Hours in reporting period: 8,760 Hours not pumped: 1,240.5 Hours pumped: 7,519.5 Operational percent: 85.84 Target pumping rate: 500 gpm

Adjusted operational percent^a: 97.30

	Monthly Measurements at Wellfield												
Month	Monthly Average Pumping Rate ^b (gpm)	Volum (I	e Pumped Mgal)	Month Ura Conce (μ	Uranium Rei (Ib of tota removed/Mg	noval Index I uranium al pumped)							
Jan	461.8		20.614		29.1		0.24						
Feb	406.8		16.403		27.9		0.23						
Mar	439.8		19.631		25.2		0.21						
Apr	548.8		23.710		29.7		0.25						
Мау	520.0		23.211		26.3		0.22						
Jun	85.5		3.695		28.9		0.24						
Jul	211.8		9.454		21.0		0.18						
Aug	548.5		24.487		27.9		0.23						
Sep	548.8		23.708		25.5		0.21						
Oct	545.0		24.330		29.5		0.25						
Nov	503.7		21.758		28.2		0.24						
Dec	470.6		21.007		24.3	_	0.20						
Av	erage 440.9	Total	232.006	Average	27.0	Average	0.22						

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-23 was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well EW-23 was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well EW-23 was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well EW-23 was down from March 14 to March16 for liquid acid descaler chemical treatment.
 Well EW-23 was down from June 6 to July 18 for planned wellfield shutdown and rehabilitation.

Reference Elevation (ft amsl): 575.56 (top of well) Northing Coordinate (1983): 478,318.8 Easting Coordinate (1983): 1,349,531.0

Hours in reporting period: 8,760 Hours not pumped: 1,388.5 Hours pumped: 7,371.5 Operational percent: 84.15

Target pumping rate: 100 gpm

Adjusted operational percent^a: 95.39

Monthly Measurements at Wellfield											
Month	Monthly Average Pumping R (gpm)	y e Vo Rate ^b Pu (N	lume mped Igal)	Monthly Total Uranium Concentration ^c (µg/L)		Uranium Removal Index (Ib of total uranium removed/Mgal pumped)					
Jan	108	3.6	4.848	2	3.8		0.20				
Feb	99	9.5	4.011	2	20.3		0.17				
Mar	96	5.1	4.288	1	9.9		0.17				
Apr	111	1.0	4.797	2	3.2		0.19				
May	109	9.1	4.870	1	9.2		0.16				
Jun	19	9.1	0.825	1	9.6		0.00				
Jul	52	2.5	2.345	2	1.1		0.18				
Aug	11().7	4.941	1	7.8		0.15				
Sep	11().8	4.787	1	8.9		0.16				
Oct	11(0.6	4.937	2	20.5		0.17				
Nov	101	1.1	4.369	2	1.4		0.18				
Dec	112	2.2	5.010	1	9.6		0.16				
A	verage 98	5.1 Total	50.028	Average 2	20.4	Average	0.16				

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-25 was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well EW-25 was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well EW-25 was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well EW-25 was down from March 14 to March 16 for liquid acid descaler chemical treatment.
 Well EW-25 was down from June 6 to July 18 for planned wellfield shutdown.

Well EW-25 was down from October 25 to October 27 for a liquid acid descaler chemical treatment. ^c Average is used if more than one concentration measurement is available for a particular month. Reference Elevation (ft amsl): 568.37 (top of well) Northing Coordinate (1983): 477,799.9 Easting Coordinate (1983): 1,348,150.0

Hours in reporting period: 8,760 Hours not pumped: 1,252.0 Hours pumped: 7,508 Operational percent: 85.71 Target pumping rate: 300 gpm

Adjusted operational percent^a: 97.15

	Monthly Measurements at Wellfield											
Month	Monthly A Pumping (gpr	Average g Rate⁵ n)	Volume F (Mg	oumped al)	Monthl Urar Concer (پو	ly Total nium ntration ^c g/L)	Uranium R (Ib of to removed/I	emoval Index tal uranium Agal pumped)				
Jan		328.8		14.676		23.2		0.19				
Feb		301.3		12.146		22.8		0.19				
Mar		307.6		13.729		24.5		0.20				
Apr		329.5		14.236		28.1		0.23				
May		322.6		14.402		25.0		0.21				
Jun		55.5		2.398		24.9		0.21				
Jul		116.4		5.197		29.6		0.25				
Aug		329.4		14.703		25.6		0.21				
Sep		329.4		14.229		22.3		0.19				
Oct		306.5		13.681		23.1		0.19				
Nov		327.9		14.164		20.3		0.17				
Dec		329.2		14.695		16.1		0.13				
	Average	282.0	Total 1	48.256	Average	23.8	Averag	je 0.20				

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-15A was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well EW-15A was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well EW-15A was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well EW-15A was down from June 6 to July 18 for planned wellfield shutdown.

Well EW-15A was down from October 24 to October 26 for a Perasan A chemical treatment.

Reference Elevation (ft amsl): 573.82 (top of well) Northing Coordinate (1983): 477,200.9 Easting Coordinate (1983): 1,349,751.5

Hours in reporting period: 8,760 Hours not pumped: 2,882.5 Hours pumped: 5,877.5 Operational percent: 67.09 Target pumping rate: 400 gpm

Adjusted operational percent^a: 76.05

	Monthly Measurements at Wellield												
	Monthly		Month	nly Total									
	Average		Ura Dod Conco	nium	Uranium Re	moval Index							
Month	(gpm)	(Mgal)	ped Conce (µ	g/L)	removed/M	gal pumped)							
Jan	438.5	19.	573	12.3		0.10							
Feb	402.3	16.	220	10.9		0.09							
Mar	403.5	18.	012	10.8		0.09							
Apr	415.1	17.	932	11.5		0.10							
May	393.7	17.	574	9.3		0.08							
Jun	74.3	3.	209	9.2		0.00							
Jul	0.0	0.	000	0.0		0.00							
Aug	0.0	0.	000	0.0		0.00							
Sep	332.0	14.	344	5.7		0.05							
Oct	438.7	19.	585	8.3		0.07							
Nov	427.4	18.	463	8.9		0.07							
Dec	202.4	9.	033	7.7		0.06							
	Average 294.0	Total 153.	944 Average	7.9	Average	0.06							

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-30 was down from February 18 to February 19 due to high river levels in the Great Miami River. Well EW-30 was down from February 25 to February 26 due to high river levels in the Great Miami River.

Well EW-30 was down from March 7 to March 9 due to high water levels in the Great Miami River.

Well EW-30 was down from May 3 to May 5 for liquid acid descaler chemical treatment.

Well EW-30 was down from June 6 to July 21 for planned wellfield shutdown and rehabilitation.

Well EW-30 was down from July 18 to September 8 for rehabilitation.

Well EW-30 was down from December 15 to December 31 due to excessive vibration.

Reference Elevation (ft amsl): 576.21 (top of well) Northing Coordinate (1983): 477,953.1 Easting Coordinate (1983): 1,349,499.9

Hours	in reporting period: 8,760
Hours	not pumped: 1,241.5

Hours pumped: 7,518.5 T Operational percent: 85.83

Target pumping rate: 300 gpm

Adjusted operational percent^a: 97.29

Monthly Measurements at Wellfield											
Month	Mo Ave Pumpi (g	nthly erage ng Rate ^b pm)	Volume Pumped (Mgal)	Monthly T Conce	otal Uranium entration ^c ug/L)	Uranium Ren (Ib of total removed/Mga	noval Index uranium al pumped)				
Jan		321.7	14.359		28.2		0.24				
Feb		294.4	11.870		26.4		0.22				
Mar		299.3	13.359		30.3		0.25				
Apr		321.8	13.904		32.9		0.27				
Мау		315.0	14.064		28.3		0.24				
Jun		54.7	2.363		29.3		0.00				
Jul		137.9	6.157		35.2		0.29				
Aug		329.9	14.728		28.6		0.24				
Sep		321.9	13.908		23.9		0.20				
Oct		262.5	11.717		28.7		0.24				
Nov		240.1	10.374		25.2		0.21				
Dec		236.7	10.565	_	19.8		0.17				
	Average	261.3	Total 137.368	Average	28.1	Average	0.21				

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-21A was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well EW-21A was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well EW-21A was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well EW-21A was down from June 6 to July 18 for planned wellfield shutdown.

Reference Elevation (ft amsl): 533.51 (top of well) Northing Coordinate (1983): 474,219.7 Easting Coordinate (1983): 1,348,314.3

Hours in reporting period: 8,760 Hours not pumped: 2,407.5 Hours pumped: 6,352.5 Operational percent: 72.52 Target pumping rate: 200 gpm

Monthly Measurements at Wellfield										
Month	Monthly Average Pumping Rate ^a Volume F Ionth (gpm) (Mg				Monti Ura Conce (ا	Uranium (Ib of removed	Removal Index total uranium I/Mgal pumped)			
Jan		201.7		9.002		12.5		0.10		
Feb		194.3		7.833		11.7		0.10		
Mar		204.9		9.146		11.9		0.10		
Apr		214.2		9.255		12.6		0.11		
May		206.0		9.197		9.9		0.08		
Jun		35.9		1.551		10.4		0.00		
Jul		141.1		6.297		8.7		0.07		
Aug		217.6		9.713		9.6		0.08		
Sep		218.7		9.449		10.0		0.08		
Oct		28.8		1.284		11.4		0.10		
Nov		0.0		0.000		0.0		0.00		
Dec		217.6		9.715		10.6		0.09		
	Average	156.79	Total	82.442	Average	9.9	Ave	rage 0.08		

^a Well RW-1 was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well RW-1 was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well RW-1 was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well RW-1 was down from June 6 to June 16 for rehabilitation. The well could not be restarted until July 12, 2022.

Well RW-1 was down from October 5 to December 1 due to a leak in the pitless adaptor.

Reference Elevation (ft amsl): 542.01 (top of well) Northing Coordinate (1983): 474,319.7 Easting Coordinate (1983): 1,348,565.4

Hours in reporting period: 8,760 Hours not pumped: 1,043.0 Hours pumped: 7,717.0 Operational percent: 88.9 Target pumping rate: 200 gpm

		Monthly Measu	rements at	Wellfield		
Month	Monthly Average Pumping Rate ^a (gpm)	Volume Pumped (Mgal)	Monthly Urani Concent (μg/	v Total ium ration ^ь ′L)	Uranium Re (Ib of tota removed/M	moval Index Il uranium gal pumped)
Jan	194.9	8.702		14.1		0.12
Feb	178.3	7.190		13.7		0.11
Mar	173.1	7.728		13.7		0.11
Apr	151.4	6.541		16.1		0.13
May	145.9	6.512		14.3		0.12
Jun	230.7	9.967		13.3		0.11
Jul	165.2	7.375		12.3		0.10
Aug	163.9	7.318		12.3		0.10
Sep	124.8	5.393		13.0		0.11
Oct	88.1	3.933		15.4		0.13
Nov	4.7	0.203		15.4		0.13
Dec	217.3	9.698		11.1	_	0.09
Av	erage 153.2	Total 80.560	Average	13.7	Average	0.11

^a Well RW-2 was down from February 18 to February 19 due to high river levels in the Great Miami River. Well RW-2 was down from February 25 to February 26 due to high river levels in the Great Miami Well RW-2 was down from March 7 to March 9 due to high water levels in the Great Miami River. Well RW-2 was down from May 17 to May 19 for liquid acid descaler chemical treatment. Well RW-2 was down from November 3 to December 1 to replace the pump.

Reference Elevation (ft amsl): 586.73 (top of well) Northing Coordinate (1983): 474,428.6 Easting Coordinate (1983): 1,348,837.5

Hours in reporting period: 8,760 Hours not pumped: 2,311.5 Hours pumped: 6,448.5 Operational percent: 73.61 Target pumping rate: 200 gpm

			Мо	onthly Me	asureme	nts at Wellfield	I	
Month	Mont Aver Pumping (gpi	:hly age g Rate ^a m)	Vol Pun (M	ume nped gal)	Mon U Cond	thly Total ranium centration ^ь (μg/L)	Uraniu (Ib c remov	im Removal Index of total uranium /ed/Mgal pumped)
Jan		189.1		8.441		21.1		0.18
Feb		159.5		6.431		20.9		0.17
Mar		154.4		6.891		21.8		0.18
Apr		117.6		5.082		23.0		0.19
May		0.0		0.000		19.8		0.00
Jun		0.0		0.000		0.0		0.00
Jul		30.5		1.363		28.1		0.23
Aug		225.3		10.058		21.0		0.18
Sep		209.5		9.051		19.4		0.16
Oct		180.7		8.068		21.2		0.18
Nov		155.9		6.736		21.9		0.18
Dec		190.3		8.496		17.2		0.14
	Average	134.4	Total	70.616	Average	19.6	Aver	age 0.15

^a Well RW-3 was down from February 18 to February 19 due to high river levels in the Great Miami River. Well RW-3 was down from February 25 to February 26 due to high river levels in the Great Miami River. Well RW-3 was down from March 7 to March 9 due to high water levels in the Great Miami River. Well RW-3 was down from April 30 to July 28 due to maintenance problems and annual wellfield shutdown.

Reference Elevation (ft amsl): 591.84 (top of well) Northing Coordinate (1983): 474,541.8 Easting Coordinate (1983): 1,349,127.3

Hours in reporting period: 8,760 Hours not pumped: 5,218 Hours pumped: 3,542 Operational percent: 40.43 Target pumping rate: 200/100^a gpm

			Month	nly Measu	urements	at Wellfield		
Month	N A Pum	lonthly verage ping Rate ^b (gpm)	Vo Pu (N	lume mped Igal)	Mon U Conc	thly Total ranium centration ^c (µg/L)	Uranium Rem (Ib of total (removed/Mga	oval Index uranium I pumped)
Jan		124.7	•	5.568		3.8	U	0.03
Feb		115.8		4.668		3.0		0.03
Mar		107.1		4.779		3.3		0.03
Apr		84.9		3.667		3.9		0.03
May		103.1		4.603		3.3		0.03
Jun		20.0		0.863		6.0		0.05
Jul		0.0		0.000		0.0		0.00
Aug		0.0		0.000		0.0		0.00
Sep		0.0		0.000		0.0		0.00
Oct		0.0		0.000		0.0		0.00
Nov		0.0		0.000		0.0		0.00
Dec	-	0.0		0.000		0.0		0.00
A	verage	46.3	Total	24.149	Average	1.9	Average	0.03

^a The target pumping rate changed from 200 to 100 gpm in July 2018.

^b Well RW-4 was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well RW-4 was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well RW-4 was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well RW-4 was down from May 3 to May 5 for liquid acid descaler chemical treatment.
 Well RW-4 was turned off permanently on June 6, 2022.

Reference Elevation (ft amsl): 582.05 (top of casing) Northing Coordinate (1983): 475,078.8 Easting Coordinate (1983): 1,348,693.9

Hours in reporting period: 8,760 Hours not pumped: 5,007.5

Hours pumped: 3,752.5 Target pumping rate: 300 gpm Operational percent: 83.28

Adjusted operational percenta: 48.56

	Monthly Measurements at Wellfield								
Month	Monthly Pumping (gp	Average g Rate ^ь m)	Vo Pui (N	lume nped Igal)	Monthly To Concen (µg	tal Uranium tration ^c /L)	Uranium Ro (Ib of tot removed/M	emoval Index al uranium Igal pumped)	
Jan		202.9		9.058		31.5		0.26	
Feb		193.6		7.804		28.5		0.24	
Mar		204.2		9.115		28.2		0.24	
Apr		202.8		8.762		31.6		0.26	
Мау		186.0		8.303		27.1		0.23	
Jun		30.4		1.312		28.5		0.00	
Jul		43.1		1.924		12.3		0.10	
Aug		0.0		0.000		0.0		0.00	
Sep		0.0		0.000		0.0		0.00	
Oct		0.0		0.000		0.0		0.00	
Nov		0.0		0.000		0.0		0.00	
Dec		0.0	_	0.000	_	0.0		0.00	
	Average	88.6	Total	46.278	Average	15.6	Average	0.11	

^a Adjusted for planned annual wellfield shutdown.

^b Well RW-6 was down from February 18 to February 19 due to high river levels in the Great Miami River. Well RW-6 was down from February 25 to February 26 due to high river levels in the Great Miami River. Well RW-6 was down from March 7 to March 9 due to high water levels in the Great Miami River. Well RW-6 was down from June 6 to July 18 for planned wellfield shutdown.

Well RW-6 was shut down permanently on July 25 due to an underground leak.

Table A.1-18. Extraction Well 32309 (RW-7) Operational Summary for 2022

Reference Elevation (ft amsl): 582.05 (top of casing) Northing Coordinate (1983): 475,109.6 Easting Coordinate (1983): 1,348,366.3

Hours in reporting period: 8,760 Hours not pumped: 1,545.5 Hours pumped: 7,214.5 Target pumping rate: 300 gpm Operational percent: 27.92

Adjusted operational percent^a: 93.36

			Monthly	Measuren	nents at Wel	lfield		
Month	Mor Ave Pumpir (gl	nthly erage ng Rate ^b pm)	Volume (Mg	Pumped jal)	Monthly Urani Concent (μg/	^r Total um ration ^c L)	Uranium R (Ib of tot removed/N	emoval Index al uranium Igal pumped)
Jan		202.3		9.031		23.2		0.19
Feb		193.5		7.800		20.4		0.17
Mar		204.4		9.123		19.8		0.17
Apr		218.5		9.441		22.2		0.19
May		213.7		9.538		19.3		0.16
Jun		36.8		1.591		21.7		0.00
Jul		98.0		4.374		12.3		0.10
Aug		214.0		9.555		18.9		0.16
Sep		218.2		9.428		19.7		0.16
Oct		218.4		9.750		23.3		0.19
Nov		108.4		4.682		19.8		0.17
Dec		218.4		9.750		19.4		0.16
	Average	178.7	Total	94.064	Average	20	Average	015

^a Adjusted for planned annual wellfield shutdown.

^b Well RW-7 was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well RW-7 was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well RW-7 was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well RW-7 was down from June 6 to July 18 for planned wellfield shutdown.

Analyta	Monitoring	Number of	Minimum ^{a,b,c,d}	Maximum ^{a,b,c,d}	Average ^{a,b,c,d}	a,b,c,d,e	Trond ^{a,b,c,d,f}
Analyte	Well	Samples ^{a,b,c}	(mg/L)	(mg/L)	(mg/L)	30	ITella · · · ·
	2128	254	0.000195	0.188	0.0108	0.0200	Down
	2636	192	0.0100	0.0939	0.0432	0.0186	Down
	2898	71	0.000147	0.0820	0.00408	0.0104	No Trend ^g
	2899	64	0.000320	0.0283	0.00254	0.00385	No Trend ^g
Aroonio	2900	253	0.000320	0.0609	0.00485	0.00529	Down
Alsenic	3128	74	0.000400	0.234	0.00677	0.0272	No Trend
	3636	71	0.000500	0.0233	0.00292	0.00370	No Trend ^g
	3898	71	0.000500	0.0434	0.00423	0.00615	No Trend ^g
	3899	72	0.000147	0.0307	0.00282	0.00444	No Trend ^g
	3900	72	0.000375	0.0208	0.00301	0.00353	No Trend
	2128	80	0.0250	16.2	1.25	2.23	Down
	2636	44	9.60	170	77.2	42.4	Down
	2898	72	0.0050	9.95	0.218	1.19	Down
	2899	63	0.0050	0.831	0.0537	0.108	No Trend
Dhaanhamia	2900	70	0.0431	4.74	0.429	0.615	Down
Phosphorus	3128	81	0.0050	13.0	0.216	1.44	No Trend
	3636	70	0.0091	1.10	0.0662	0.133	No Trend
	3898	70	0.0075	1.24	0.0905	0.160	Down
	3899	71	0.0050	1.86	0.105	0.252	Down
	3900	72	0.0050	1.38	0.0817	0.218	Down
	2128	72	0.830	18.0	3.14	3.07	Down
	2636	44	4.60	218	57.0	49.3	Down
	2898	72	1.11	9.64	4.40	1.13	Up
	2899	64	1.36	8.85	4.11	0.898	Up
	2900	71	0.0095	6.00	1.94	1.04	No Trend
Potassium	3128	74	1.09	3.70	1.88	0.604	Down
	3636	70	1.09	4.24	2.08	0.568	Down
	3898	71	0.610	4.23	2.73	0.739	Up
	3899	72	0.875	4.55	2.86	0.798	Up
	3900	72	0.975	3.19	1.69	0.372	Down
	2128	72	12.3	75.2	33.1	11.2	Down
	2636	44	14.4	148	47.6	26.8	Down
	2898	72	4.95	31.0	19.8	4.69	Up
	2899	64	11.2	25.1	17.9	3.33	Up
0 1	2900	71	0.0136	43.3	25.1	7.9	Down
Sodium	3128	74	3.52	13.4	5.44	2.44	Down
	3636	70	3.14	13.0	5.59	2.62	Down
	3898	71	7.29	28.8	13.0	5.77	Up
	3899	72	6.24	43.6	14.2	10.1	Up
	3900	72	3.13	10.8	4.72	1.68	Down

Table A.1-19. PRRS Groundwater Summary Statistics and Trend Analysis

^a The data are based on unfiltered samples from the Operable Unit 5 Remedial Investigation/Feasibility Study dataset (1988–1993) and 1994 through 2022 groundwater data (unfiltered and filtered for 2001–2022).

^b If more than one sample is collected per well per day (e.g., duplicate), then only one sample is counted for the total number of samples, and the sample with the maximum concentration is used to determine the summary statistics (minimum, maximum, average, standard deviation, and Mann-Kendall test for trend).

^c Rejected data qualified with an R were not included in this count or the summary statistics.

^d Where concentrations are below the detection limit, each result used in the summary statistics is set at half the detection limit.

^e SD = standard deviation.

^f Trend starts on August 27, 1993, and is based on the startup of the South Plume extraction wells (DOE 1993). This Mann-Kendall test for trend is performed with a 95% confidence interval.

^g The original statistics indicated an upward trend; however, the upward trend was due to a slight increase in the method detection limit for nondetected concentrations. As a result, "No Trend" is indicated.

Reference Elevation (ft amsl): 570.88 (top of casing) Northing Coordinate (1983): 479,892.4 Easting Coordinate (1983): 1,347,364.0

Hours in reporting period: 8,760 Hours not pumped: 2,198.0 Hours pumped: 6,562 Targ Operational percent: 74.918

Target pumping rate: 300 gpm

Adjusted operational percent^a: 84.91

	Monthly Measurements at Wellfield							
			Monthly Tota	al				
	Monthly Average	Volume	Uranium	Uranium Rem	oval Index			
Month	(gpm)	(Mgal)	concentratio (μg/L)	removed/Mga	l pumped)			
Jan	328.1	14.647	22.1		0.18			
Feb	296.8	11.967	21.1		0.18			
Mar	285.9	12.764	15.9	1	0.13			
Apr	320.9	13.863	24.6	;	0.21			
May	280.9	12.538	21.1		0.18			
Jun	55.4	2.393	22.6		0.19			
Jul	0.0	0.000	0.0		0.00			
Aug	58.7	2.619	22.6	i	0.19			
Sep	307.1	13.268	20.7	,	0.17			
Oct	319.3	14.255	22.5		0.19			
Nov	312.3	13.491	21.3		0.18			
Dec	319.2	14.251	18.4	. <u> </u>	0.15			
Av	erage 240.4	Total 126.057	Average 19.4	Average	0.16			

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-26 was down from February 18 to February 19 due to high river levels in the Great Miami River.

Well EW-26 was down from February 25 to February 26 due to high river levels in the Great Miami River.

Well EW-26 was down from March 7 to March 9 due to high water levels in the Great Miami River.

Well EW-26 was down from March 15 to March 17 for liquid acid descaler chemical treatment.

Well EW-26 was down on May 30 due to overheating variable frequency drive.

Well EW-26 was down from June 6 to July 18 for planned wellfield shutdown.

Well EW-26 was down from July 18 to August 24 for rehabilitation.

Well EW-26 was down from June 1 to July 9 for planned annual wellfield shutdown.

Well EW-26 was down from July 26 to August 5 due to sitewide power outage for substation breaker replacement.

Well EW-26 was down from August 10 to August 19 for rehabilitation.

Reference Elevation (ft amsl): 575.10 (top of casing) Northing Coordinate (1983): 480,013.0 Easting Coordinate (1983): 1,348,037.2

Hours in reporting period: 8,760 Hours not pumped: 1,040.0 Hours pumped: 7,720.0 Operational percent: 88.13 Target pumping rate: 200 gpm

Adjusted operational percent^a: 99.89

	Monthly Measurements at Wellfield								
Month	Monthly Average Pumping Rate ^b (gpm)	Volume Pumped (Mgal)	Monthly Total Uranium Concentration ^c (μg/L)	Uranium Removal Index (Ib of total uranium removed/Mgal pumped)					
Jan	203.6	9.089	22.9	0.19					
Feb	201.4	8.122	23.9	0.20					
Mar	201.9	9.011	22.9	0.19					
Apr	219.9	9.498	25.6	0.21					
May	215.3	9.613	21.4	0.18					
Jun	93.8	4.052	23.5	0.20					
Jul	98.8	4.408	22.1	0.18					
Aug	211.5	9.443	22.5	0.19					
Sep	197.9	8.551	21.0	0.18					
Oct	173.8	7.757	25.5	0.21					
Nov	219.0	9.459	22.3	0.19					
Dec	219.6	9.802	20.6	0.00					
A	verage 188.0	Total 98.805	Average 22.85	Average 0.18					

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-27 was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well EW-27 was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well EW-27was down from March 7 to March 9 due to high water levels in the Great Miami River.
 Well EW-27 was down from June 6 to July 18 for planned wellfield shutdown.

Well EW-27 was down from October 25 to October 27 for liquid acid descaler chemical treatment.

Reference Elevation (ft amsl): 574.86 (top of casing) Northing Coordinate (1983): 481,031.8 Easting Coordinate (1983): 1,346,715.8

Hours in reporting period: 8,760 Hours not pumped: 2,861.0 Hours pumped: 5,899.0 Tar Operational percent: 67.33

Target pumping rate: 300 gpm

Adjusted operational percenta: 76.33

			Monthly Meas	surements	at Wellfield		
Month	Mo Ave Pumpi (g	nthly erage ng Rate ^b pm)	Volume Pumped (Mgal)	Monthly Con	^r Total Uranium centration ^c (μg/L)	Uranium Remo (Ib of total u removed/Mgal	oval Index ranium pumped)
Jan		300.8	13.429		21.5		0.18
Feb		273.7	11.035		20.9		0.17
Mar		262.9	11.736		17.6		0.15
Apr		304.4	13.150		23.2		0.19
May		192.8	8.608		19.0		0.16
Jun		0.0	0.000		0.0		0.00
Jul		0.0	0.000		0.0		0.00
Aug		3.1	0.139		19.0		0.16
Sep		214.2	9.252		26.4		0.22
Oct		319.2	14.247		24.3		0.20
Nov		295.5	12.766		23.1		0.19
Dec	_	288.8	12.890		19.0		0.16
	Average	204.6	Total 107.252	Average	17.83	Average	0.15

^a Adjusted for planned annual wellfield shutdowns.

^b Well EW-33A was down from February 18 to February 19 due to high river levels in the Great Miami River.
 Well EW-33A was down from February 25 to February 26 due to high river levels in the Great Miami River.
 Well EW-33Awas down from March 7 to March 9 due to high water levels in the Great Miami River.

Well EW-33A was down from March 15 to March 17 for liquid acid descaler chemical treatment.

Well EW-33A was down from May 24 to May 26 for LAD chemical treatment.

Well EW-33A was down from May 25 due to overheated variable frequency drive.

Well EW-33A was down from May 28 to September 9 due to overheated variable frequency drive, and for rehabilitation.

Extraction Well Number	Database Identification	Stretched Exponential Equations	
RW-1	3924	y = 68.91e ^{-(x/4259.7)^0.7382}	
RW-2	3925	$y = 44.97e^{-(x/6560.6)^{0.5112}}$	
RW-3	3926	y = 59.52e ^{-(x/9760.6)^0.0001}	
RW-4	3927	$y = 7.88e^{-(x/9983.7)^{0.0001}}$	
RW-6	32308	$y = 81.1e^{-(x/6174.8)^{0.4924}}$	
RW-7	32309	y = 85.16e ^{-(x/4640.9)^0.7716}	
EW-15a	33262	y = 98.29e ^{-(x/2076.9)^0.3373}	
EW-17a	33326	$y = 42.38e^{-(x/5968.9)^{1}}$	
EW-18	31550	$y = 500e^{-(x/0.23)^{0.0976}}$	
EW-19	31560	y = 155.41e ^{-(x/1416.4)^0.5091}	
EW-20	31561	y = 109.83e ^{-(x/1014.7)^0.1297}	
EW-21a	33298	y = 160.79e ^{-(x/2485.8)^0.5148}	
EW-22	32276	y = 314.35e ^{-(x/1087.2)} ^0.5478	
EW-23	32447	$y = 409.67e^{-(x/627.2)^{0.3831}}$	
EW-24	32446	y = 111.11e ^{-(x/3705.4)} ^0.5281	
EW-25	33061	y = 59.23e ^{-(x/7049.5)^0.5751}	
EW-30	33264	y = 163.94e ^{-(x/1799.1)^0.7394}	
EW-26	32761	$y = 164.43e^{-(x/985.4)^{0.401}}$	
EW-27	33062	y = 251.58e ^{-(x/470.1)^0.3599}	
EW-33a	33347	$y = 500e^{-(x/0.0001)^{0.067}}$	

	Based on Concentration Data and		
Year	use of Use of Stretched Exponential Equations	Based on Model Predictions	Based on 95% UCL
2023	405	382	492
2024	390	313	481
2025	377	272	471
2026	239	200	301
2027	232	176	296
2028	226	157	292
2029	220	143	287
2030	215	132	284
2031	210	122	280
2032	205	114	276
2033	200	107	273
2034	59	39	86
2035	58	37	85
2036	56	35	84
2037	55	33	83
2038	54	32	82
2039	53	31	81
2040	51	30	80
Estimate of total to be extracted	3,305	2,355	4,314
Actual net pounds extracted through December 31, 2022	15,751	15,751	15,751
Estimate of total pounds to be extracted to achieve concentration-based FRL goals.	19,056	18,106	20,065
Year	Estimate of Mass Removal Completeness Based on Concentration Data	Estimate of Mass Removal Completeness Based on Model Predictions	Estimate of Mass Removal Completeness Based on 95% UCL of Concentration Data
2022	83%	87%	79%

Table A.1-24. Estimate of Pounds of Uranium to Be Removed to Achieve Concentration-Based FRL Goals

Extraction Well	Model-Predicted Total Uranium Concentration December 2022 (μg/L)	Total Uranium Concentration December 2022 (µg/L)	Residual Total Uranium Concentration ^a (µg/L)
3924 (RW-1)	4.78	10.6	5.8
3925 (RW-2)	7.94	11.1	3.2
3926 (RW-3)	7.52	17.2	9.7
3927 (RW-4)	2.25	0.0	-2.3
32308 (RW-6)	14.76	0.0	-14.8
32309 (RW-7)	12.88	19.4	6.5
33262 (EW-15a)	17.33	16.1	-1.2
33326 (EW-17a)	7.77	8.7	0.9
31550 (EW-18)	16.29	27.9	11.6
31560 (EW-19)	27.54	16.2	-11.3
31561 (EW-20)	30.06	30.3	0.2
33298 (EW-21a)	25.51	19.8	-5.7
32276 (EW-22)	11.35	17.2	5.9
32447 (EW-23)	20.5	24.3	3.8
32446 (EW-24)	8.51	22.7	14.2
33061 (EW-25)	33.01	19.6	-13.4
32761 (EW-26)	15.91	18.4	2.5
33062 (EW-27)	10.2	20.6	10.4
33264 (EW-30)	6.83	7.7	0.9
33347 (EW-33a)	136.13	19.0	-117.1
2022 Average	20.85	16.3	-4.5
2022 Standard Deviation	28.49	8.0	27.7
2022 Maximum	136.13	30.3	14.2
2022 Minimum	2.25	0.0	-117.1
2022 Range	133.88	30.3	131.3
2021 Average	13.2	20.2	7.07
2021 Standard Deviation	5.91	7.90	8.0
2021 Maximum	26.28	31.6	18.4
2021 Minimum	3.23	2.80	-13.3
2021 Range	23.05	28.8	31.7
2020 Average	14.1	20.7	6.66
2020 Standard Deviation	6.8	7.90	8.0
2020 Maximum	29.8	32.3	18.6
2020 Minimum	3.23	2.90	-13.0
2020 Range	26.6	29.4	31.6
2019 Average	15.3	19.9	4.70
2019 Standard Deviation	7.8	8.20	9.10
2019 Maximum	34.0	34.8	20.5
2019 Minimum	3.23	2.80	-14.6
2019 Range	30.8	32.0	35.1
2018 Average	16.8	21.1	4.3

Table A.1-25. Comparison of Model-Predicted Versus Actual Total Uranium Concentrations

Table A.1-25. Comparison of Model-Predicted Versus Actual Total Uranium Concentration (continued)

Extraction Well	Model-Predicted Total Uranium Concentration December 2022 (μg/L)	Total Uranium Concentration December 2022 (µg/L)	Residual Total Uranium Concentration ^a (µg/L)
2018 Standard Deviation	9.0	8.5	9.7
2018 Maximum	39.5	37.2	20.9
2018 Minimum	3.22	2.80	-16.6
2018 Range	36.3	34.4	37.6
2017 Average	18.5	22.0	3.5
2017 Standard Deviation	10.4	8.70	11.4
2017 Maximum	46.5	40.9	22.0
2017 Minimum	3.20	2.60	-26.8
2017 Range	43.3	38.3	48.8
2016 Average	20.5	23.5	2.99
2016 Standard Deviation	15.1	8.50	14.3
2016 Maximum	55.84	44.4	21.7
2016 Minimum	3.18	3.80	-35.4
2016 Range	52.7	40.6	57.1
2015 Average	23.1	22.6	-0.48
2015 Standard Deviation	15.1	8.50	15.4
2015 Maximum	69.2	41.0	14.7
2015 Minimum	3.16	3.60	-50.4
2015 Range	66.0	37.4	65.1

^a Residual total uranium concentration = actual total uranium concentration – model-predicted total uranium concentration.

	Predicted Total			
Well Number	Observed Total Uranium Concentrations 1st Half 2022 (μg/L)	Uranium Concentrations ^a April 1, 2022 (µg/L)	Total Uranium Concentration Residuals (μg/L)	
2045	51.1	24.80	26.30	
2046	18.8	24.00	-5.20	
2049	278	14.12	263.88	
2093	3.62	2.63	0.99	
2385	16.4	26.22	-9.82	
2386	146	108.22	37.78	
2387	144	44.47	99.53	
2821	7.36	6.18	1.18	
23271	53.6	29.00	24.60	
23273	79.2	55.91	23.29	
23274	67.9	82.36	-14.46	
23275	76.6	37.41	39.19	
23276	90.7	37.80	52.90	
23278	24.2	13.87	10.33	
23280	24.8	31.90	-7.10	
23281	133	41.77	91.23	
82433_C2	3.38	10.64	-7.26	
83117_C2	19.9	31.34	-11.44	
83124_C2	20.5	53.08	-32.58	
83293_C2	2.42	3.77	-1.35	
83294_C2	116	55.29	60.71	
83295_C2	60.4	27.19	33.21	
83296_C2	23.6	19.87	3.73	
2022 Average	63.54	33.99	29.55	
2022 Standard Deviation	65.71	25.12	61.02	
2022 Maximum	278.00	108.22	263.88	
2022 Minimum	2.42	2.63	-32.58	
2022 Range	275.58	105.59	296.46	
^a Model predictions based of	n nominal water levels			

Table A.1-26. Comparison of Model-Predicted Versus Actual Total Uranium Concentrations in Selected Monitoring Wells

Model predictions based on nominal water levels.

Well Number ^a	Observed Total Uranium Concentrations 1 st Half 2022 (µg/L)	Predicted Total Uranium Concentrations April 1, 2022 ^b (μg/L)	Total Uranium Concentration Residuals (μg/L)
2045	51.1	13.0	46.8
2046	18.8	18.8	-4.52
2093	3.62	2.63	0.99
2385	16.4	60.0	-9.82
2386	146.0	108.22	37.78
2821	7.36	6.18	1.18
23271	53.6	29.00	24.60
23273	79.2		
23274	67.9	82.36	-14.46
23275	76.6	37.41	39.19
23278	24.2	13.87	10.33
23280	24.8	31.90	-7.10
82433_C2	3.38	10.64	-7.26
83117_C2	19.9	31.34	-11.44
83124_C2	20.5	53.08	-32.58
83293_C2	2.42	3.77	-1.35
83295_C2	60.4	27.19	33.21
83296_C2	23.6	19.87	3.73
2022 Average	38.88	32.69	6.19
2022 Standard Deviation	37.00	27.46	20.25
2022 Maximum	146.00	108.22	39.19
2022 Minimum	2.42	2.63	-32.58
2022 Range	143.58	105.59	71.77

Table A.1-27. Comparison of Model-Predicted Versus Actual Total Uranium Concentrations with Select Wells Removed

^a Data from monitoring wells 2386, 2387, 23273, 23275, 23281, and 83294_C2 are not presented. ^b Model predictions are based on nominal water levels.

Extraction Well	Target Pumping Rate (gpm)
Sou	uth Plume
3924 (RW-1)	200
3925 (RW-2)	200
3926 (RW-3)	200
3927 (RW-4)	200/100 ^a
32308 (RW-6)	300
32309 (RW-7)	300
Subtotal	1,300
Waste	Storage Area
32761 (EW-26)	300
33062 (EW-27)	200
33347 (EW-33a)	300
Subtotal	800
South F	ield Extraction
31550 (EW-18)	100
31560 (EW-19)	100
31561 (EW-20)	200
33298 (EW-21a)	300
33326 (EW-17a)	175
32276 (EW-22)	300
32446 (EW-24)	400
32447 (EW-23)	500
33061 (EW-25)	100
33264 (EW-30)	400
33262 (EW-15a)	300
Subtotal	2,875
Total Pumping	4,975 ^a

Table A.1-28. Extraction Well Target Pumping Rates

^a Pumping rate was changed from 200 gpm to 100 gpm in July 2018.

Figure A.1-1. Well Locations for South Plume, South Field, WSA, and PRRS Monitoring Activities

Figure A.1-2. Operational Design

Figure A.1-3. Pounds of Uranium Removed from the GMA

U.S. Department of Energy

Figure A.1-4. Clean Pump (Top) Versus Iron-Fouled Pump (Bottom)

Figure A.1-5. Potassium Concentration Versus Time Plot for Monitoring Well 2898

Figure A.1-6. Potassium Concentration Versus Time Plot for Monitoring Well 2899

Figure A.1-7. Potassium Concentration Versus Time Plot for Monitoring Well 3898

Figure A.1-8. Potassium Concentration Versus Time Plot for Monitoring Well 3899

Figure A.1-9. Sodium Concentration Versus Time Plot for Monitoring Well 2898

Figure A.1-10. Sodium Concentration Versus Time Plot for Monitoring Well 2899

Figure A.1-11. Sodium Concentration Versus Time Plot for Monitoring Well 3898

Figure A.1-12. Sodium Concentration Versus Time Plot for Monitoring Well 3899

Figure A.1-13. Total Uranium Concentration Versus Time Plot for Extraction Well 3924 (RW-1) with Regression Analysis

Figure A.1-14. Total Uranium Concentration Versus Time Plot for Extraction Well 3925 (RW-2) with Regression Analysis

Figure A.1-15. Total Uranium Concentration Versus Time Plot for Extraction Well 3926 (RW-3) with Regression Analysis

Figure A.1-16. Total Uranium Concentration Versus Time Plot for Extraction Well 3927 (RW-4) with Regression Analysis

Figure A.1-17. Total Uranium Concentration Versus Time Plot for Extraction Well 32308 (RW-6) with Regression Analysis

Figure A.1-18. Total Uranium Concentration Versus Time Plot for Extraction Well 32309 (RW-7) with Regression Analysis

Figure A.1-19. Total Uranium Concentration Versus Time Plot for Extraction Well 32761 (EW-26) with Regression Analysis

Figure A.1-20. Total Uranium Concentration Versus Time Plot for Extraction Well 33062 (EW-27) with Regression Analysis

Figure A.1-21. Total Uranium Concentration Versus Time Plot for Extraction Well 31550 (EW-18) with Regression Analysis

Figure A.1-22. Total Uranium Concentration Versus Time Plot for Extraction Well 31560 (EW-19) with Regression Analysis

Figure A.1-23. Total Uranium Concentration Versus Time Plot for Extraction Well 31561 (EW-20) with Regression Analysis

Figure A.1-24. Total Uranium Concentration Versus Time Plot for Extraction Wells 31562 (EW-21) and 33298 (EW-21a) with Regression Analysis

Figure A.1-25. Total Uranium Concentration Versus Time Plot for Extraction Wells 31567 (EW-17) and 33326 (EW-17a) with Regression Analysis

Figure A.1-26. Total Uranium Concentration Versus Time Plot for Extraction Well 32276 (EW-22) with Regression Analysis

Figure A.1-27. Total Uranium Concentration Versus Time Plot for Extraction Well 32446 (EW-24) with Regression Analysis

Figure A.1-28. Total Uranium Concentration Versus Time Plot for Extraction Well 32447 (EW-23) with Regression Analysis

Figure A.1-29. Total Uranium Concentration Versus Time Plot for Extraction Well 33061 (EW-25) with Regression Analysis

Figure A.1-30. Total Uranium Concentration Versus Time Plot for Extraction Well 33264 (EW-30) with Regression Analysis

Figure A.1-31. Total Uranium Concentration Versus Time Plot for Extraction Well 33262 (EW-15a) with Regression Analysis

Figure A.1-32. Total Uranium Concentration Versus Time Plot for Extraction Well 33347 (EW-33a) with Regression Analysis

Figure A.1-33. Estimate of Yearly Pounds of Uranium to Be Pumped from Aquifer to Achieve Concentration-Based FRL Goals (Model Predictions Versus Measured Concentration Trends) Data Collected Through 2022

This page intentionally left blank

Attachment A.2

This page intentionally left blank

Contents

Abbre	viations				. iv		
Measu	rement	Abbrevia	tions		. iv		
A.2.0	Assess	sment of Total Uranium Results					
	A.2.1	Former Waste Storage Area					
		A.2.1.1	Former Wa	ste Storage Area Maximum Total Uranium Plume	3		
			A.2.1.1.1	New Direct-Push Sampling Data in the Former WSA	3		
			A.2.1.1.2	Intermittent Total Uranium FRL Exceedance Locations			
				in the Former WSA	4		
			A.2.1.1.3	Monitoring Wells with Increasing Total Uranium			
				Concentration Trends in the Former WSA	4		
			A.2.1.1.4	Former WSA Summary	5		
		A.2.1.2	PPDD Max	ximum Total Uranium Plume	6		
			A.2.1.2.1	New Direct-Push Sampling Data in the PPDD Area	6		
			A.2.1.2.2	Intermittent Total Uranium FRL Exceedance Locations in the PPDD Area	6		
			A.2.1.2.3	Monitoring Wells with Increasing Total Uranium			
				Concentration Trends in the PPDD Area	7		
	A.2.2	Former F	Plant 6 Area.		7		
		A.2.2.1	New Direc	t-Push Sampling Data in the Plant 6 Area	7		
		A.2.2.2	Intermitten	t Total Uranium FRL Exceedance Locations and			
			Monitoring	Wells with Increasing Total Uranium Concentration			
		Trends					
	A.2.3	South Field and Off-Property South Plume Total Uranium Plumes					
		A.2.3.1	South Field	1	8		
			A.2.3.1.1	Intermittent Total Uranium FRL Exceedance Locations			
				and Monitoring Wells with Increasing Total Uranium			
				Concentration Trends	10		
			A.2.3.1.2	Monitoring Wells with Increasing Total Uranium			
				Concentration Trends in the South Field	10		
		A.2.3.2	South Plun	ne	10		
			A.2.3.2.1	New Direct-Push Sampling Data in the South Plume	10		
			A.2.3.2.2	Intermittent Total Uranium FRL Exceedance Locations			
				in the South Plume	21		
			A.2.3.2.3	Monitoring Wells with Increasing Total Uranium			
				Concentration Trends in the South Plume	21		
	A.2.4	Monitori	ng Well Insp	bection and Maintenance	21		
	A.2.5	Plume M	letrics		22		
		A.2.5.1	Ricker Met	hod Results	23		
		A.2.5.2	Earth Volu	metric Studio Software Mapping Assessment	24		
		A.2.5.3	Total Uran	ium Plume Area	25		
		A.2.5.4	Total Mass	of Uranium Remaining in the Aquifer	25		
	A.2.6	Total Ura	anium Plume	e Cross Sections	29		
	A.2.7	Split San	npling Progr	am	29		
	A.2.8	Uranium	Concentrati	on Trends at Select Monitoring Wells	30		
	A.2.9	Reference	es		31		

Tables

Table A 2-1 Geoprobe Location 13533A	33
Table A 2-2 Geoprobe Location 13535A	33
Table A 2-3. Geoprobe Location 13602	33
Table A.2.4. Geoprobe Location 13602	34
Table A.2-4. Geoprobe Location 13603	34
Table A.2-5. Geoprobe Location 15004	33
Table A.2-6. Geoprobe Location 12196C	35
Table A.2-7. Geoprobe Location 132291	30
Table A.2-8. Geoprobe Location 13233C	36
Table A.2-9. Geoprobe Location 13239G	37
Table A.2-10. Geoprobe Location 13267D	37
Table A.2-11. Geoprobe Location 13477E.	38
Table A.2-12. Geoprobe Location 13510A	38
Table A.2-13. Geoprobe Location 13513C	39
Table A.2-14. Geoprobe Location 13535A	39
Table A.2-15. Geoprobe Location 13538A	40
Table A.2-16. Geoprobe Location 13542A	40
Table A.2-17. Geoprobe Location 13605	41
Table A.2-18. Geoprobe Location 13606	41
Table A.2-19. Geoprobe Location 13607	42
Table A.2-20. Geoprobe Location 13608	42
Table A.2-21. Geoprobe Location 13609	43
Table A.2-22. Geoprobe Location 13610	43
Table A.2-23. Geoprobe Location 13611	44
Table A.2-24. Geoprobe Location 13612	44
Table A.2-25. Geoprobe Location 13613	45
Table A.2-26. Geoprobe Location 13614	45
Table A.2-27. Geoprobe Location 13615	
Table A 2-28 Summary Statistics and Trend Analysis of Monitoring Wells for Total	
Uranium with 2022 Results Above FRLs	47
Table A 2-29 Summary Statistics and Trend Analysis of Extraction Wells for Total	•••••
Uranium	48
Table A 2-30 Plume Size 1997 Through 2022	40
Table A 2-31 Comparison of Plume Size Interpretation and Ricker Method Plume Size	····· +2
Calculation	50
Table A 2 22 Predicted Cleanup Date Dange using Dual Exponential Equation	50
Table A.2-32. Freudeled Cleanup Date Kange using Dual Exponential Equation	30

Figures

Figure A.2-1. IEMP Water Quality Monitoring Wells and Extraction Wells	51
Figure A.2-2. Direct-Push Data and Maximum Total Uranium Plume for 2022	53
Figure A.2-3. Monitoring Well Data and Maximum Total Uranium Plume for 2022	54
Figure A.2-4. Monitoring Wells with 2022 Exceedances for Total Uranium with Up,	
Down, or No Significant Trends	55
Figure A.2-5. Monitoring Well Data from 2022 Comparison to Maximum Total Uranium	
Footprint at end of 2021	56
Figure A.2-6. Total Uranium Concentration Versus Time Plot for Monitoring Well 83339	57

Figure A.2-7. Total Uranium Concentration Versus Time Plot for Monitoring Well 83340...... 57 Figure A.2-8. Total Uranium Concentration Versus Time Plot for Monitoring Well 83341 58 Figure A.2-9. Total Uranium Concentration Versus Time Plot for Monitoring Well 83346...... 58 Figure A.2-10. Total Uranium Concentration Versus Time Plot for Monitoring Well 2649...... 59 Figure A.2-11. Total Uranium Concentration Versus Time Plot for Monitoring Well 83337..... 59 Figure A.2-12. Total Uranium Concentration Versus Time Plot for Monitoring Well 83335..... 60 Figure A.2-13. Total Uranium Concentration Versus Time Plot for Monitoring Well 83124..... 60 Figure A.2-14. Total Uranium Concentration Versus Time Plot for Monitoring Well 2389...... 61 Figure A.2-15. Total Uranium Concentration Versus Time Plot for Monitoring Well 21033..... 61 Figure A.2-16. Total Uranium Concentration Versus Time Plot for Monitoring Well 2386...... 62 Figure A.2-17. Total Uranium Concentration Versus Time Plot for Monitoring Well 2387...... 62 Figure A.2-18. Total Uranium Concentration Versus Time Plot for Monitoring Well 83294..... 63 Figure A.2-19. Total Uranium Concentration Versus Time Plot for Monitoring Well 2049...... 63 Figure A.2-20. Total Uranium Concentration Versus Time Plot for Monitoring Well 2552...... 64 Figure A.2-21. Total Uranium Concentration Versus Time Plot for Monitoring Well 2900...... 64 Figure A.2-22. Total Uranium Concentration Versus Time Plot for Monitoring Well 2880...... 65 Figure A.2-23. Total Uranium Concentration Versus Time Plot for Monitoring Well 82369..... 65 Figure A.2-28. Uranium Plume Cross Section Overview Map70 Figure A.2-29. Uranium Plume South Cross Section Location Map71 Figure A. 2-31B. EVS Total Uranium Plume Cross Section A–A'......74 Figure A.2-38. Total Uranium Concentration Versus Time Plot for Monitoring Well 2060...... 84

Abbreviations

DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
EVS	Earth Volumetric Studio
FRL	final remediation level
IEMP	Integrated Environmental Monitoring Plan
K _d	distribution coefficient
Ohio EPA	Ohio Environmental Protection Agency
PPDD	Pilot Plant Drainage Ditch
WSA	Waste Storage Area

Measurement Abbreviations

amsl	above mean sea level
bgs	below ground surface
ft	feet
g/cm ³	grams per cubic centimeter
L	liters
lb	pounds
L/kg	liters per kilogram
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
µg/L	micrograms per liter
mS/cm	millisiemens per centimeter
NTU	nephelometric turbidity unit
SU	standard unit

A.2.0 Assessment of Total Uranium Results

This attachment provides groundwater monitoring total uranium results through 2022, including summary statistics and plume maps, at the Fernald Preserve, Ohio, Site. The groundwater remediation at the Fernald Preserve is a concentration-based cleanup. The *Record of Decision for Remedial Actions at Operable Unit 5* (DOE 1996) states that "areas of the Great Miami Aquifer exceeding final remediation levels (FRLs) will be restored through extraction methods." Uranium is the primary constituent of concern for groundwater. The groundwater FRL for total uranium is 30 micrograms per liter (μ g/L). The background total uranium concentration for unfiltered groundwater samples from the Great Miami Aquifer near the Fernald Preserve is 1.2 μ g/L. This background value is based on the 95th percentile of unfiltered samples (*Remedial Investigation Report for Operable Unit 5* [DOE 1995], Section 4, Table 4-8). Both the area of the aquifer targeted for remediation and the statistical procedures that will be used to verify that aquifer cleanup objectives have been achieved are described in the *Fernald Groundwater Certification Plan* (DOE 2006).

Groundwater total uranium sampling requirements are presented in the Integrated Environmental Monitoring Plan (IEMP), which is Attachment D of the *Comprehensive Legacy Management and Institutional Controls Plan* (DOE 2019a). IEMP groundwater monitoring and extraction well locations are shown in Figure A.2-1. For integration purposes, locations of the On-Site Disposal Facility monitoring wells used to monitor the Great Miami Aquifer are also shown in Figure A.2-1.

In addition to the routine well monitoring specified in the IEMP, 27 locations were sampled using a direct-push sampling tool (Geoprobe) in 2022. This direct push sampling focused on the South Plume and South Field areas, with emphasis on the South Plume. Direct-push sampling results for the 27 locations (12196C, 13229I, 13233C, 13239G, 13267D, 13477E, 13510A, 13513C, 13533A, 13535A, 13538A, 13542A, 13601, 13602, 13603, 13604, 13605, 13606, 13607, 13608, 13609, 13610, 13611, 13612, 13613, 13614, and 13615) are presented in Tables A.2-1 through A.2-27.

Direct-push sampling locations are often sampled several times over the course of the remediation. When a direct-push location is resampled, the convention is to identify the new sample with the same location number but with an alphabetical extension to differentiate the earlier sample (e.g., 12230, 12230A, 12230B). If a resample location is moved more than 50 feet (ft) from the original location, a new number is assigned.

Figures A.2-2 and A.2-3, show maximum total uranium plume maps for 2022. Figure A.2-2 shows direct-push data. Figure A.2-3 shows monitoring well and extraction well data. Data collected from the aquifer are used to progressively update the maximum total uranium plume maps in the following conservative manner:

- Total uranium concentration data are posted on a map with the contours from the previous map. The highest representative total uranium value at a monitoring well location is posted. The highest concentration associated with each direct-push location is also posted.
- If a recently measured concentration from a well is greater than the previous concentration contour value at that location, then the plume is recontoured using the higher value.

- If the most recent concentration measurement from a well is less than the previous contour value for that location, then the new data are posted, but the plume contours are not adjusted using the new data until confirmatory direct-push sampling can be conducted.
- If direct-push data or multilevel monitoring well data are available, and a complete vertical profile of an area indicates that concentrations have changed, then the map is recontoured using the new direct-push data or multilevel well data. Under this strategy, a reduction in the size of the mapped plume is based on vertical profile data.
- If a monitoring well has a history of intermittent exceedances and the well location appears to be isolated from the main plume, then the well location is identified on the maximum uranium plume map as a location with intermittent exceedances. This serves to keep track of the locations with intermittent exceedances so that their presence can be carried forward into the certification stage of the remediation project.

Until 2020, the Site Environmental Report contained both a first half and a second half of the year total uranium plume map. Experience has shown that routinely producing an annual first half total uranium plume map provided little benefit to the annual Site Environmental Report. Yearly comparisons of remedy progress reported in the Site Environmental Report are based on the second half total uranium plume map. Beginning with the 2021 Site Environmental Report (DOE 2022), the U.S. Department of Energy (DOE) no longer routinely presented a first half total uranium plume map in the Site Environmental Report each year. Uranium concentration data continue to be collected in the first half of the year as prescribed by the IEMP, but the data are no longer reported in a first half total uranium plume map. If uranium concentration data ever indicates that a first half total uranium plume map would provide benefit to the reporting presented in the Site Environmental Report, then a first half map will be added on a case-by-case basis, as deemed appropriate.

Table A.2-28 lists the monitoring wells where total uranium concentrations exceeded the $30 \mu g/L$ FRL during 2022. Included in the table are total uranium statistical summaries for each well, which include Mann-Kendall trend analyses. Table A.2-29 provides total uranium statistical summaries for the extraction wells, including Mann-Kendall trend analyses. Extraction well trends are discussed in Attachment A.1. Figure A.2-4 illustrates the statistics presented in Table A.2-28, showing where total uranium concentrations have an upward trend, downward trend, or no trend. Monitoring wells with an upward trend based on the Mann-Kendall analysis are discussed further.

Tracking the acreage of the maximum total uranium plume footprint provides a means for assessing progress in achieving remediation goals. Figure A.2-5 shows the footprint of the 30 μ g/L total uranium plume from the second half of 2021 compared to the footprint of the 30 μ g/L total uranium plume from 2022. The 2021 plume is highlighted yellow, indicating areas where the plume was reduced for mapping purposes in 2022. Acreage changes within the 30 μ g/L footprint (i.e., area above 50 μ g/L and area above 100 μ g/L) are also tracked and reported. A breakdown for the past 2 years is provided below.

Comparison of 2021 and 2022 Maximum Total Uranium Plume Footprint Area

Year	Area Greater Than 30 μg/L	Area Greater Than 50 μg/L	Area Greater Than 100 μg/L
2021 (acres)	75.0	48.7	28.3
2022 (acres)	74.0	49.4	27.8
Change (acres)	1	-0.7	0.5
Change (percent)	-1.3	1.4	-1.8

Between 2021 and 2022, the acreage mapped for the area of the maximum uranium plume above 50 μ g/L increased by 0.7 acre. Periodic concentration fluctuations within the plume are expected and are attributed to dissolved uranium movement in response to active pumping.

Since 1997, the footprint of the total uranium plume being targeted for cleanup has decreased 163.6 acres. Table A.2-30 provides a tabulation of plume area from 1997 through 2022.

Monitoring results are presented in the following three sections:

- Section A.2.1, "Former Waste Storage Area," including the Pilot Plant Drainage Ditch (PPDD) Area
- Section A.2.2, "Former Plant 6 Area"
- Section A.2.3, "South Field and Off-Property South Plume Total Uranium Plumes"

For each of the three sections, information is presented concerning:

- New direct-push sampling data.
- Intermittent total uranium FRL exceedance locations.
- Monitoring wells with increasing total uranium concentration trends.

The remainder of the attachment is organized as follows:

- Section A.2.4 presents information concerning monitoring well inspection and maintenance
- Section A.2.5 presents information concerning center-of-mass plume calculations for the total uranium plumes
- Section A.2.6 presents total uranium cross sections

A.2.1 Former Waste Storage Area

A.2.1.1 Former Waste Storage Area Maximum Total Uranium Plume

The size of the mapped footprint of the 30 μ g/L maximum total uranium plume in the former Waste Storage Area (WSA) between 2021 and 2022 remained unchanged at 6.7 acres.

A.2.1.1.1 New Direct-Push Sampling Data in the Former WSA

No direct-push sampling was conducted in 2022 in the former WSA.

A.2.1.1.2 Intermittent Total Uranium FRL Exceedance Locations in the Former WSA

Four monitoring wells (83339, 83340, 83341, and 83346) are identified on the maximum total uranium plume map for 2022 in the former WSA (Figure A.2-3) as being monitoring locations with intermittent total uranium FRL exceedances.

Figure A.2-6 is a time versus concentration graph for monitoring well 83339. The graph shows that the total uranium concentrations for two of the channels (channels 2 and 3) have always been below 30 μ g/L. Channel 1 has had one exceedance of the uranium FRL since 2013, and that was in 2019. The sample collected in the first half of 2022 was below the uranium FRL. Channel 1 was dry during the second half of 2022.

Figure A.2-7 is a time versus concentration graph for monitoring well 83340. The graph shows that the total uranium concentrations for two of the channels (channels 2 and 3) have always been below 30 μ g/L. The total uranium concentration for channel 1 was above 30 μ g/L between 2018 and 2021. Since 2021, the first half sample has been very near or slightly below 30 μ g/L.

Figure A.2-8 is a time versus concentration graph for monitoring well 83341. The graph shows that the total uranium concentrations for two of the channels (channels 2 and 3) have always been below 30 μ g/L. Channel 1 of monitoring well 83341 was dry between 2014 and 2017. The uranium concentrations of the samples collected in 2017 and 2018 were below 30 μ g/L. The uranium concentration of the sample collected in the second half of 2019 was above 30 μ g/L. The uranium concentration collected in the first half of 2020 in channel 1 was below 30 μ g/L. Channel 1 was dry during the second half of 2020. The uranium concentration measured in the first half of 2021 and 2022 in channel 1 was below 30 μ g/L. Channel 1 was dry during the second half of 2020. The uranium concentration measured in the first half of 2021 and 2022 in channel 1 was below 30 μ g/L. Channel 1 was dry during the second half of 2020. The uranium concentration measured in the first half of 2021 and 2022 in channel 1 was below 30 μ g/L.

Figure A.2-9 is a time versus concentration graph for monitoring well 83346. The graph shows that the total uranium concentrations for two of the channels (channels 2 and 3) have always been below 30 μ g/L. The total uranium concentration for channel 1 was above 30 μ g/L in 2018 and 2019. It has been below 30 μ g/L since 2019.

All four of these monitoring wells will continue to be monitored. If future monitoring indicates that the intermittent total uranium FRL exceedances are continuing or increasing, additional direct-push sampling may be conducted in the areas when water levels are high to determine whether a plume can be defined. These four wells will continue to be identified on maximum total uranium plume maps as locations where intermittent total uranium FRL exceedances have been measured so that their presence will be carried forward into the certification stage of the aquifer remediation.

A.2.1.1.3 Monitoring Wells with Increasing Total Uranium Concentration Trends in the Former WSA

As shown in Figure A.2-4, two monitoring wells (83340 and 2649) had an increasing total uranium concentration trend in the former WSA. Monitoring well 83340 is discussed in the previous section. Monitoring well 2649 was reported in the 2013 through 2019 Site Environmental Reports (DOE 2014; DOE 2015; DOE 2016; DOE 2017a; DOE 2018; DOE 2019b; DOE 2020; DOE 2021) as having increasing concentration trends. Table A.2-28

provides summary statistics for the well. Monitoring well 2649 is within capture of the groundwater remediation system.

Figure A.2-10 is a total uranium concentration versus time plot for monitoring well 2649. The figure shows an increase in uranium concentration in 2007. The increase is attributed to pumping in nearby extraction well 33347, which began in late 2006. As is shown in Figure A.2-10, the concentration of uranium in monitoring well 2649 has exceeded 1,000 μ g/L in 2013, 2018, and 2022. This is an area of the plume where uranium contamination is known to be sorbed to aquifer sediments in the vadose zone. When this sediment is saturated or flushed due to high water levels in the aquifer, the uranium can desorb into the water, resulting in the high concentration measurements. Multichannel well 83337 is near monitoring well 2649. The shallowest channel in well 83337 is channel 1. As shown in Figure A.2-11, the uranium concentration of channel 1 in monitoring well 83337 has also been above 1,000 μ g/L, while the other two deeper channels in that well have not. In 2022, concentration was again above 1,000 μ g/L.

A.2.1.1.4 Former WSA Summary

The following two groundwater remediation issues present challenges in the former WSA:

- Uranium contamination sorbed to sediments in the vadose zone beneath former source areas
- High surface water uranium concentrations occur in a swale located between the former Waste Pits and Paddys Run

Uranium Contamination Sorbed to Sediments in the Vadose Zone Beneath Former Source Areas: High total uranium concentrations that correspond to high water levels continue to be a concern for the former WSA plume. Located beneath a former source area, total uranium contamination is sorbed to aquifer sediments in the vadose zone. When pumping is stopped and the water level rises, dissolved total uranium concentrations in the groundwater may increase (rebound) enough to exceed groundwater FRLs.

This issue is being somewhat alleviated each year by conducting a planned well field shutdown to allow water levels to rise and desorb some of the contamination in these areas. The confirmation that this issue has been addressed will be documented as described in the *Fernald Groundwater Certification Plan* (DOE 2006) after the pumping phase of the remediation ends. Certification monitoring will be conducted once the pumping wells are turned off to verify that concentrations above FRLs are not rebounding.

High Surface Water Uranium Concentrations Occur in a Swale located Between the Former Waste Pits and Paddys Run: Intermittent puddles of surface water occur in a swale bounded by Paddys Run to the west and the former waste pits to the east. As presented in Appendix B, the total uranium concentrations of many of the surface water samples collected from this area exceed the groundwater FRL.

Surface water that collects in the swale is sampled at surface water sampling locations SWD-05 and SWD-09. The uranium concentration measured at SWD-09 has exceeded the surface water FRL (530 μ g/L). The highest uranium concentration reported was 2,087 μ g/L in December 2016. The uranium contamination appears to be localized to the area around SWD-09, and the uranium concentrations measured in the surface water from SWD-09 appear to be influenced by seasonal changes.

During normal flow conditions, surface water from the swale area infiltrates into the ground. This is also the case in the former Waste Pit 3 area, where water infiltrates into the ground and serves as a source of recharge to the aquifer. The uranium concentration in the aquifer beneath this infiltration area is above the uranium groundwater FRL ($30 \mu g/L$). Surface water from much of the former WSA drains into the former Waste Pit 3. The area of infiltration in the swale and former WSA is within capture of the groundwater remediation system. Because the area is within capture, there is currently no risk to the public from the infiltrating surface water. Continued monitoring will document whether the concentration in the infiltrating surface water decreases over time.

In 2014, groundwater modeling was conducted to determine the potential impact to model-predicted aquifer cleanup times if uranium-contaminated surface water is infiltrating into the aquifer from the swale. A modeled worst-case scenario was based on the highest total uranium concentration measured in ponded water within the swale and high infiltration rates. The conservative groundwater modeling scenario:

- Took no credit for attenuation of uranium in glacial till or alluvium.
- Used input infiltration rates of 50 inches per year rather than 6 inches per year.
- Used an input infiltrating total uranium concentration of 1,900 μ g/L, which was the highest total uranium concentration measured in ponded water within the swale between 2007 and 2014.

Modeling under these extremely conservative conditions had no impact to model-predicted cleanup times for the aquifer in this area. If infiltrating surface water with high uranium concentrations continues toward the end of the pumping operation, DOE will work with the U.S. Environmental Protection Agency (EPA) and the Ohio Environmental Protection Agency (Ohio EPA) to determine the best path forward for remediation of the aquifer in this area.

A.2.1.2 PPDD Maximum Total Uranium Plume

The mapped footprint of the 30 μ g/L maximum total uranium plume in the PPDD area between 2021 and 2022 remained unchanged at 5.8 acres (Figure A.2-5).

A.2.1.2.1 New Direct-Push Sampling Data in the PPDD Area

No direct-push sampling was conducted in 2022 in the PPDD area.

A.2.1.2.2 Intermittent Total Uranium FRL Exceedance Locations in the PPDD Area

One monitoring well, 83335, is identified on the maximum total uranium plume map for 2022 in the former PPDD area (Figure A.2-3) as being a monitoring location with intermittent total uranium FRL exceedances.

Figure A.2-12 provides a time versus total uranium concentration plot for monitoring well 83335. The figure shows that total uranium concentrations measured from 2013 through the first half of 2019 have been below the total uranium groundwater FRL for all monitoring channels. In the second half of 2019, channel 2 had a concentration of 32.4 μ g/L. Since 2019, the uranium concentration of both collected samples were below the total uranium groundwater

FRL. Channel 1 has always been dry. This well will continue to be identified on maximum total uranium plume maps as being a location where intermittent total uranium FRL exceedances have been measured so that its presence will be carried forward into the certification stage of the aquifer remediation.

A.2.1.2.3 Monitoring Wells with Increasing Total Uranium Concentration Trends in the PPDD Area

As shown in Table A.2-28 and Figure A.2-4, one monitoring well (83124_C4) had an increasing total uranium concentration trend in 2022 in the PPDD Area. Figure A.2-13 is a total uranium concentration versus time plot for monitoring well 83124. This monitoring well is upgradient of extraction well 33062. The increase in uranium concentration in channel 1 is attributed to uranium contamination sorbed to aquifer sediments in the vadose zone.

A.2.2 Former Plant 6 Area

A.2.2.1 New Direct-Push Sampling Data in the Plant 6 Area

No direct-push sampling was conducted in 2022 in the Plant 6 Area.

A.2.2.2 Intermittent Total Uranium FRL Exceedance Locations and Monitoring Wells with Increasing Total Uranium Concentration Trends

Plans for a groundwater restoration module in the former Plant 6 Area were abandoned in 2001 based on the outcome of the *Design for Remediation of the Great Miami Aquifer in the Waste Storage and Plant 6 Areas* (DOE 2001). The data in this design indicated that the total uranium plume in the former Plant 6 Area was no longer present. EPA and Ohio EPA concurred with this decision.

Monitoring well 2389 is the only groundwater monitoring well remaining in the area where Plant 6 was in the Former Production Area (Figure A.2-1). This well is identified as a location with intermittent total uranium FRL exceedances on the maximum total uranium plume map (Figure A.2-3). It is also identified as a monitoring location where total uranium concentrations are trending up (Figure A.2-4 and Table A.2-28).

Figure A.2-14 is a total uranium concentration versus time plot for monitoring well 2389 and shows that sporadic total uranium FRL exceedances were detected at this well between 2002 and 2007, but exceedances have been constant since 2011. As discussed below, FRL exceedances are detected in this area when the sample is approximately 515 ft amsl or higher. Since 2011, water levels have been at or near 515 ft above mean sea level (amsl), and the uranium FRL exceedances have been consistent. In 2022, total uranium concentrations were above 30 μ g/L. As shown in Figure A.2-14, the water level during both 2022 sampling events was at or above 515 ft amsl.

Previous direct-push sampling in this area indicates that the total uranium FRL exceedances are associated with high water-table conditions. The former Plant 6 Area is targeted for direct-push sampling when the water-table elevation is at or above 515 ft amsl. As shown below, unless the water table is above an elevation of 515 ft amsl, total uranium FRL exceedances are normally not

detected. The last direct-push sample was collected in 2019 (13360E). The elevation of the collected sample was the highest ever recorded (517 ft amsl). The concentration measured was also the highest ever measured at $63.0 \mu g/L$.

Year	Location	Total Uranium (μg/L)	Midpoint Screen Elevation (ft amsl)
2007	13360	<1.00	512
2008	13360A	37.2	515
2010	13360B	4.40	510
2011	13360C	37.7	515
2018	13360D	12.2	513
2019	13360E	63.0	517

Monitoring well 2389 will continue to be identified on the maximum total uranium plume map as being a location where intermittent total uranium FRL exceedances have been measured so that its presence will be carried forward into the certification stage of the aquifer remediation. This well is within capture of the groundwater remediation system.

A.2.3 South Field and Off-Property South Plume Total Uranium Plumes

The mapped footprint of the 30 μ g/L maximum total uranium plume in the South Field and off-property South Plume decreased in size between 2021 and 2022. The size of the footprint was 62.52 acres in 2021 and 61.53 acres in 2022, a decrease of 1.0 acres (1.6%) (Figure A.2-5).

The mapped footprint of the 50 μ g/L area of the plume increased in size between 2021 and 2022. The size of the area was 38.86 acres in 2021 and 39.499 acres in 2022, an increase of 0.64 acres (1.6%).

The mapped footprint 100 μ g/L area of the plume decreased between 2021 and 2022. The size of the area was 20.41 acres in 2021 and 20.0 acres in 2022, a decrease 0.41 acres (2.1%).

A.2.3.1 South Field

In 2022, direct-push sampling was conducted at five locations in the South Field (locations 13533A, 13601, 13602, 13603, and 13604). Figure A.2-2 shows the locations and the 2022 total uranium results. All five locations are located in the southwest area of the South Field Plume.

Location 13533A

Location 13533A is west of the South Field uranium plume, in the southern half of the South Plume. Direct-push sampling results for location 13533A are provided in Table A.2-1. The location is identified in Figure A.2-2.

This location has been sampled twice in 2021 and 2022. The location sampled in 2021 was identified as location 13533. The location sampled in 2022 was identified as location 13533A. The following table provides total uranium concentrations from the two sampling events.

Locatio (20	n 13533 21)	Location 13533A (2022)		
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	
510	31.8	511	45.4	
500	3.6	501	8.5	
490	6.7	491	6.1	
480	3.3	481	< 1.0	
470	5.4	471	3.4	

The maximum total uranium concentration measured in 2021 was 31.8 μ g/L (elevation of 510 ft amsl). The maximum total uranium concentration measured in 2022 was 45.4 μ g/L (elevation 511 ft amsl). The 30 μ g/L contour on the 2021 maximum uranium plume map did not need to be adjusted to honor the 2022 concentration.

Location 13601

Location 13601 is in the southwest area of the South Field. Direct-push sampling results for location 13601 are provided on Table A.2-2, and the location is identified on Figure A.2-2.

As shown in Table A.2-2, the maximum total uranium concentration measured in 2022 was $38.4 \ \mu g/L$ (elevation 514 ft amsl). The maximum uranium plume map was not adjusted to honor the 2022 measurement because a 2022 sample from the nearby monitoring well 2045 was 66. 4 $\mu g/L$ resulting in the location being located within the 50 $\mu g/L$ contour on Figure A.2-2

Location 13602

Location 13602 is in the southwest area of the South Field. Direct-push sampling results for location 13602 are provided on Table A.2-3, and the location is identified on Figure A.2-2.

As shown in Table A.2-3, the maximum total uranium concentration measured in 2022 was 21.1 μ g/L (elevation 513 ft amsl). The maximum uranium plume map was adjusted to honor the 2022 measurement.

Location 13603

Location 13603 is in the southwest area of the South Field. Direct-push sampling results for location 13603 are provided on Table A.2-4, and the location is identified on Figure A.2-2.

As shown in Table A.2-4, the maximum total uranium concentration measured in 2022 was 106 μ g/L (elevation 516 ft amsl). The maximum uranium plume map was adjusted to honor the 2022 measurement.

Location 13604

Location 13604 is in the southwest area of the South Field. Direct-push sampling results for location 13604 are provided on Table A.2-5, and the location is identified on Figure A.2-2.

As shown in Table A.2-5, the maximum total uranium concentration measured in 2022 was 12.8 μ g/L (elevation 504 ft amsl). The maximum uranium plume map was adjusted to honor the 2022 measurement.

A.2.3.1.1 Intermittent Total Uranium FRL Exceedance Locations and Monitoring Wells with Increasing Total Uranium Concentration Trends

No intermittent total uranium FRL exceedance locations are identified for the South Field.

A.2.3.1.2 Monitoring Wells with Increasing Total Uranium Concentration Trends in the South Field

As Table A.2-28 shows, four monitoring wells in the South Field—21033, 2386, 2387, and 83294_C1—had upward trends for total uranium concentrations in 2022. The locations are shown in Figure A.2-4. Figures A.2-15 through A.2-18 provide time versus total uranium concentration plots for these four wells. The total uranium concentration increases are attributed to changes in the plume caused by the active groundwater remediation. Uranium contamination is being pulled toward the extraction wells.

A large increase in uranium concentration was measured in monitoring well 2049 in 2022. As shown in Figure A.2-19, in the first half of 2022 the uranium concentration increased from being below 30 μ g/L in 2021 to a new all-time high for the well of 278 μ g/L. In the second half of 2022, the result was 207 μ g/L. As shown in Table A.2-28 the uranium data set from this well is trending down statistically. The cause for this sudden increase in uranium concentration is being attributed to a slug of dissolved uranium in this area.

DOE will continue to monitor these wells but plans no action at this time in response to the increasing concentration trends. All these wells are within the capture zone of the groundwater remediation system.

A.2.3.2 South Plume

A.2.3.2.1 New Direct-Push Sampling Data in the South Plume

In 2022, direct-push sampling was conducted at 22 locations in the South Plume (12196C, 13229I, 13233C, 13239G, 13267D, 13477E, 13510A, 13513C, 13535A, 13538A, 13542A, 13605, 13606, 13607, 13608, 13609, 13610, 13611, 13612, 13613, 13614, and 13615). Sampling locations are shown in Figure A.2-2. Sampling results are discussed below.

Location 12196C

Location 12196C is situated in the northeast lobe of the South Plume. Direct-push sampling results for location 12196C are provided in Table A.2-6. The location is identified in Figure A.2-2.

This location has been sampled four times: 1996, 2005, 2007, and 2022. The samples collected in 1996 were identified as location 12196. The samples collected in 2022 were identified as location 12196C. Total uranium concentration data from all four sampling events are provided below.

12196		12196A		12196B		12196C	
(1996)		(2005)		(2007)		(2022)	
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)						
518	0.4	514	4.3	517	6.7	514	33.7
509	0.3	505	87.5	507	59.6	504	40.3
499	0.7	495	100.7	497	103.7	494	<1.0
489	0.5	485	14.4	487	3.2	484	20.0
479	0.3	475	37.4	477	9.0	474	2.8
469	0.5	465	18.7	467	3.0		
459	0.7						
449	0.4						
439	1.6						

As shown above, the maximum uranium concentration decreased from 103.7 μ g/L (elevation 497 ft amsl) in 2007 to 40.3 μ g/L (elevation 504 ft amsl) in 2022. Because a close direct-push sample in 2022 at location 13477E (southeast of location 12196C) was above 50.0 μ g/L the contour map was not adjusted to honor the 40.3 μ g/L.

Location 13229I

Location 13229I is located on the west edge of the South Plume. Direct-push sampling results for location 13229I are provided in Table A.2-7. The location is identified in Figure A.2-2.

This location has been sampled ten times: 2002, 2003, 2008, 2013, 2015, 2017, 2018, 2019, 2020, and 2022. The samples collected in 2002 were identified as location 13229. The samples collected in 2022 were identified as location 13229I. Total uranium concentration data from all ten sampling events are provided below.

Location 13229 (2002)		Location 13229A (2003)		Location 13229B (2008)		Location 13229C (2013)	
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)						
517	58.0	515	81.8				
508	101	506	89.3	509	72.7	510	61.2
498	47.0	496	92.7	499	65.3	500	40.8
488	29.0	486	51.2	489	42.2	490	41.2
478	19.0	476	11.3	479	37.4	480	15.2
468	15.0	466	4.50	469	17.8	470	5.9
458	3.20	456	1.20			460	3.4
448	<1.0						

Location 13229D (2015)		Location 13229E (2017)		Location 13229F (2018)		Location 13229G (2019)	
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	Midpoint Screen Elevation (ft amsl)	Total Uranium (µg/L)	Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	Midpoint Screen Elevation (ft amsl)	Total Uranium (µg/L)
511	47.1	512	49.8	511	58.2	516	58.8
501	49.8	502	32.2	501	36.3	506	37.2
491	39.8	492	14.0	491	24.7	496	32.9
481	26.7	482	13.5	481	21.5	486	17.5
471	11.6	472	5.3	471	14.9		
		462	3.7				

Location (202	13229H 20)	Location 13229I (2022)		
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	
515	46.7	512	52.8	
505	20.8	502	33.1	
495	18.1	492	19.9	
485	12.5	482	20.0	
		472	13.0	

Between 2015 and 2022, the six samples collected from this location show that the maximum uranium concentration has ranged between 58.8 μ g/L in 2019 (elevation 511 ft amsl) and 46.7 μ g/L in 2020 (elevation 515 ft amsl). In 2022, the concentration was back up above 50.0 μ g/L (elevation 512 ft amsl). The total uranium plume map was adjusted to honor the 52.8 μ g/L concentration.

Location 13233C

Location 13233C is located northeast of extraction well 32308 in the South Plume. Direct-push sampling results for location 13233C are provided in Table A.2-8. The location is identified in Figure A.2-2.

This location has been sampled four times: 2002, 2013, 2015, and 2022. The samples collected in 2002 were identified as location 13233. The samples collected in 2022 were identified as location 13233C. Total uranium concentration data from all four sampling events are provided below.

Locatio (20	Location 13233 (2002)		Location 13233A (2013		Location 13233B (2015)		Location 13233C (2022)	
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)							
513	20.0	511	44.8	510	39.0	515	44.1	
505	54.0	501	20.4	500	41.1	505	31.5	
495	55.0	491	16.7	490	28.1	495	29.2	
485	38.0	481	10.2	480	20.3	485	21.5	
475	33.0	471	<1.0			475	11.0	
465	4.20	461	<1.0					
455	1.30	451	3.10					

These data show that the uranium concentration at this location was 44.1 μ g/L in 2022 (elevation 515 ft amsl). No change was required on the total uranium plume map.

Location 13239G

Location 13239G is situated north of extraction well 32309 in the approximate center of the South Plume. Direct-push sampling results for location 13239G are provided in Table A.2-9. The location is identified in Figure A.2-2.

This location has been sampled eight times: 2002, 2013, 2015, 2016, 2017, 2019, 2020, and 2022. The samples collected in 2002 were identified as location 13239. The samples collected in 2022 was identified as location 13239G. Total uranium concentration data from all eight sampling events are provided below.

Location 13239 (2002)		Location 13239A (2013)		Location 13239B (2015)		Location 13239C (2016)	
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)						
515	65.0						
507	49.0	511	64.0	511	62.0	511	58.5
497	69.0	501	43.5	501	50.6	501	54.3
487	32.0	491	25.5	491	30.9	491	38.7
477	12.0	481	5.70	481	10.9	481	15.1
467	4.90	471	2.00	471	4.8	471	9.3
457	1.90						
447	1.20						

Location (20	n 13239D)17)	Location (201	13239E 9)	Location (20	n 13239F 20)	Locatior (20	13239G 22)
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)						
511	46.5	514	59.5	512	53.6	512	74.3
501	40.5	504	45.5	502	46.4	502	29.4
491	34.7	494	40.6	492	33.2	492	18.5
481	3.0	484	12.3	482	11.7	482	10.6
471	4.8	474	14.6	472	6.9	472	2.5

The maximum uranium concentration sample collected in 2022 (74.3 μ g/L at an elevation of 512 ft amsl) shows that the location remains above 50 μ g/L. No change to the plume was required to honor the 2022 concentration.

Location 13267D

Location 13267D is in the southeast corner of the South Plume. Direct-push sampling results for location 13267D are provided in Table A.2-10. The location is identified in Figure A.2-2.

This location has been sampled five times: 2002, 2013, 2020, 2021, and 2022. The samples collected in 2002 were identified as location 13267. The samples collected in 2022 were identified as location 13267D. Total uranium concentration data from all five sampling events are provided below.

Location (20	n 13267 02)	Location (20	13267A 13)	Location (202	13267B 20)	Location 13267C (2021)		Location 13267D (2022)	
Midpoint Screen Elevation (ft amsl)	Total Uranium (µg/L)								
517	5.8			514	8.3	513	57.4	513	15.6
508	64.0	511	16.3	504	52.2	503	32.1	503	22.3
498	60.0	501	18.8	494	34.5	493	30.9	493	8.6
488	54.0	491	16.8	484	12.4	483	14.6	483	10.9
478	30.0	481	18.2	474	8.7	473	3.4	473	1.7
468	3.6	471	7.7	464	7.6			463	<1.0
458	0.9	461	0.5						
448	0.8								

The maximum total uranium concentration at this location has fluctuated between a high of 64.0 μ g/L in 2002 (elevation 508 ft amsl) and 18.8 μ g/L in 2013 (elevation 501 ft amsl). In 2020 the concentration was once again above 50 μ g/L (52.2 μ g/L at an elevation of 504 ft amsl). A 50 μ g/L contour was added around this location on the 2020 total uranium plume map to honor

the 2020 result. The result in 2022 was 22.3 μ g/L (503 ft amsl). The 2022 total uranium plume map was revised based on the 2022 result.

Location 13477E

Location 13477E is in the northeast corner of the South Plume. Direct-push sampling results for location 13477E are provided in Table A.2-11. The location is identified in Figure A.2-2.

This location has been sampled six times: 2014, 2015, 2018, 2019, 2021, and 2022. The samples collected in 2014 were identified as location 13477. The samples collected in 2022 were identified as location 13477E. Total uranium concentrations from all sixe sampling events are provided below.

Location 13477 (2014)		Location (201	13477A 5)	Location 13477B (2018)		
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	Midpoint Screen Elevation (ft amsl)	Total Uranium (µg/L)	Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	
512	1.4	511	<1.0	515	< 1.0	
502	31.8	501	18.4	505	< 1.0	
492	58.6	491	52.0	495	65.0	
482	2.6	481	3.6	485	13.5	
472	2.7	471	5.7	475	16.7	

Location 13477C (2019)		Location (20	n 13477D 21)	Location 13477E (2022)		
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	Midpoint Screen Elevation (ft amsl)	lidpoint Screen Total Ievation Uranium I ft amsl) (μg/L)		Total Uranium (µg/L)	
518	<1.0	513	<1.0	512	<1.0	
508	<1.0	503	32.0	502	59.4	
498	56.5	493	59.3	492	9.4	
488	13.0	483	13.7	482	8.4	
478	8.2	473	8.8	472	2.1	

The maximum uranium concentration at this location in 2022 remained above 50 μ g/L. The 2022 total uranium plume map did not need to be adjusted to honor the 2022 concentration.

Location 13510A

Location 13510A is in the east side of the South Plume. Direct-push sampling results for location 13510A are provided in Table A.2-12. The location is identified on Figure A.2-2.

This location has been sampled two times: 2018 and 2022. The samples collected in 2018 were identified as location 13510. The samples collected in 2022 were identified as location 13510A. Total uranium concentrations from both sampling events are provided below.

Locatio (20	n 13510 18)	Location 13510A (2022)		
Midpoint Screen Total Elevation Uranium (ft amsl) (µg/L)		Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	
513	7.2	512	12.7	
503	26.9	502	24.7	
493	46.7	492	5.7	
483	483 48.1		12.5	
			3.8	
		462	1.2	

The highest uranium concentration measured at this location in 2022 was 24.7 µg/L (elevation 502 ft amsl). The 2022 uranium plume map was not adjusted to honor this concentration. Additional direct-push data will be collected around this area next year to further define how to adjust the plume.

Location 13513C

Location 13513C is in the southeast corner of the South Plume. Direct-push sampling results for location 13513C are provided in Table A.2-13. The location is identified on Figure A.2-2.

This location has been sampled four times: 2018, 2020, 2021, and 2022. The samples collected in 2018 were identified as location 13513. The samples collected in 2021 were identified as location 13513C. Total uranium concentrations from all four sampling events are provided below.

Locatio (20	n 13513 18)	Locatior (20	n 13513A 20)	Locatior (20	n 13513B 21)	Locatior (20	n 13513C 22)
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)						
513	10.1	515	10.3	514	38.0	515	23.2
503	26.4	505	19.3	504	25.7	505	46.4
493	43.5	495	45.3	494	28.6	495	32.2
483	33.0	485	10.8	484	22.7	485	16.1
473	<1.0	475	1.4	474	2.2	475	3.2

The maximum total uranium concentration at this location remains above 30 ug/L. No change was made to the maximum total uranium plume map based on the 2022 result.

Location 13535A

Location 13535A is in the northeastern corner of the South Plume. Direct-push results are provided in Table A.2-14. This location is identified on Figure A.2-2.

This location has been sampled two times: 2021 and 2022. The samples collected in 2021 were identified as location 13535. The samples collected in 2022 were identified as location 13535A. Total uranium concentrations from the two sampling events are provided below.

Locatio (20	n 13535 21)	Location 13535A (2022)		
Midpoint Screen Total Elevation Uranium (ft amsl) (µg/L)		Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)	
511	<1.0	513	1.1	
501	76.1	503	36.6	
491	6.1	493	16.0	
481	2.4	483	2.9	
471 2.4		473	<1.0	

The maximum total uranium concentration measured in 2021 was 76.1 μ g/L (elevation 501 ft amsl). The maximum total uranium concentration measured in 2022 was 36.6 μ g/L (elevation 503 ft amsl). The 2022 maximum total uranium plume map was revised to honor the 2022 concentration.

Location 13538A

Location 13538A is in the northwest portion of the South Plume. Direct-push results are provided in Table A.2-15. This location is identified on Figure A.2-2.

This location has been sampled two times: 2021 and 2022. The samples collected in 2021 were identified as location 13538. The samples collected in 2022 were identified as location 13538A. Total uranium concentrations from the two sampling events are provided below.

Locatio (20	n 13538 21)	Location 13538A (2022)		
Midpoint Screen Total Elevation Uranium (ft amsl) (μg/L)		Midpoint Screen Elevation (ft amsl)	Total Uranium (µg/L)	
511	35.5	514	42.7	
501	31.7	504	4.9	
491	10.3	494	21.3	
481	481 6.1		7.4	
471	2.6	474	6.4	

The maximum total uranium concentration measured in 2022 was 42.7 μ g/L (elevation 514 ft amsl). The 2022 maximum total uranium plume map did not need to be adjusted for the 2022 result.

Location 13542A

Location 13542A is on the southwest corner of the South Plume. Direct-push results are provided in Table A.2-16. This location is identified on Figure A.2-2.

Location 13542 (7/20/2021)		Location 13542 (7/28/2021)		Location 13542 (8/6/2021)		Location 13542A (2022)	
Midpoint Screen Elevation (ft amsl)	Total Uranium (μg/L)						
509	32.2	509	21.1	509	21.9	512	40.4
499	5.4	499	4.8	499	2.7	502	5.9
489	8.9	489	6.1	489	6.8	492	5.4
479	22.7	479	17.2	479	9.7	482	11.4
469	40.9	469	20.2	469	19.8	472	23.6
		459	10.2	459	15.4	462	20.5
		449	3.9	449	8.0	452	18.5
		439	1.4	439	1.0	442	1.6

Location 13542 was sampled three times in 2021 and again in 2022. The first samples collected in 2021 were identified as location 13542. The samples collected in 2022 were identified as 13542A. Results for both years are provided in the table below.

The first sampling was conducted on July 20, 2021, and resulted in a maximum uranium concentration of 40.9 μ g/L (elevation 469 ft amsl). In 2021, monitoring well 3095, located just north of location 13542, had a maximum uranium concentration of 39.8 μ g/L. This indicates that there is a deep lens of contamination in this area below the water table. It was decided to do a confirmatory sampling on July 28, 2021, and results were different enough from the results on July 20, 2021, that it was decided to do a third confirmatory sampling on August 6, 2021. As shown in the table above, no uranium concentrations above 30 μ g/L were measured in the July 28, 2021, and August 6, 2021, samples. To be conservative, sample results from July 20, 2021, the highest total uranium concentrations measured, were selected for the 2021 maximum total uranium plume map. The 2021 uranium plume map showed a plume above 30 μ g/L based on the July 20, 2021, samples from location 13542 and 2021 monitoring results from monitoring well 3095. Location 13542 was sampled again in 2022. The maximum uranium concentration measured in 2022 was 40.4 μ g/L (elevation 469 ft amsl). No changes were needed on the 2022 total uranium plume map to honor the 2022 result.

Location 13605

Location 13605 is located on the northwest corner of the South Plume, just south of Willey Road. Direct-push results are provided in Table A.2-17. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 26.8 μ g/L (elevation 513 ft amsl). The 2022 maximum total uranium plume map was revised to honor the 2022 concentration.
Location 13606

Location 13606 is located on the west side of the South Plume. Direct-push results are provided in Table A.2-18. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 56.1 μ g/L (elevation 513 ft amsl). The 2022 maximum total uranium plume map was revised to honor the 2022 concentration.

Location 13607

Location 13607 is located in the center of the South Plume. Direct-push results are provided in Table A.2-19. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 26.4 μ g/L (elevation 511 ft amsl). The 2022 maximum total uranium plume map was not revised to honor the 2022 concentration. Additional sampling will be conducted in this area in 2023 to determine how best to revise the plume map in this area.

Location 13608

Location 13608 is located on the east side of the South Plume. Direct-push results are provided in Table A.2-20. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 37.8 μ g/L (elevation 501 ft amsl). Before sampling in this area, it was assumed that the uranium concentration data from this location would be below 30 μ g/L. Because it was above 30 μ g/L, the 2022 maximum total uranium plume map was revised to honor the 2022 concentration. This location was a farm field that was immediately planted following sampling. It could not be resampled until the crops were harvested in the fall. Following crop harvest, an attempt was made to resample, but equipment and weather did not cooperate. A second sample in 2022 was not collected. Additional sampling will be conducted in this area in 2023.

Location 13609

Location 13609 is located on the west side of the South Plume. Direct-push results are provided in Table A.2-21. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 50.8 μ g/L (elevation 513 ft msl). The 2022 maximum total uranium plume map was revised to honor the 2022 concentration.

Location 13610

Location 13610 is located in the center of the South Plume. Direct-push results are provided in Table A.2-22. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 26.5 μ g/L (elevation 492 ft amsl). The 2022 maximum total uranium plume map was not revised to honor the 2022 concentration. Additional sampling will be conducted in this area in 2023 to determine how best to revise the plume map in this area.

Location 13611

Location 13611 is located in the center of the South Plume. Direct-push results are provided in Table A.2-23. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 25.1 μ g/L (elevation 512 ft amsl). The 2022 maximum total uranium plume map was not revised to honor the 2022 concentration. Additional sampling will be conducted in this area in 2023 to determine how best to revise the plume map in this area.

Location 13612

Location 13612 is located in the center of the South Plume. Direct-push results are provided in Table A.2-24. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 38.8 μ g/L (elevation 502 ft amsl). The 2022 maximum total uranium plume map was not revised to honor the 2022 concentration. Additional sampling will be conducted in this area in 2023 to determine how best to revise the plume map in this area.

Location 13613

Location 13613 is located in the center of the South Plume. Direct-push results are provided in Table A.2-25. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 33.6 μ g/L (elevation 503 ft amsl). The 2022 maximum total uranium plume map was not revised to honor the 2022 concentration. Additional sampling will be conducted in this area in 2023 to determine how best to revise the plume map in this area.

Location 13614

Location 13614 is located in the center of the South Plume. Direct-push results are provided in Table A.2-26. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 71.9 μ g/L (elevation 514 ft amsl). The 2022 maximum total uranium plume map did not need to be revised to honor the 2022 concentration.

Location 13615

Location 13615 is located in the southeast corner of the South Plume. Direct-push results are provided in Table A.2-27. The 2022 sampling event was the first time this location was sampled. This location is identified on Figure A.2-2.

The maximum total uranium concentration measured in 2022 was 26.4 μ g/L (elevation 503 ft amsl). The 2022 maximum total uranium plume map was revised to honor the 2022 concentration.

A.2.3.2.2 Intermittent Total Uranium FRL Exceedance Locations in the South Plume

Two monitoring wells (2552 and 2900) are identified on the maximum total uranium plume maps for 2022 in the South Plume (Figure A.2-3) as being monitoring locations with intermittent total uranium FRL exceedances. Beginning in 2017, monitoring well 2900 is sampled only once a year, during the first half of the year.

A time versus total uranium concentration plot for monitoring well 2552 is provided in Figure A.2-20. The figure shows that no total uranium FRL exceedances have been measured since 2016.

A time versus total uranium concentration plot for monitoring well 2900 is provided in Figure A.2-21. The figure indicates that no total uranium FRL exceedances occurred in 2022. Only two total uranium FRL exceedances have been measured at this well since 1993. The last one occurred in 2012.

These wells will continue to be identified on maximum total uranium plume maps as locations where intermittent total uranium FRL exceedances have been measured so that their presence will be carried forward into the certification stage of the aquifer remediation.

A.2.3.2.3 Monitoring Wells with Increasing Total Uranium Concentration Trends in the South Plume

As shown in Figure A.2-4 and Table A.2-28, three monitoring wells (2880, 82369_C2, and 82369_C3) had upward trends for total uranium concentration in the South Plume in 2022. Time versus concentration graphs for these wells are provided in Figures A.2-22 and A.2-23. Both wells are located within the capture zone of the extraction wells and, as such, the increasing concentration trends are not considered to be a threat to human health or the environment.

A.2.4 Monitoring Well Inspection and Maintenance

All monitoring wells were inspected in 2022 with particular emphasis on those wells that are not routinely used for sampling or water level measurements. The main concern noted for wells not routinely sampled was that protective casings on some of them need to be painted and have identification markings reapplied. Additional minor findings include:

- Some protective casing lids were hard to open.
- Some wells need to have vegetation or branches removed from around them to improve access.
- Uneven surfaces were noted around some wells.

Many of the inspection findings noted above were corrected immediately (e.g., vegetation removal). Deficiencies that could not be corrected immediately (e.g., removal of overhanging trees) will be corrected as time permits.

Annual visual inspections of all monitoring wells will continue in future years with any deficiencies documented and corrected. Additionally, camera surveys of monitoring wells that are not routinely sampled will be conducted every 5 years. The last camera survey was conducted in 2017 and 2018. The most recent camera survey began in 2022 and will continue into 2023. In 2022, issues were identified in seven monitoring wells. DOE will determine the path forward when the camera surveys are completed in 2023; wells with issues will most likely be properly plugged and abandoned unless it can be determined that the issue can be corrected.

Well Number	Date of Installation	Program Use	Issue Identified
2008	1988	None	Leaking well riser joints
2043	1987	Groundwater Elevations Only	Bent riser and leaking well riser joints
2044	1988	Groundwater Elevations Only	Leaking well riser joints
2051	1987	Groundwater Elevations Only	Leaking well riser joints
2383	1990	Groundwater Elevations Only	Leaking well riser joints
2881	1993	Groundwater Elevations Only	Leaking well riser joints
2935	1993	None	Leaking well riser joints
3011	1987	Groundwater Elevations Only	Leaking well riser joints

A.2.5 Plume Metrics

Uranium plume area, center of mass, and remaining uranium mass calculations were first reported in the 2015 Site Environmental Report (DOE 2016), in response to a request from Ohio EPA. Those calculations follow the approach presented by Joseph A. Ricker in "A Practical Method to Evaluate Ground Water Contaminant Plume Stability" (Ricker 2008).

Using the Ricker method calculations supplements other remedy tracking metrics (i.e., maximum uranium plume maps, model predictions, and uranium concentration data regressions) that are also being reported. The other metrics were developed over many years of interaction with EPA and Ohio EPA, have proven to be reasonable and useful, and are considered to be good for measuring the extraction system's effectiveness. The Ricker method provides an additional good assessment tool.

Starting with this year's Site Environmental Report, Earth Volumetric Studio (EVS) software was also used to assist in determining plume metrics (i.e., volume, footprint area, average plume thickness, and center of mass). This additional assessment stems from a recommendation made during a collaborative effort with the DOE National Laboratory Network. The National Laboratory Network recommended a four-dimensional mapping exercise (i.e., three spatial dimensions with time as the fourth dimension). The result of the additional assessment supports the Ricker results and demonstrates that the lateral and vertical dimensions of the uranium plume are contracting, the total dissolved uranium mass is decreasing, and the center of mass has not migrated downgradient. These results also indicate that the pumping system is successfully

containing the contamination, preventing plume expansion, and reducing uranium concentrations throughout the contaminated aquifer.

A.2.5.1 Ricker Method Results

As reported in the 2016 Site Environmental Report (DOE 2017a), plume area calculations based on the Ricker method compared reasonably well with plume area calculations made by conservatively mapping the maximum uranium plume each year. However, the Ricker method calculation of uranium mass remaining in the aquifer was reported as being an order of magnitude lower than predictions presented in Attachment A.1 (based on groundwater modeling predictions and a regression of monitoring data). As discussed below, refinement of the calculation methodology since 2017 indicates that the calculations are in closer agreement when the difference between the mass of uranium in the groundwater and the mass of uranium sorbed to aquifer sediments is recognized and considered in the calculation.

As reported in the 2016 Site Environmental Report (DOE 2017a), a notable difference between the Ricker method and the other metrics being used was that the Ricker method did not include the results of groundwater samples collected using the Geoprobe, while the other metrics did include these data. The groundwater data collected using the Geoprobe were not included in the Ricker calculation because the Ricker calculation requires a dataset that is consistent in location over time; the annual Geoprobe effort does not sample the same locations every year. Ohio EPA requested that future calculations include Geoprobe results to see if the included data improve estimates of the uranium mass remaining (DOE 2017b).

The analysis presented in this year's report uses the annual maximum concentration in 2006, 2010, 2014, 2016 through 2022 and a consistent set of monitoring well data that span all 10 selected years. The most recent maximum total uranium results available at Geoprobe locations were also included. Surfer software (version 15.5.382) was used for kriging the data and mapping the results. Until 2017, the analysis was conducted for three separate plume areas: the PPDD, the South Field and South Plume, and the former WSA. With the addition of Geoprobe data, the analysis in 2017 changed to being applied to the entire plume. A homogenous effective porosity equal to that modeled for the aquifer (28%) was assumed, and a plume thickness of 30 ft was used.

Figure A.2-24 provides a uranium plume map that identifies the calculated center of mass for each year (2006, 2010, 2014, and 2016 through 2022). As shown in Figure A.2-24, the center of mass in each plume area has remained fairly stationary (i.e., in the same general area) over this period, indicating that the surrounding pumping wells are capturing the plume and not allowing the center of mass to migrate as it would if no pumping were taking place. In the former WSA, the center of mass has shifted slightly to the northwest over time. This is attributed to the higher uranium results in the northwest area as a result of additional Geoprobe sampling in the area. In the PPDD Area, the center of mass has shifted slightly to the West. This is attributed to cleanup of the east portion of the PPDD plume. In the South Field and South Plume, the center of mass has shifted slightly to the north. This is attributed to continuing uranium concentration reductions in the South Plume and southern South Field as cleanup proceeds. With inclusion of the Geoprobe data beginning in 2017, the dataset includes more samples collected near and outside plume boundaries, which helps better define the boundaries of the plume.

DOE plans to continue presenting these plume metrics in future Site Environmental Reports and will include Geoprobe data. With the addition of Geoprobe data, the analysis lends itself better to being applied to the entire plume, rather than dividing the plume into three different areas (i.e., WSA, PPDD, and the combined South Field and South Plume). Including the Geoprobe data also provides plume maps that appear to be better defined at the plume boundaries.

Figure A.2-25 provides 2022 Ricker method results for the total uranium plume area, the average total uranium concentration within the plume, and the total dissolved uranium mass remaining within the plume area. These trends are useful in illustrating remediation progress. As shown in Figure A.2-25, for 2022, the Ricker method calculations indicate that the total uranium plume area was 80.7 acres, the average uranium plume concentration was 88.58 μ g/L, and the total uranium plume dissolved mass was 163 pounds (lb).

It should be noted that during preparation of these metrics for 2022, it was discovered that an error had been made in what was reported in the 2021 Site Environmental Report (DOE 2022). The error involved the average total uranium concentration and the total mass of dissolved uranium. The errors have little effect on the overall interpretation provided in Figure A.2-25. Data reported in error in the 2021 Site Environmental Report along with the corrected value is provided below.

	2021 Incorrect Data	2021 Corrected Data
Average Total Uranium Concentration (µg/L)	80.85	82.46
Mass of Total Uranium Dissolved (lb)	150	153

A.2.5.2 Earth Volumetric Studio Software Mapping Assessment

As mentioned above, the EVS analysis is new to the Site Environmental Report starting this year. To address the National Laboratory Network recommendation, an EVS data assessment exercise was conducted using data collected through 2021.

The footprint of the 2021 total uranium plume generated through EVS is very similar to the 2021 total uranium plume footprint provided in the 2021 Site Environmental Report. This shows that the interpretation obtained from the EVS mapping is consistent with previous plume interpretations. For this report, a footprint of the 2022 uranium plume generated through EVS and the bulk plume metrics (i.e., uranium plume dissolved mass, average concentration, volume, footprint area, and average thickness) for the 2022 plume interpretation are presented in Figures A.2-26 and A.2-27, respectively.

The bulk plume metrics provided in Figure A.2-27 were calculated for the combined plume and for four separate plume areas: the South Plume, the South Field Plume, WSA, and the PPDD. Trends in plume metrics observed through the EVS exercise are similar to trends calculated for the site by the Ricker method, with a downward trend in both mass and footprint areas.

Dissolved plume mass decreased by approximately 66% between 2007 and 2022, decreasing from 160 lb in 2006 to less than 54 lb in 2022 (Figure A.2-27). It should be noted that the total

mass computed by EVS is significantly lower than the mass calculated by the Ricker method. The 2006 plume mass calculated by the Ricker method is 306 lb compared to 160 lb calculated by EVS. The Ricker method is a two-dimensional approach, and conservative assumptions are applied to account for the third vertical dimension. A conservative plume thickness of 30 ft is assumed in the Ricker calculations, and the maximum uranium concentration at each sample location is applied to the full plume thickness. These assumptions are not needed when concentration variations are visualized in three dimensions, so EVS provides a more realistic estimate of plume mass. For example, the average plume thickness calculated by EVS for October 2006 is 22.5 ft (25% less than the 30 ft plume thickness assumed for the Ricker method), and the average concentration is 68 μ g/L (26% less than the 92 μ g/L estimated by the Ricker method). If the mass calculated by the Ricker method is adjusted to account for the overestimates of plume thickness and average concentration, then the 2006 mass becomes 170 lb, which is very similar to the 160 lb mass calculate by EVS.

Metric October 1, 2006 October 1, 2021 October 1, 2022 **Dissolved Mass (lb)** 159.64 67.21 54.45 59.21 Average Concentration (µg/L) 68.44 67.47 Area (acres) 136.50 88.87 85.25 Volume (cubic feet)

119.39

14.73

110.21

14.17

279.55

22.45

EVS-determined bulk plume metric for the results from October 1, 2006, October 2, 2021, and October 1, 2022, for the entire uranium plume are as follows.

A.2.5.3 Total Uranium Plume Area

Average Thickness (feet)

Table A.2-31 presents a comparison of the 2022 plume size interpretations (Figure A.2-2 and A.2-3) to the Ricker method calculation. Previous years are also presented. The comparison indicates that between 2014 and 2022, the percent difference for Ricker method has ranged between 2.6% and 9.1%. The percent difference in 2022 was 9.1%. For 2021 and 2022, the percent difference for the EVS method was 18.5% and 15.3%, respectively.

A.2.5.4 Total Mass of Uranium Remaining in the Aquifer

As has been done in previous Site Environmental Reports a calculation of the total mass of uranium remaining in the aquifer is presented. This year, the calculation is presented for dissolved mass determined using the both the Ricker method and the EVS interpretation.

Ricker Method

The value of 163 lb for the total mass of uranium remaining in the aquifer based on the Ricker method presented in Figure A.2-25 represents the dissolved mass of total uranium remaining in the aquifer based on 2022 data. As shown below, this result can be put into the context of the aquifer remediation by using the relationship of the contaminant distribution coefficient (K_d).

The distribution coefficient is the ratio of the concentration of a contaminant sorbed on the surfaces of the aquifer sediments to the concentration of the contaminant dissolved in groundwater and is represented as follows:

$$K_d = C_s \! / C_{aq}$$

where:

- $K_d =$ distribution coefficient, liters per kilogram (L/kg)
- C_s = concentration of total uranium sorbed to aquifer sediments, milligrams per kilogram (mg/kg)
- C_{aq} = concentration of total uranium dissolved in groundwater, milligrams per liter (mg/L)

The site-specific K_d for uranium used in the groundwater model is 3 L/kg (DOE 2003), which indicates that the concentration of uranium sorbed to aquifer sediments is three times the concentration of uranium in the groundwater. However, as discussed below, the sorbed mass of uranium is actually greater than three times the dissolved mass in solution because of the units used for K_d (Deutsch 1997).

The mass of aquifer solid in contact with 1 liter (L) of groundwater under saturated conditions can be defined as the bulk density of the solid (ρ_b) divided by the porosity of the aquifer (η). In the groundwater model, the bulk density is 1.85 grams per cubic centimeter (g/cm³) and aquifer porosity is 28%; therefore, $\rho_b/\eta = 6.61$ g/cm³.

The total uranium mass in the aquifer can be estimated by adding both the aqueous mass and solid mass using the following formula (Deutsch 1997):

Total mass = $[(C_{aq})(1 L)] + [(\rho_b/\eta)(C_s)(1 L)]$

where:

 C_{aq} = concentration of total uranium dissolved in groundwater, mg/L

 ρ_b = bulk density of aquifer sediments, g/cm³

 η = porosity of aquifer, percent

 C_s = concentration of total uranium sorbed to aquifer sediments, mg/kg

This equation is solved below for a 1 L aquifer volume with an assumed C_{aq} of 1 mg/L. Site-specific values defined in the groundwater model for bulk density (1.85 g/cm³) and aquifer porosity (28%) are used. A K_d of 3 L/kg is used to define a C_s of 3 mg/kg.

> Total Mass = $[(C_{aq})(1 L)] + [(\rho_b/\eta)(C_s)(1 L)]$ Total Mass = $[(1 mg_{aq}/L)(1 L)] + \{[(1.85 g/cm^3)/0.28][(3 mg/kg)(1 L)]\}$ Total Mass = $(1 mg_{aq}) + \{(6.61 g/cm^3)[(3 mg/kg)(1 L)]\}$

 $\label{eq:conversions} $$ \frac{\text{Unit Conversions}}{(6.61 \text{ g/cm}^3)(1,000 \text{ cm}^3/\text{L}) = 6,610 \text{ g/L}}{(6,610 \text{ g/L})(1,000 \text{ mg/g}) = 6,610,000 \text{ mg/L})}$$ Total Mass = (1 \text{ mg}_{aq}) + [(6,610,000 \text{ mg/L})(3 \text{ mg/kg})(1 \text{ L})]$$ $$ \frac{\text{Unit Conversion}}{(3 \text{ mg/kg})(1 \text{ kg/1},000,000 \text{ mg}) = 0.000003$$$ Total Mass = 1 \text{ mg}_{aq} + (6,610,000 \text{ mg/L})[(0.000003)(1 \text{ L})]$$$ $$ Total Mass = 1 \text{ mg}_{aq} + 19.83 \text{ mg}_{s}$$$$

This total mass calculation shows that the uranium mass sorbed in a 1 L volume of aquifer is 19.83 times greater than the uranium mass dissolved. This relationship can be combined with the result of the Ricker dissolved mass estimate to determine a total uranium mass for the aquifer. The Ricker method estimated a dissolved uranium mass of 163 lb (Figure A.2-25); therefore, the estimated total mass in the aquifer (based on 2022 data) was 3,395.29 pounds.

 $3,395.29 \text{ lb total} = 163 \text{ lb}_{aq} + (163 \text{ lb}_{aq})(19.83)$

3,395.29 lb total = 163 lb + 3,232.29 lb

The result of 3,395.29 lb of uranium mass total from the Ricker method can be compared to the predicted dissolved mass removal estimates presented in Attachment A.1 to achieve an estimate of the dissolved mass required to be removed from the aquifer to achieve a concentration-based cleanup of 30 μ g/L. The estimate will also show how much sorbed uranium mass will remain in the aquifer when the concentration-based cleanup is achieved.

As shown in Table A.1-24 in Attachment A.1, two estimates are provided for the estimated total pounds of dissolved uranium mass to be removed from the aquifer to achieve the concentration-based cleanup FRL of 30 μ g/L:

- 2,355 lb dissolved mass (based on new 2022 model predictions)
- 3,466 lb dissolved mass (based on regression of concentration data)

The range in the predicted mass of dissolved uranium that needs to be removed indicates that between 1,040.29 and negative 79.71 lb of uranium will remain sorbed to aquifer sediments when the concentration-based cleanup of 30 μ g/L is achieved:

- 3,395.29 lb 2,355 lb = 1,040.29 lb sorbed uranium mass remains
- 3,395.29 lb 3,466 lb = -79.71 lb sorbed uranium mass remains

The use of stretched exponential equations to trend uranium concentration data (new this year) resulted in a prediction that more dissolved uranium mass (3,466 lb) will need to be removed from the aquifer than was determined to be present in the aquifer (3,395.29 lb) by the Ricker method.

EVS Interpretation

As presented earlier, through EVS analysis, the dissolved uranium mass present in the aquifer in October 2022 was determined to be 54.45 lb (considerably lower than the 163 lb determined

through the Ricker method). Using 54.45 lb and a multiplier of 19.83 (as shown below), results in an estimated mass remaining of 1,134.19 lb. This is considerably lower than the 3,395.29 lb determined previously.

 $1,134.19 \text{ lb total} = 54.45 \text{ lb}_{aq} + (54.45 \text{ lb}_{aq})(19.83)$

1,134.19 lb total = 54.45 lb + 1,079.74 lb

In Table A.1-24 in Attachment A.1, two estimates are provided for the total pounds of dissolved uranium mass to be removed from the aquifer to achieve the concentration-based cleanup FRL of $30 \ \mu g/L$:

2,355 lb dissolved mass (based on new 2022 model predictions)

3,466 lb dissolved mass (based on regression of concentration data)

As shown below, subtracting the predicted dissolved mass removal estimates presented in Table A.1-24 from the EVS interpreted result of 1,134.19 pounds remaining in the aquifer results in negative numbers.

1,134.19 lb - 2,355 lb = -1,220.81 lb sorbed uranium mass remains 1,134.19 lb - 3,466 lb = -2,3331.81 lb sorbed uranium mass remains

Summary

The estimated range for dissolved mass of uranium remaining in the aquifer is 54.45 lb (EVS) to 163 lb (Ricker). These dissolved mass estimates were put into the context of the aquifer remediation by using the contaminant distribution coefficient (Kd) relationship presented in Deutsch 1997.

The Deutsch relationship indicates that the uranium mass sorbed in a 1 L volume of aquifer is 19.83 times greater than the uranium mass dissolved. Using this multiplier, the estimated range of mass remaining in the aquifer (both dissolved and sorbed) was determined to be 1,134.19 lb (EVS) to 3,395.29 lb (Ricker).

Of the two estimates, the Ricker method estimate (3,395.29 lb) is closer to the estimates of the total pounds of dissolved uranium mass left to be removed from the aquifer to achieve the concentration based cleanup FRL of 30 ug/L reported in Attachment A.1, Table A.1-24 (i.e., 2,355 lb based on 2022 model predictions, and 3,466 lb based on stretched exponential regression of concentration data).

DOE will continue to refine these interpretation methods. For instance, as more EVS interpretation work is conducted, a better understanding of actual plume dimensions and volume will evolve. Additional work to better understand how Kd varies in the braided stream deposits found in the aquifer could result in better cleanup time predictions and better remediation results in recalcitrant areas.

A.2.6 Total Uranium Plume Cross Sections

Five total uranium plume cross sections are presented to provide a vertical interpretation of the total uranium plume. The locations of each cross section are shown in Figures A.2-28, A.2-29, and A.2-30. These three figures also display the maximum total uranium plume interpretation 2022. The cross sections (A–A', B–B', C–C', D–D', and E–E') are provided in Figures A.2-31A through A.2-35A, respectively.

New to this year's Site Environmental Report, in addition to creating cross sections using Surfer software (as described below), DOE has produced the same five cross section using EVS software. Figures A.2-31A through A.2-35A presents the Surfer version, Figure A.2-31B through Figure A.2-35B presents the EVS version. DOE intends to transition to only using EVS generated cross sections for future Site Environmental Reports. Both are shown in this year's Site Environmental Report to illustrate the similarity between the two methods.

Surfer software (Version 15.5.382) was used to krige the total uranium concentration datasets and produce the plume cross sections. Point kriging of the data for all total uranium cross sections was performed using the Surfer default settings with the exception of the anisotropy ratio. For anisotropy, a ratio of 10 to 1 (vertical to horizontal) was used.

The plume interpretations shown in the cross sections provide a less conservative plume interpretation of area than the maximum total uranium plume maps presented in Figures A.2-2, and A.2-3. The cross sections, therefore, do not correlate directly with the maximum total uranium plume interpretations presented in those figures. The cross sections provide an additional interpretation of the total uranium concentration data that were used to develop the maximum total uranium plume maps.

Each cross section depicts the ground surface, the base of the glacial till (clay overburden), the top of the unconsolidated sand and gravel Great Miami Aquifer, and the average water-table elevation. Monitoring well data are the maximum total uranium concentrations measured at the water table elevation recorded at the time that the sample was collected. The midpoint of the monitoring well screen or Geoprobe screen is shown for each location with a "+" symbol. Vertical depth total uranium profiles are provided for each Geoprobe location. Extraction well screen locations and depths are also shown in the cross sections, if applicable.

As illustrated in the cross sections, the top of the 30 μ g/L total uranium plume is normally situated at the water table, but in a few areas of the aquifer the top of the 30 μ g/L total uranium plume is located beneath the water table. Some of the plume areas depicted in the maximum total uranium plume maps appear as smaller, separated plume areas in the cross sections. The separate areas help to point out where most of the total uranium concentrations are located based on the kriging results. Tracking the location and size of the plume areas beneath the water table should prove helpful in making operational decisions as the remedy progresses.

A.2.7 Split Sampling Program

In 2022 the scope of this program was reduced from three wells to one well. Since 1987, DOE has participated in a split sampling program with Ohio EPA. Split samples are obtained when technicians alternately add portions of a sample to two individual sample containers. This

collection method helps ensure that both samples are as close as possible to being identical. The split samples are then submitted to two analytical laboratories; this allows for an independent comparison of data to ascertain quality assurance for laboratory analysis and field sampling methods. Ohio EPA occasionally performs independent sampling in addition to split sampling.

The split sampling program at private homeowner wells is the longest running groundwater monitoring effort at the site. The program was initiated in 1982 in response to monitoring results indicating above background concentrations of uranium in private wells near the site. By 1984, the site had officially established the program with the monthly sampling of 19 privately-owned wells. In 1996, the private well program had grown to 32 private wells. At a property owner's request, any drinking water well near the site was sampled for uranium, and the one-time results were reported to the well owner. If any special request sample showed a questionable or significant total uranium concentration, or if the private well was determined to provide critical groundwater information in an area, the property owner had the option to participate in the routine sampling program. These private wells were sampled monthly or quarterly depending upon location, and sampling results were reported annually in the Site Environmental Report. Three private wells (13, 14, and 2060) were included in the monitoring effort (DOE 1997). These three private wells continued to be sampled through 2022.

In 1997, with implementation of the IEMP, the private well program was modified to include only private wells 13, 14, and 2060, which included the private well where off-property contamination was initially reported in 1981. Other private wells that had been previously monitored were not carried forward into the IEMP program because a public water supply was made available to the surrounding properties who had been affected by the off-property groundwater contamination (DOE 1998). Data from these three remaining private wells have been used to produce the total uranium plume presented in Attachment A.2.

As shown in Figures A.2-36 and A.2-37, the historical sampling results for total uranium at wells 13 and 14 are well below the 30 μ g/L FRL. Well 13 has been below the FRL since 2002 and well 14 has been below the FRL since this well was first sampled in 1988. These wells are located off-site and are outside of the uranium plume boundary and have been below the FRL for over 20 years. For these reasons, beginning in 2023, with concurrence from EPA and Ohio EPA, DOE will stop monitoring in these two private wells which occur outside the current plume (wells13 and 14) and will continue monitoring uranium in well 2060. The time versus concentration graph for well 2060 is provided in Figures A.2-38. This well will continue to be monitored as part of the IEMP program.

A.2.8 Uranium Concentration Trends at Select Monitoring Wells

New to this year's Site Environmental Report is an additional prediction of when cleanup goals will be achieved at individual monitoring wells, which is independent of the groundwater model. These new predictions were made by applying dual exponential mathematical functions to uranium concentration data at groundwater monitoring wells that had uranium FRL exceedances in 2022 and show downward trending concentrations in 2022. This work was completed as part of the National Laboratory Network mathematical model recommendation discussed earlier. A brief summary of the results of the exercise is provided below. A more detailed presentation of the work is provided in the following report: *Alternative Mathematical Expressions for Projecting Remedial Time Frame Report, Fernald Preserve, Ohio Site* (DOE 2023).

The results of the exercise are provided in Table A.2-32. The results help identify how individual monitoring wells are responding to the aquifer remedy. For instance, in the South Plume, the current uranium concentration trend at monitoring well 6880 indicates that based on the current data trend, remediation goals at this well may not be achieved until sometime between 2027 and 2045. The 2022 groundwater modeling prediction for achievement of remediation goals in the South Plume through pumping is between 2024 and 2025. The two new extraction wells (expected to be operational in 2024) in this area should help accelerate the decreasing trend observed at this well. Table A.2-32 provides similar results for the South Field, PPDD, and former WSA.

In summary, the assessment of the trend of uranium concentration data shown in Table A.2-32 at individual monitoring wells through the application of dual exponential mathematical functions will continue to be used to help track remediation progress, identify recalcitrant areas, and be compared to modeling predictions to determine how the remedy is progressing.

A.2.9 References

Deutsch, W.J., 1997. *Groundwater Geochemistry, Fundamentals and Applications to Contamination*, CRC Press, Boca Raton, Florida.

DOE (U.S. Department of Energy), 1995. *Remedial Investigation Report for Operable Unit 5*, Fernald Environmental Management Project, Fernald Area Office, Cincinnati, Ohio, March.

DOE (U.S. Department of Energy), 1996. *Record of Decision for Remedial Actions at Operable Unit 5*, 7478 U-007-501.4, Fluor Fernald, Cincinnati, Ohio, January.

DOE (U.S. Department of Energy), 1997. *1996 Site Environmental Report*, Fernald Environmental Management Project, Fernald Field Office, June.

DOE (U.S. Department of Energy), 1998. *1997 Integrated Site Environmental Monitoring Report*, Fluor Daniel Fernald, June.

DOE (U.S. Department of Energy), 2001. *Design for Remediation of the Great Miami Aquifer in the Waste Storage and Plant 6 Areas*, 52462-RP-0003, Revision A, Draft Final, Fluor Fernald, Fernald Area Office, Cincinnati, Ohio, April.

DOE (U.S. Department of Energy), 2003. *Comprehensive Groundwater Strategy Report*, Revision 0, prepared by Fluor Fernald, June.

DOE (U.S. Department of Energy), 2006. *Fernald Groundwater Certification Plan*, Revision 2, 51900-PL-0002, prepared by Fluor Fernald, August.

DOE (U.S. Department of Energy), 2014. *Fernald Preserve 2013 Site Environmental Report*, LMS/FER/S11109, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2015. *Fernald Preserve 2014 Site Environmental Report*, LMS/FER/S12455, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2016. *Fernald Preserve 2015 Site Environmental Report*, LMS/FER/S13591, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2017a. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2017b. S. Smiley, Fernald Preserve DOE Site Lead, letter, (transmittal of Responses to Ohio Environmental Protection Agency Comments on the 2016 Fernald Preserve Site Environmental Report) to D. Seely, EPA and T. Schneider, Ohio EPA, November 8.

DOE (U.S. Department of Energy), 2018. *Fernald Preserve 2017 Site Environmental Report*, LMS/FER/S17983, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2019a. *Comprehensive Legacy Management and Institutional Controls Plan*, LMS/FER/S03496, Revision 12, Office of Legacy Management, January.

DOE (U.S. Department of Energy), 2019b. *Fernald Preserve 2018 Site Environmental Report*, LMS/FER/S23329, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2020. *Fernald Preserve 2019 Site Environmental Report*, LMS/FER/S28948, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2021. *Fernald Preserve 2020 Site Environmental Report*, LMS/FER/S32359, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2022. *Fernald Preserve 2021 Site Environmental Report*, LMS/FER/S37811, Office of Legacy Management, May.

Ricker, J.A., 2008. "A Practical Method to Evaluate Ground Water Contaminant Plume Stability," *Groundwater Monitoring and Remediation* 28(4):85–94.

Table A.2-1. Geoprobe Location 13533A

Easting '83:	1348683	feet
Northing '83:	476268	feet
Ground Elevation:	576	feet above mean sea level (AMSL)
Depth to Water Table:	60.00	feet below ground surface (BGS)
Water Table Elevation:	515.81	feet AMSL
Work Completed:	6/6/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	511	65	0 - 10	45.4	17.7	7.37	0.820	>999	109	6.70
2	501	75	10 - 20	8.5	17.0	7.83	1.76	>999	35.0	9.49
3	501	75	10 - 20	4.9	17.0	7.83	1.76	>999	35.0	9.49
4	491	85	20 - 30	6.1	16.8	7.73	0.790	>999	>999	5.40
5	481	95	30 - 40	1.0	16.4	7.73	0.820	>999	39.7	5.87
6	471	105	40 - 50	3.4	15.3	7.70	0.83	>999	946	5.39

^aSamples are filtered through a 5 micron filter.

Table A.2-2. Geoprobe Location 13601

Easting '83:	1348347	feet
Northing '83:	477158	feet
Ground Elevation:	543	feet above mean sea level (AMSL)
Depth to Water Table:	24.00	feet below ground surface (BGS)
Water Table Elevation:	519.27	feet AMSL
Work Completed:	6/13/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	514	29	0 - 10	38.4	21.7	7.57	0.720	>999	91.1	6.47
2	504	39	10 - 20	15.9	17.2	7.68	0.620	>999	50.3	7.03
3	504	39	10 - 20	15.9	17.2	7.68	0.620	>999	50.3	7.03
4	494	49	20 - 30	4.5	16.9	7.91	0.620	>999	39.1	6.25
5	484	59	30 - 40	4.0	15.1	7.87	0.595	>999	10.2	7.39
6	474	69	40 - 50	1.0	17.9	7.99	0.670	>999	13.1	4.55

Table A.2-3. Geoprobe Location 13602

Easting '83:	1348456	feet
Northing '83:	477035	feet
Ground Elevation:	542	feet above mean sea level (AMSL)
Depth to Water Table:	24.00	feet below ground surface (BGS)
Water Table Elevation:	517.84	feet AMSL
Work Completed:	6/8/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	513	29	0 - 10	21.1	15.2	7.29	0.790	>999	918	7.50
2	503	39	10 - 20	5.0	18.2	7.97	0.750	>999	47.0	6.82
3	503	39	10 - 20	4.8	18.2	7.97	0.750	>999	47.0	6.82
4	493	49	20 - 30	2.4	15.0	7.83	0.680	>999	52.3	5.01
5	483	59	30 - 40	2.0	15.0	7.91	0.630	>999	16.1	6.38
6	473	69	40 - 50	2.4	14.9	7.88	0.607	>999	19.4	6.50

^aSamples are filtered through a 5 micron filter.

Table A.2-4. Geoprobe Location 13603

Easting '83:	1348652	feet
Northing '83:	476573	feet
Ground Elevation:	572	feet above mean sea level (AMSL)
Depth to Water Table:	51.00	feet below ground surface (BGS)
Water Table Elevation:	520.76	feet AMSL
Work Completed:	6/14/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	516	56	0 - 10	106	19.8	7.35	0.720	>999	108	7.06
2	506	66	10 - 20	12.9	18.9	7.78	0.630	>999	57.0	6.35
3	506	66	10 - 20	10.0	18.9	7.78	0.630	>999	57.0	6.35
4	496	76	20 - 30	16.8	18.7	7.64	0.720	>999	32.3	5.58
5	486	86	30 - 40	16.9	19.0	7.58	0.810	>999	20.7	4.60
6	476	96	40 - 50	9.1	17.6	7.50	0.800	>999	20.8	4.86

Table A.2-5. Geoprobe Location 13604

Easting '83:	1348970	feet
Northing '83:	476481	feet
Ground Elevation:	561	feet above mean sea level (AMSL)
Depth to Water Table:	42.50	feet below ground surface (BGS)
Water Table Elevation:	518.69	feet AMSL
Work Completed:	6/15/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	514	48	0 - 10	6.6	18.5	7.46	0.670	>999	>999	7.90
2	504	58	10 - 20	11.4	22.1	7.88	0.750	>999	31.9	5.48
3	504	58	10 - 20	12.8	22.1	7.88	0.750	>999	31.9	5.48
4	494	68	20 - 30	4.1	21.2	7.96	0.720	>999	>999	5.97
5	484	78	30 - 40	9.3	16.6	7.74	0.800	>999	29.6	4.43
6	474	88	40 - 50	8.6	17.1	7.69	0.740	>999	>999	5.65

^aSamples are filtered through a 5 micron filter.

Table A.2-6. Geoprobe Location 12196C

Easting '83:	1349174	feet
Northing '83:	475881	feet
Ground Elevation:	582	feet above mean sea level (AMSL)
Depth to Water Table:	63.00	feet below ground surface (BGS)
Water Table Elevation:	518.90	feet AMSL
Work Completed:	5/24/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	514	68	0 - 10	33.7	16.6	7.75	0.930	>999	263	7.92
2	504	78	10 - 20	40.3	15.3	7.68	0.780	>999	369	6.20
3	504	78	10 - 20	39.4	15.3	7.68	0.780	>999	369	6.20
4	494	88	20 - 30	<1.0	15.2	7.73	0.680	>999	22.4	5.94
5	484	98	30 - 40	20.0	15.1	7.67	0.680	>999	>999	7.38
5	474	108	40 - 50	2.8	17.0	8.05	0.600	>999	311	8.56

Table A.2-7. Geoprobe Location 132291

Easting '83:	1348246	feet
Northing '83:	475529	feet
Ground Elevation:	572	feet above mean sea level (AMSL)
Depth to Water Table:	55.00	feet below ground surface (BGS)
Water Table Elevation:	516.65	feet AMSL
Work Completed:	5/10/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	512	60	0 - 10	52.8	17.0	7.41	0.740	>999	368	8.00
2	502	70	10 - 20	33.1	16.0	7.65	0.720	>999	>999	7.97
3	502	70	10 - 20	30.9	16.0	7.65	0.720	>999	>999	7.97
4	492	80	20 - 30	19.9	15.6	7.65	0.640	>999	25.9	5.30
5	482	90	30 - 40	20.0	15.6	7.66	0.602	>999	11.7	4.50
6	472	100	40 - 50	13.0	15.2	7.69	0.640	>999	213	4.98

^aSamples are filtered through a 5 micron filter.

Table A.2-8. Geoprobe Location 13233C

Easting '83:	1348644	feet
Northing '83:	475199	feet
Ground Elevation:	581	feet above mean sea level (AMSL)
Depth to Water Table:	61.00	feet below ground surface (BGS)
Water Table Elevation:	520.38	feet AMSL
Work Completed:	4/19/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	515	66	0 - 10	44.1	12.3	7.50	0.720	>999	472	8.35
2	505	76	10 - 20	30.4	12.1	7.72	0.680	>999	>999	7.85
3	505	76	10 - 20	31.5	12.1	7.72	0.680	>999	>999	7.85
4	495	86	20 - 30	29.2	11.5	7.56	0.700	>999	>999	6.49
5	485	96	30 - 40	21.5	11.2	7.69	0.680	>999	492	6.51
6	475	106	40 - 50	11.0	11.7	7.74	0.680	>999	>999	6.90

Table A.2-9. Geoprobe Location 13239G

Easting '83:	1348459	feet
Northing '83:	475398	feet
Ground Elevation:	579	feet above mean sea level (AMSL)
Depth to Water Table:	62.00	feet below ground surface (BGS)
Water Table Elevation:	517.16	feet AMSL
Work Completed:	3/30/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	512	67	0 - 10	74.3	14.0	7.30	0.800	>999	694	8.06
2	502	77	10 - 20	29.0	13.7	7.48	0.740	>999	37.1	6.02
3	502	77	10 - 20	29.4	13.7	7.48	0.740	>999	37.1	6.02
4	492	87	20 - 30	18.5	16.8	7.83	0.720	>999	>999	8.50
5	482	97	30 - 40	10.6	13.6	7.59	0.800	>999	>999	6.05
6	472	107	40 - 50	2.5	14.0	7.71	0.710	>999	>999	5.41

^aSamples are filtered through a 5 micron filter.

Table A.2-10. Geoprobe Location 13267D

Easting '83:	1348841	feet
Northing '83:	475194	feet
Ground Elevation:	580	feet above mean sea level (AMSL)
Depth to Water Table:	62.00	feet below ground surface (BGS)
Water Table Elevation:	518.27	feet AMSL
Work Completed:	4/28/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	513	67	0 - 10	15.6	13.6	7.47	0.750	>999	46.2	6.28
2	503	77	10 - 20	22.3	13.8	7.73	0.650	>999	101	5.56
3	503	77	10 - 20	20.2	13.8	7.73	0.650	>999	101	5.56
4	493	87	20 - 30	8.6	14.2	7.89	0.730	>999	132	6.62
5	483	97	30 - 40	10.9	13.5	7.74	0.750	>999	>999	5.55
6	473	107	40 - 50	1.7	13.9	7.56	0.820	>999	77.4	5.17
7	463	117	50 - 60	<1	13.7	7.57	0.830	>999	92.0	5.08

Table A.2-11. Geoprobe Location 13477E

Easting '83:	1349240	feet
Northing '83:	475822	feet
Ground Elevation:	580	feet above mean sea level (AMSL)
Depth to Water Table:	63.00	feet below ground surface (BGS)
Water Table Elevation:	516.88	feet AMSL
Work Completed:	5/9/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	512	68	0 - 10	<1.0	16.0	7.02	0.900	>999	550	7.02
2	502	78	10 - 20	59.4	15.4	7.63	0.760	>999	77.6	5.48
3	502	78	10 - 20	58.5	15.4	7.63	0.760	>999	77.6	5.48
4	492	88	20 - 30	9.4	15.8	7.90	0.770	>999	33.7	6.73
5	482	98	30 - 40	8.4	16.2	7.64	0.810	>999	722	5.48
6	472	108	40 - 50	2.1	15.7	7.66	0.860	>999	67.3	3.95

^aSamples are filtered through a 5 micron filter.

Table A.2-12. Geoprobe Location 13510A

Easting '83:	1348848	feet
Northing '83:	475584	feet
Ground Elevation:	579	feet above mean sea level (AMSL)
Depth to Water Table:	62.00	feet below ground surface (BGS)
Water Table Elevation:	517.16	feet AMSL
Work Completed:	5/2/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	512	67	0 - 10	12.7	16.5	7.46	0.870	>999	>999	6.91
2	502	77	10 - 20	22.2	15.2	7.71	0.690	>999	361	6.45
3	502	77	10 - 20	24.7	15.2	7.71	0.690	>999	361	6.45
4	492	87	20 - 30	5.7	15.8	7.91	0.700	>999	34.0	4.95
5	482	97	30 - 40	12.5	16.1	7.83	0.690	>999	13.7	4.98
6	472	107	40 - 50	3.8	15.5	7.71	0.790	>999	272	4.95
7	462	117	50 - 60	1.2	15.2	7.56	0.860	>999	13.8	4.41

Table A.2-13. Geoprobe Location 13513C

Easting '83:	1348891	feet
Northing '83:	475083	feet
Ground Elevation:	581	feet above mean sea level (AMSL)
Depth to Water Table:	61.00	feet below ground surface (BGS)
Water Table Elevation:	520.14	feet AMSL
Work Completed:	5/4/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	515	66	0 - 10	23.2	13.6	7.39	0.920	>999	59.6	6.70
2	505	76	10 - 20	46.4	13.2	7.72	0.710	>999	>999	5.41
3	505	76	10 - 20	36.9	13.2	7.72	0.710	>999	>999	5.41
4	495	86	20 - 30	32.2	12.9	7.66	0.680	>999	36.5	5.41
5	485	96	30 - 40	16.1	12.8	7.66	0.740	>999	6.07	3.72
6	475	106	40 - 50	3.2	12.9	7.68	0.810	>999	>999	6.84

^aSamples are filtered through a 5 micron filter.

Table A.2-14. Geoprobe Location 13535A

Easting '83:	1349334	feet
Northing '83:	475922	feet
Ground Elevation:	576	feet above mean sea level (AMSL)
Depth to Water Table:	58.00	feet below ground surface (BGS)
Water Table Elevation:	517.92	feet AMSL
Work Completed:	5/31/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	513	63	0 - 10	1.1	21.6	7.65	0.890	>999	829	4.63
2	503	73	10 - 20	36.6	17.6	7.68	0.760	>999	24.3	4.52
3	503	73	10 - 20	34.0	17.6	7.68	0.760	>999	24.3	4.52
4	493	83	20 - 30	16.0	17.9	7.74	0.760	>999	16.3	3.52
5	483	93	30 - 40	2.9	18.6	7.79	0.790	>999	>999	4.01
6	473	103	40 - 50	<1.0	17.1	7.60	0.830	>999	327	2.81

Table A.2-15. Geoprobe Location 13538A

Easting '83:	1348356	feet
Northing '83:	475537	feet
Ground Elevation:	575	feet above mean sea level (AMSL)
Depth to Water Table:	56.00	feet below ground surface (BGS)
Water Table Elevation:	518.98	feet AMSL
Work Completed:	5/16/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	514	61	0 - 10	42.7	15.4	7.45	0.730	>999	411	7.12
2	504	71	10 - 20	4.5	14.9	7.73	0.730	>999	127	4.93
3	504	71	10 - 20	4.9	14.9	7.73	0.730	>999	127	4.93
4	494	81	20 - 30	21.3	14.6	7.74	0.650	>999	71.2	5.87
5	484	91	30 - 40	7.4	14.9	7.74	0.400	>999	158	5.96
6	474	101	40 - 50	6.4	15.4	7.70	0.750	>999	>999	5.71

^aSamples are filtered through a 5 micron filter.

Table A.2-16. Geoprobe Location 13542A

Easting '83:	1348155	feet
Northing '83:	474985	feet
Ground Elevation:	540	feet above mean sea level (AMSL)
Depth to Water Table:	23.00	feet below ground surface (BGS)
Water Table Elevation:	516.57	feet AMSL
Work Completed:	5/17/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	512	28	0 - 10	40.4	13.1	7.39	1.03	>999	27.3	9.44
2	502	38	10 - 20	5.9	15.3	7.60	0.630	>999	49.6	6.82
3	502	38	10 - 20	5.5	15.3	7.60	0.630	>999	49.6	6.82
4	492	48	20 - 30	5.4	15.6	7.52	0.770	>999	19.4	5.92
5	482	58	30 - 40	11.4	15.0	7.38	0.840	>999	6.71	4.73
6	472	68	40 - 50	23.6	14.6	7.39	0.850	>999	160	4.62
7	462	78	50 - 60	20.5	14.9	7.44	0.870	>999	>999	5.55
8	452	88	60 - 70	18.5	14.3	7.48	0.850	>999	>999	4.65
9	442	98	70 - 80	1.6	14.9	7.45	0.770	>999	130	3.96

Table A.2-17. Geoprobe Location 13605

Easting '83:	1348591	feet
Northing '83:	476000	feet
Ground Elevation:	580	feet above mean sea level (AMSL)
Depth to Water Table:	62.00	feet below ground surface (BGS)
Water Table Elevation:	517.86	feet AMSL
Work Completed:	5/23/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	513	67	0 - 10	26.8	14.7	7.47	0.830	>999	382	10.55
2	503	77	10 - 20	3.9	15.0	8.00	0.670	>999	55.6	5.76
3	503	77	10 - 20	2.7	15.0	8.00	0.670	>999	55.6	5.76
4	493	87	20 - 30	6.4	14.5	8.06	0.680	>999	>999	5.68
5	483	97	30 - 40	1.5	14.7	8.08	0.700	>999	114	4.40
6	473	107	40 - 50	2.1	14.6	7.72	0.870	>999	111	4.64

^aSamples are filtered through a 5 micron filter.

Table A.2-18. Geoprobe Location 13606

Easting '83:	1348494	feet
Northing '83:	475628	feet
Ground Elevation:	578	feet above mean sea level (AMSL)
Depth to Water Table:	60.00	feet below ground surface (BGS)
Water Table Elevation:	517.55	feet AMSL
Work Completed:	3/28/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	513	65	0 - 10	56.1	10.0	7.56	0.700	>999	>999	9.32
2	503	75	10 - 20	23.5	11.0	7.86	0.683	>999	>999	7.75
3	503	75	10 - 20	22.8	11.0	7.86	0.683	>999	>999	7.75
4	493	85	20 - 30	17.3	10.4	7.85	0.658	>999	>999	9.70
5	483	95	30 - 40	10.5	10.6	7.66	0.810	>999	342	6.22
6	473	105	40 - 50	8.9	11.3	7.72	0.810	>999	>999	6.56

Table A.2-19. Geoprobe Location 13607

Easting '83:	1348607	feet
Northing '83:	475630	feet
Ground Elevation:	577	feet above mean sea level (AMSL)
Depth to Water Table:	61.00	feet below ground surface (BGS)
Water Table Elevation:	515.80	feet AMSL
Work Completed:	4/12/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	511	66	0 - 10	26.4	15.2	7.60	0.650	>999	>999	7.45
2	501	76	10 - 20	14.5	14.6	7.80	0.690	>999	983	5.23
3	501	76	10 - 20	15.4	14.6	7.80	0.690	>999	983	5.23
4	491	86	20 - 30	12.8	14.5	7.69	0.740	>999	248	6.09
5	481	96	30 - 40	6.5	13.8	5.36	0.760	>999	>999	7.40
6	471	106	40 - 50	1.6	13.9	6.78	0.830	>999	397	5.61

^aSamples are filtered through a 5 micron filter.

Table A.2-20. Geoprobe Location 13608

Easting '83:	1349115	feet
Northing '83:	475614	feet
Ground Elevation:	579	feet above mean sea level (AMSL)
Depth to Water Table:	63.00	feet below ground surface (BGS)
Water Table Elevation:	516.27	feet AMSL
Work Completed:	5/5/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	511	68	0 - 10	4.3	13.7	7.46	0.990	>999	111	6.24
2	501	78	10 - 20	34.7	14.0	7.71	0.770	>999	257	5.54
3	501	78	10 - 20	37.8	14.0	7.71	0.770	>999	257	5.54
4	491	88	20 - 30	14.2	13.9	7.74	0.690	>999	43.1	5.34
5	481	98	30 - 40	22.3	14.1	7.57	0.670	>999	23.7	5.30
6	471	108	40 - 50	1.9	13.9	7.56	0.810	>999	13.6	4.59

Table A.2-21. Geoprobe Location 13609

Easting '83:	1348482	feet
Northing '83:	475548	feet
Ground Elevation:	578	feet above mean sea level (AMSL)
Depth to Water Table:	60.00	feet below ground surface (BGS)
Water Table Elevation:	517.86	feet AMSL
Work Completed:	3/29/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	513	65	0 - 10	50.8	13.2	7.66	0.750	>999	102	7.20
2	503	75	10 - 20	32.0	12.8	7.76	0.760	>999	525	7.15
3	503	75	10 - 20	31.1	12.8	7.76	0.760	>999	525	7.15
4	493	85	20 - 30	11.1	12.2	7.88	0.730	>999	>999	7.68
5	483	95	30 - 40	5.1	11.9	7.78	0.880	>999	>999	6.52
6	473	105	40 - 50	6.3	11.8	7.76	0.800	>999	348	5.91

^aSamples are filtered through a 5 micron filter.

Table A.2-22. Geoprobe Location 13610

Easting '83:	1348604	feet
Northing '83:	475547	feet
Ground Elevation:	578	feet above mean sea level (AMSL)
Depth to Water Table:	61.00	feet below ground surface (BGS)
Water Table Elevation:	516.59	feet AMSL
Work Completed:	4/20/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	512	66	0 - 10	17.7	13.1	7.42	0.710	>999	>999	8.89
2	502	76	10 - 20	22.7	12.4	7.94	0.630	>999	>999	8.48
3	502	76	10 - 20	20.9	12.4	7.94	0.630	>999	>999	8.48
4	492	86	20 - 30	26.5	11.8	7.76	0.622	>999	>999	8.55
5	482	96	30 - 40	7.1	12.3	7.78	0.750	>999	>999	6.50
6	472	106	40 - 50	5.0	11.9	7.70	0.700	>999	>999	7.60

Table A.2-23. Geoprobe Location 13611

Easting '83:	1348716	feet
Northing '83:	475549	feet
Ground Elevation:	578	feet above mean sea level (AMSL)
Depth to Water Table:	61.00	feet below ground surface (BGS)
Water Table Elevation:	516.94	feet AMSL
Work Completed:	4/26/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	512	66	0 - 10	25.1	12.3	7.40	0.780	>999	805	8.50
2	502	76	10 - 20	21.5	12.4	7.80	0.622	>999	>999	8.12
3	502	76	10 - 20	25.0	12.4	7.80	0.622	>999	>999	8.12
4	492	86	20 - 30	20.2	11.9	7.72	0.650	>999	40.0	6.54
5	482	96	30 - 40	14.3	12.0	7.65	0.690	>999	41.3	6.50
6	472	106	40 - 50	2.5	12.4	7.63	0.840	>999	60.6	5.83

^aSamples are filtered through a 5 micron filter.

Table A.2-24. Geoprobe Location 13612

Easting '83:	1348602	feet
Northing '83:	475412	feet
Ground Elevation:	579	feet above mean sea level (AMSL)
Depth to Water Table:	62.00	feet below ground surface (BGS)
Water Table Elevation:	516.83	feet AMSL
Work Completed:	4/25/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	512	67	0 - 10	28.8	15.8	7.34	0.730	>999	33.3	7.24
2	502	77	10 - 20	38.8	15.4	7.43	0.680	>999	>999	6.56
3	502	77	10 - 20	37.1	15.4	7.43	0.680	>999	>999	6.56
4	492	87	20 - 30	10.0	16.0	7.67	0.750	>999	691	6.81
5	482	97	30 - 40	4.9	15.2	7.36	0.770	>999	219	4.81
6	472	107	40 - 50	2.8	15.3	5.96	0.800	>999	451	5.75

Table A.2-25. Geoprobe Location 13613

Easting '83:	1348708	feet
Northing '83:	475333	feet
Ground Elevation:	580	feet above mean sea level (AMSL)
Depth to Water Table:	62.00	feet below ground surface (BGS)
Water Table Elevation:	518.01	feet AMSL
Work Completed:	4/27/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	513	67	0 - 10	29.5	14.4	7.99	0.660	>999	>999	8.03
2	503	77	10 - 20	33.6	14.5	7.71	0.650	>999	750	6.53
3	503	77	10 - 20	32.6	14.5	7.71	0.650	>999	750	6.53
4	493	87	20 - 30	31.5	13.9	7.67	0.710	>999	548	5.99
5	483	97	30 - 40	11.3	14.5	7.82	0.770	>999	>999	7.46
6	473	107	40 - 50	11.9	14.1	7.55	0.780	>999	761	6.15

^aSamples are filtered through a 5 micron filter.

Table A.2-26. Geoprobe Location 13614

Easting '83:	1348501	feet
Northing '83:	475269	feet
Ground Elevation:	581	feet above mean sea level (AMSL)
Depth to Water Table:	62.00	feet below ground surface (BGS)
Water Table Elevation:	518.66	feet AMSL
Work Completed:	4/4/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	514	67	0 - 10	71.9	13.1	7.38	0.800	>999	119	8.30
2	504	77	10 - 20	34.6	12.5	7.66	0.760	>999	248	7.12
3	504	77	10 - 20	33.7	12.5	7.66	0.760	>999	248	7.12
4	494	87	20 - 30	27.1	12.5	7.73	0.710	>999	>999	6.83
5	484	97	30 - 40	6.1	13.0	7.86	0.740	>999	5.01	5.88
6	474	107	40 - 50	<1	12.8	7.82	0.637	>999	>999	5.82

Table A.2-27. Geoprobe Location 13615

Easting '83:	1349024	feet
Northing '83:	475084	feet
Ground Elevation:	581	feet above mean sea level (AMSL)
Depth to Water Table:	63.00	feet below ground surface (BGS)
Water Table Elevation:	518.31	feet AMSL
Work Completed:	5/11/2022	

Sample Point	Elevation (ft AMSL)	Depth (ft BGS)	Sample Interval (ft)	Uranium Filtered ^a (μg/L)	Temperature Filtered ^a (°C)	pH Filtered ^a (SU)	Specific Conductance Filtered ^a (mS/cm)	Turbidity Unfiltered (NTU)	Turbidity Filtered ^a (NTU)	Dissolved Oxygen Filtered ^a (mg/L)
1	513	68	0 - 10	16.7	16.5	7.31	0.930	>999	57.1	7.10
2	503	78	10 - 20	26.4	16.3	7.57	0.830	>999	38.3	5.88
3	503	78	10 - 20	23.3	16.3	7.57	0.830	>999	38.3	5.88
4	493	88	20 - 30	15.0	15.8	7.54	0.680	>999	219	5.20
5	483	98	30 - 40	2.7	16.0	7.52	0.720	>999	232	5.82
6	473	108	40 - 50	1.9	15.7	7.43	0.790	>999	>999	6.12

Well	No. of Samples	Minimum (µg/L) ^{a,b,c,d}	Maximum (µg/L) ^{a,b,c,d}	Average (µg/L) ^{a,b,c,d,e}	Standard Deviation (µg/L) ^{a,b,c,d,e}	Trend ^{a,b,c,d,e,f}
2045	95	12.0	462	109	92.8	No Trend
2049	71	3.00	278	69.4	53	Down
2095	84	15.7	208	85.5	52.1	Down
21033	62	7.34	43.2	22.0	7.96	Up
23271	42	34.6	144	67.9	30.1	Down
23273	42	79.2	421	210	80.1	Down
23274	63	58.8	384	153	63.4	Down
23275	41	76.6	349	154	55.7	Down
23276	42	3.56	115	78.2	19.1	Down
23281	42	16.1	366	117	75	Down
2386	65	6.67	146	36.9	33.8	Up
2387	65	18.1	492	153	74.1	Up
2389	54	0.899	120	33.2	21.2	Up
2397	51	135	737	341	127	Down
2649	61	6.01	1,250	287	339	Up
2880	65	0.400	71.8	29.3	26.3	Up
3095	85	2.00	94.0	28.6	16.8	No Trend
63285	42	57.3	277	158	66.4	Down
6880	52	35.7	145	74.9	25.5	Down
82369_C1	20	12.1	210	124	41.4	No Trend
82369_C2	13	25.1	50.6	35.1	7.05	Up
82369_C3	11	24.0	41.3	32.3	5.07	Up
83117_C1	43	1.28	1,620	680	318	Down
83117_C4	23	37.6	111	71.6	20.1	Down
83124_C1	66	102	1,070	480	201	No Trend
83124_C2	39	20.5	103	42.6	18.0	Down
83124_C4	22	25.4	62.2	42.8	8.91	Up
83124_C5	22	24.4	61.4	45.7	9.1	Down
83294_C1	36	98.5	340	218	0.6	Up
83294_C2	57	1.24	575	290	123	Down
83295_C2	37	53.1	178	109	39.9	Down
83295_C3	27	39.1	175	102	46.2	Down
83296_C1	21	49.3	135	75.3	21.0	Down
83337_C1	39	255	2,660	1,340	578	Down
83337_C2	56	2.40	835	118	162	No Trend
83338_C1	28	282	1,100	509	149	Down
83338_C2	34	14	648	85.3	135	Down
83340_C1	30	13.2	72.7	31.4	10.5	Up

Table A.2-28. Summary Statistics and Trend Analysis of Monitoring Wells for Total Uranium with2022 Results Above FRLs

^a Summary statistics and Mann-Kendall test for trend are primarily based on unfiltered samples with some filtered samples from the Operable Unit 5 Remedial Investigation/Feasibility Study dataset (1988 through 1993) and 1994 through 2022 groundwater data.

^b If more than one sample is collected per well per day (e.g., duplicate), then only one sample is counted for the number of samples, and the sample with the maximum representative concentration is used for determining the summary statistics (minimum, maximum, average, and standard deviation) and Mann-Kendall test for trend.

° Rejected data qualified with an R were not included in this count, the summary statistics, or Mann-Kendall test for trend.

^d If the number of samples is greater than or equal to four, then all of the summary statistics and the Mann-Kendall test for trend are reported. If the total number of samples is equal to three, then the minimum, maximum, and average are reported. If the total number of samples is equal to two, then the minimum and maximum are reported. If the total number of samples is equal to one, then the data point is reported as the minimum.

^e For results where the concentrations are below the detection limit, the results used in the summary statistics and Mann-Kendall test for trend are each set at half the detection limit.

^f The Mann-Kendall test for trend is performed with a 95% confidence interval, using data from third quarter 1998 through 2022.

Well	Number of Samples ^{a,b}	Minimum (µg/L) ^{a,b,c}	Maximum (µg/L) ^{a,b,c}	Average (µg/L) ^{a,b,c}	Standard Deviation (µg/L) ^{a,b,c}	Trend ^{a,b,c,d}
	South Plume	Module (Augu	st 27, 1993, thro	ough Decembe	r 31, 2022)	
3924	741	1.2	180	26.7	15.1	Down
3925	745	0.5	84.0	22.2	8.2	Down
3926	731	1.5	42.4	24.3	7.7	Down
3927	722	1.0	17.0	2.7	1.1	Up
Se	outh Plume Optim	ization Module	e (August 9, 199	8, through Dec	cember 31, 202	2)
32308	656	17.1	100	48.5	17.1	Down
32309	663	15.6	123	48.3	21.3	Down
	South Field	d Module (July	13, 1998, throug	gh December 3	31, 2022)	
31550	693	16.2	128	47.2	18.1	Down
31560	720	11.2	183	50.7	37.3	Down
31561	693	17.7	114 ^e	38.4	10.0	Down
32276	733	12.3	290	85.1	63.8	Down
32446	586	17.4	168	52.6	21.8	Down
32447	611	9.4	302	89.7	55.6	Down
33061	490	13.6	98.5	40.0	15.6	Down
33262	449	16.1	110	40.0	14.9	Down
33264	449	3.6	364	61.7	44.8	Down
33298	397	10.1	76.2	44.6	13.2	Down
33326	348	7.8	62.2	20.5	8.4	Down
	Waste Storage	Area Module (May 8, 2002, th	rough Decemb	er 31, 2022)	
32761	475	15.9	161	50.1	32.0	Down
33062	495	10.2	236	56.0	42.3	Down
33347	299	7.0	126	25.2	15.5	No Trend

Table A.2-29. Summary Statistics and Trend Analysis of Extraction Wells for Total Uranium

^a If more than one sample is collected per well per day (e.g., duplicate), then only one sample is counted for the number of samples, and the sample with the maximum representative concentration is used for determining the summary statistics (minimum, maximum, average, and standard deviation) and Mann-Kendall test for trend.

^b Rejected data qualified with an R were not included in this count, the summary statistics, or Mann-Kendall test for trend.

^c For results where the concentrations are below the detection limit, the results used in the summary statistics and Mann-Kendall test for trend are each set at half the detection limit.

^d Mann-Kendall test for trend is performed with a 95% confidence interval.

^e This result (sampled August 31, 1998) appears to be an outlier. It is suspected that the sample for this well was switched with the sample from extraction well 31562, which is no longer active as an extraction well.

Year	Area Greater Than 30 μg/L Total Uranium (acros)
1997	
1998	216.9ª
1999	228.9ª
2000	233.4ª
2001	171.1
2002	176.0
2003	179.1
2004	195.2
2005	196.1
2006	189.3
2007	186.0
2008	186.9
2009	186.0
2010	184.0
2011	144.3
2012	130.3
2013	127.3
2014	110.9
2015	109.5
2016	105.0
2017	94.4
2018	89.3
2019	86.5
2020	81.5
2021	75.0
2022	74.0

Table A.2-30. Plume Size 1997 Through 2022

^a Plume size based on 20 µg/L total uranium.

Year	Maximum Uranium Plume Size Interpretation (acres)	Ricker Method Plume Size Calculation (acres)	Ricker Relative Percent Difference ^a	EVS Method Plume Size Calculation (acres)	EVS Relative Percent Difference ^b
2006	189.3	145.7	23.0%		
2010	184.0	132.7	27.9%		
2014	110.9	108.0	2.6%		
2016	105.0	108.0	2.9%		
2017	94.4	97.3	3.1%		
2018	89.3	95.9	7.4%		
2019	86.5	89.2	3.1%		
2020	81.5	85.9	5.4%		
2021	75.0	81.6	8.8%	88.9	18.5%
2022	74.0	80.7	9.1%	85.3	15.3%

Table A.2-31. Comparison of Plume Size Interpretation and Ricker Method Plume Size Calculation

^a Relative percent difference = [(maximum-Ricker)/maximum] X 100.

^b Relative percent difference = [(maximum-EVS)/maximum] X 100.

Table A.2-32. Predicted Cleanup Date Range using Dual Exponential Equation

Well	Predicted Cleanup
South Plume	
2095	2013–2018
6880	2027–2045
South Field	
2045	2038–Not Determined ^a
2049	2013–2017
2397	2050–2103
23271	2024–Not Determined ^a
23273	2040–Not Determined ^a
23274	2036–2060
23275	2046–Not Determined ^a
23281	2017–Not Determined ^a
63285	2030–2046
83294_C2	2036–2053
83295_C2	2028–2039
83295_C3	2023–2028
83296_C1	2031–2086
Pilot Plant Drainage Ditch	
83117_C1	2059–2171
83117_C4	2025–2045
83124_C2	2016–2023
83124_C5	2022–2035
Waste Storage Area	
83337_C1	2066–2997
83338_C1	2081–2168
aNet determined because the trend want flat (i.e. coverate tic)	

^aNot determined because the trend went flat (i.e.,asymptotic).

This page intentionally left blank

043341 5/1/2023 12:34 PM

Figure A.2-2. Direct-Push Data and Maximum Total Uranium Plume for 2022

Figure A.2-3. Monitoring Well Data and Maximum Total Uranium Plume for 2022

Figure A.2-4. Monitoring Wells with 2022 Exceedances for Total Uranium with Up, Down, or No Significant Trends

Figure A.2-5. Monitoring Well Data from 2022 Comparison to Maximum Total Uranium Footprint at end of 2021

Figure A.2-6. Total Uranium Concentration Versus Time Plot for Monitoring Well 83339

Figure A.2-7. Total Uranium Concentration Versus Time Plot for Monitoring Well 83340

Figure A.2-8. Total Uranium Concentration Versus Time Plot for Monitoring Well 83341

Figure A.2-9. Total Uranium Concentration Versus Time Plot for Monitoring Well 83346

Figure A.2-10. Total Uranium Concentration Versus Time Plot for Monitoring Well 2649

Figure A.2-11. Total Uranium Concentration Versus Time Plot for Monitoring Well 83337

Figure A.2-12. Total Uranium Concentration Versus Time Plot for Monitoring Well 83335

Figure A.2-13. Total Uranium Concentration Versus Time Plot for Monitoring Well 83124

Figure A.2-14. Total Uranium Concentration Versus Time Plot for Monitoring Well 2389

Figure A.2-15. Total Uranium Concentration Versus Time Plot for Monitoring Well 21033

Figure A.2-16. Total Uranium Concentration Versus Time Plot for Monitoring Well 2386

Figure A.2-17. Total Uranium Concentration Versus Time Plot for Monitoring Well 2387

Figure A.2-18. Total Uranium Concentration Versus Time Plot for Monitoring Well 83294

Figure A.2-19. Total Uranium Concentration Versus Time Plot for Monitoring Well 2049

Figure A.2-20. Total Uranium Concentration Versus Time Plot for Monitoring Well 2552

Figure A.2-21. Total Uranium Concentration Versus Time Plot for Monitoring Well 2900

Figure A.2-22. Total Uranium Concentration Versus Time Plot for Monitoring Well 2880

Figure A.2-23. Total Uranium Concentration Versus Time Plot for Monitoring Well 82369

Attachment A.2, Page 67

Figure A.2-25. Ricker Method Total Uranium Plume Calculations

Figure A.2-27. EVS 2022 Plume Metrics

Figure A. 2-31A. Total Uranium Plume Cross Section A-A'

Attachment A.2, Page 73

Figure A. 2-31B. EVS Total Uranium Plume Cross Section A-A'

Figure A.2-32A. Total Uranium Plume Cross Section B-B'

Figure A.2-32B. EVS Total Uranium Plume Cross Section B-B'

Attachment A.2, Page 76

Figure A.2-33A. Total Uranium Plume Cross Section C-C'

Figure A.2-33B. EVS Total Uranium Plume Cross Section C-C'

U.S Department of Energy

Figure A.2-34A. Total Uranium Plume Cross Section D–D'

Figure A.2-34B. EVS Total Uranium Plume Cross Section D–D'

Figure A.2-35A. Total Uranium Plume Cross Section E-E'

U.S Department of Energy

Figure A.2-35B. EVS Total Uranium Plume Cross Section E-E'

Figure A.2-36. Total Uranium Concentration Versus Time Plot for Monitoring Well 13

Figure A.2-37. Total Uranium Concentration Versus Time Plot for Monitoring Well 14

Figure A.2-38. Total Uranium Concentration Versus Time Plot for Monitoring Well 2060

Attachment A.3

This page intentionally left blank

Contents

Abbrev	viations	· · · · · · · · · · · · · · · · · · ·	ii	
Measu	rement	Abbreviations	ii	
A.3.0	A.3.0 Groundwater Elevations and Capture Assessment			
	A.3.1	Groundwater Elevations and Capture Assessment	.1	
	A.3.2	Annual Planned Well Field Shutdown	4	
		A.3.2.1 Water Level Results	5	
		A.3.2.2 Uranium Concentration Results	6	
	A.3.3	Continued Transducer Monitoring	7	
	A.3.4	References	7	

Tables

Table A.3-1. Uranium Concentrations at Monitoring Wells Before, During, and After the	
2022 Well Field Shutdown	8
Table A.3-2. Total Uranium Concentration at Extraction Wells During 2022 Well Field	
Shutdown	9

Figures

Through January 5, 2022)11Figure A.3-2. Routine Groundwater Elevation Map, Second Quarter 2022 (April 4 Through April 7, 2022)12Figure A.3-3. Routine Groundwater Elevation Map, Third Quarter 2022 (August 29 Through August 31, 2022)13Figure A.3-4. Routine Groundwater Elevation Map, Fourth Quarter 2022 (December 5 to December 6, 2022)14Figure A.3-5. Current Operational Design Remediation Footprint15Figure A.3-6. Cumulative Annual Precipitation: 2004 Through 2022 as Recorded at the Butler County Regional Airport16Figure A.3-7. Transducer Locations for the 2022 Operational Shutdown17Figure A.3-8. Water Levels Versus Precipitation May 25, 2007, Through December 31, 202218Figure A.3-9. Monitoring Well Locations for the 2022 Operational Shutdowns19	Figure A.3-1. Routine Groundwater Elevation Map, First Quarter 2022 (January 3	
 Figure A.3-2. Routine Groundwater Elevation Map, Second Quarter 2022 (April 4 Through April 7, 2022) Figure A.3-3. Routine Groundwater Elevation Map, Third Quarter 2022 (August 29 Through August 31, 2022) Figure A.3-4. Routine Groundwater Elevation Map, Fourth Quarter 2022 (December 5 to December 6, 2022) Figure A.3-5. Current Operational Design Remediation Footprint Figure A.3-6. Cumulative Annual Precipitation: 2004 Through 2022 as Recorded at the Butler County Regional Airport Figure A.3-7. Transducer Locations for the 2022 Operational Shutdown Figure A.3-8. Water Levels Versus Precipitation May 25, 2007, Through December 31, 2022 Figure A 3-9 Monitoring Well Locations for the 2022 Operational Shutdowns 	Through January 5, 2022)	11
Through April 7, 2022)12Figure A.3-3. Routine Groundwater Elevation Map, Third Quarter 2022 (August 29 Through August 31, 2022)13Figure A.3-4. Routine Groundwater Elevation Map, Fourth Quarter 2022 (December 5 to December 6, 2022)14Figure A.3-5. Current Operational Design Remediation Footprint15Figure A.3-6. Cumulative Annual Precipitation: 2004 Through 2022 as Recorded at the Butler County Regional Airport16Figure A.3-7. Transducer Locations for the 2022 Operational Shutdown17Figure A.3-8. Water Levels Versus Precipitation May 25, 2007, Through December 31, 202218Figure A 3-9Monitoring Well Locations for the 2022 Operational Shutdowns19	Figure A.3-2. Routine Groundwater Elevation Map, Second Quarter 2022 (April 4	
 Figure A.3-3. Routine Groundwater Elevation Map, Third Quarter 2022 (August 29 Through August 31, 2022) Figure A.3-4. Routine Groundwater Elevation Map, Fourth Quarter 2022 (December 5 to December 6, 2022) Figure A.3-5. Current Operational Design Remediation Footprint Figure A.3-6. Cumulative Annual Precipitation: 2004 Through 2022 as Recorded at the Butler County Regional Airport Figure A.3-7. Transducer Locations for the 2022 Operational Shutdown Figure A.3-8. Water Levels Versus Precipitation May 25, 2007, Through December 31, 2022 Figure A 3-9 Monitoring Well Locations for the 2022 Operational Shutdowns 	Through April 7, 2022)	12
Through August 31, 2022)13Figure A.3-4. Routine Groundwater Elevation Map, Fourth Quarter 2022 (December 5 to December 6, 2022)14Figure A.3-5. Current Operational Design Remediation Footprint15Figure A.3-6. Cumulative Annual Precipitation: 2004 Through 2022 as Recorded at the Butler County Regional Airport16Figure A.3-7. Transducer Locations for the 2022 Operational Shutdown17Figure A.3-8. Water Levels Versus Precipitation May 25, 2007, Through December 31, 202218Figure A 3-9Monitoring Well Locations for the 2022 Operational Shutdowns19	Figure A.3-3. Routine Groundwater Elevation Map, Third Quarter 2022 (August 29	
 Figure A.3-4. Routine Groundwater Elevation Map, Fourth Quarter 2022 (December 5 to December 6, 2022) Figure A.3-5. Current Operational Design Remediation Footprint 15 Figure A.3-6. Cumulative Annual Precipitation: 2004 Through 2022 as Recorded at the Butler County Regional Airport Figure A.3-7. Transducer Locations for the 2022 Operational Shutdown 17 Figure A.3-8. Water Levels Versus Precipitation May 25, 2007, Through December 31, 2022 Figure A 3-9 Monitoring Well Locations for the 2022 Operational Shutdowns 	Through August 31, 2022)	13
to December 6, 2022)	Figure A.3-4. Routine Groundwater Elevation Map, Fourth Quarter 2022 (December 5	
 Figure A.3-5. Current Operational Design Remediation Footprint	to December 6, 2022)	14
 Figure A.3-6. Cumulative Annual Precipitation: 2004 Through 2022 as Recorded at the Butler County Regional Airport	Figure A.3-5. Current Operational Design Remediation Footprint	15
Butler County Regional Airport16Figure A.3-7. Transducer Locations for the 2022 Operational Shutdown17Figure A.3-8. Water Levels Versus Precipitation May 25, 2007, Through December 31, 202218Figure A 3-9 Monitoring Well Locations for the 2022 Operational Shutdowns19	Figure A.3-6. Cumulative Annual Precipitation: 2004 Through 2022 as Recorded at the	
Figure A.3-7. Transducer Locations for the 2022 Operational Shutdown	Butler County Regional Airport	16
Figure A.3-8. Water Levels Versus Precipitation May 25, 2007, Through December 31, 2022	Figure A.3-7. Transducer Locations for the 2022 Operational Shutdown	17
December 31, 2022	Figure A.3-8. Water Levels Versus Precipitation May 25, 2007, Through	
Figure A 3-9 Monitoring Well Locations for the 2022 Operational Shutdowns	December 31, 2022	18
rigate ris 9: Monitoring wen Elocations for the 2022 Operational Shatdowns	Figure A.3-9. Monitoring Well Locations for the 2022 Operational Shutdowns	19

Abbreviations

DOE	U.S.	Department	of	Energy
202	0.0.	2 optimiterite	~	

IEMP Integrated Environmental Monitoring Plan

- OSDF On-Site Disposal Facility
- VAM-3D Variable Saturated Analysis Model in Three Dimensions
- WSA Waste Storage Area

Measurement Abbreviations

- amsl above mean sea level
- ft feet
- gpm gallons per minute
- μg/L micrograms per liter

A.3.0 Groundwater Elevations and Capture Assessment

A.3.1 Groundwater Elevations and Capture Assessment

Quarterly groundwater elevation maps for 2022 are provided in Figures A.3-1 through A.3-4. Each groundwater elevation map contains the following quarter-specific information:

- Groundwater elevation data
- Interpreted water-table contours, capture zones, and flow divides
- Bedrock highs
- Model-predicted current Operational Design Remediation Footprint (based on particle tracks)
- Extent of the maximum 30 micrograms per liter (μ g/L) total uranium plume
- Number of extraction wells in each module and the module-specific pumping rates during the period in which the groundwater elevations were measured

Water levels in 2022 were measured as specified in the Integrated Environmental Monitoring Plan (IEMP), which is Attachment D of the *Comprehensive Legacy Management and Institutional Controls Plan* (DOE 2019). A total of 172 monitoring wells were available for measurement. As required by the IEMP, during the second quarter of 2022, all 172 wells were targeted for water level measurements. During the other three quarters, 99 of the 172 available wells were targeted for measurement. A summary of the results is shown below.

Quarter	Measurement Dates (2022)	Number of Days	Average Water Level (ft amsl) ^a
1	January 3 to January 5	3	516.13
2	April 4 to April 7	4	518.03
3	August 29 to August 31	3	517.40
4	December 5 to 6	2	514.88

^aft amsl = feet above mean sea level.

Five monitoring wells and the uppermost channel in eight multichannel wells were dry at various times of the year. A summary is provided below.

Well	First Quarter	Second Quarter	Third Quarter	Fourth Quarter
2014	DRY			DRY
2384	DRY		DRY	DRY
2636				DRY
22192	DRY	DRY	DRY	DRY
22303				DRY
83293_C1	DRY			DRY
83295_C1				DRY
83335_C1	DRY	DRY	DRY	DRY
83336_C1	DRY	DRY	DRY	DRY
83337_C1	DRY			DRY
83340_C1	DRY			
83341_C1	DRY			DRY
83346_C1				DRY

Quarterly groundwater elevation maps for 2022 are provided in Figures A.3-1 through A.3-4. Water level measurements are generally collected during times when all extraction wells are pumping; however, due to certain conditions (e.g., well maintenance), individual wells might be shut down during the measurement period. Any specific well shutdowns during the elevation measurement period are noted in Figures A.3-1 through A.3-4. The maps for 2022 illustrate capture of the maximum total uranium plume using groundwater elevation contours derived from quarterly water level measurements and model-predicted capture. The pumping rates reported in Figures A.3-1 through A.3-4 are averages of the actual pumping rates during the measurement period.

Model-predicted capture (called the current Operational Design Remediation Footprint) is based on particle tracks that were created using target system pumping rates defined in the current Operational Design. The current Operational Design Remediation Footprint used in this report was constructed using reverse, nonretarded, particle path interpretations from the Variable Saturated Analysis Model in Three Dimensions (VAM-3D) Zoom Groundwater Model that was updated in 2014 to reflect capture during the time period modeled for the 2014 Operational Design Adjustment (DOE 2014). Figure A.3-5 shows the resulting particle tracks that were used to define the remediation footprint. Model particles were seeded at each extraction well. The resulting particle tracks represent the individual path that each particle traveled in 10 years during each of the three pumping stages modeled for the cleanup. The limits of most of the particle tracks are truncated because the particles reached the edge of the VAM-3D Zoom Groundwater Model domain.
The times of travel used to define the particle paths considered the pumping changes that are predicted to occur when different portions of the uranium plume achieve cleanup goals. The following three pumping stages were defined:

- **Stage 1:** 20 wells at a system rate of 5,075 gallons per minute (gpm)
- Stage 2: 10 wells at a system rate of 3,075 gpm
- **Stage 3:** 3 wells at a system rate of 1,100 gpm

A groundwater flow divide between Paddys Run Outlet and the New Baltimore Outlet is not readily distinguishable. Groundwater flow diverges around the bedrock high that separates the Paddys Run Outlet from the New Baltimore Outlet, but without additional measurement locations in the New Baltimore Outlet, the location where flow is dividing is not apparent. However, additional measurement locations in the New Baltimore Outlet are not needed for capture assessment purposes.

During the first two quarters of 2022, flow in the vicinity of the On-Site Disposal Facility (OSDF) was generally from the northeast. During the last two quarters of 2022 flow in the vicinity of the OSDF was more from the north to northwest. Flow direction is influenced by seasonal fluctuations in the aquifer and by the active pumping taking place for the groundwater remediation, which is predicted to last until the end of the remediation. Before the start of pumping for the groundwater remediation, flow in the vicinity of the OSDF was generally west to east. It is anticipated that when pumping stops, flow in the vicinity of the OSDF will return to a generally west-to-east direction.

Figure A.3-6 shows cumulative annual precipitation levels for 2004 through 2022, as recorded at the Butler County Regional Airport. Cumulative precipitation in 2022 was 40.50 inches. Between 2004 and 2022, the annual precipitation level has been as low as 33.20 inches (2010) and as high as 60.20 inches (2011).

Year	Average Fluctuation (feet)	Fluctuation Range (feet)
2022	3.46	1.2 to 5.73
2021	4.14	1.4 to 7.24
2020	4.35	2.1 to 5.97
2019	3.82	0.21 to 7.09
2018	3.92	1.0 to 7.57
2017	3.80	0.15 to 4.83
2016	2.50	0.20 to 4.93
2015	4.64	0.35 to 4.99
2014	5.14	1.21 to 6.35
2013	3.45	0.35 to 4.28
2012	4.70	1.1 to 6.79
2011	7.50	7.4 to 14.5
2010	3.78	0.06 to 12.1
2009	2.46	0.1 to 5.5
2008	5.70	1.0 to 10.46
2007	4.45	1.7 to 7.7
2006	3.40	2.0 to 7.1

Average annual water-table fluctuations and yearly ranges for 2006 through 2022 are as follows.

Capture zone interpretations for 2022 coupled with the particle track interpretations and contoured water-table gradients indicate that the 30 μ g/L total uranium plume was being captured in 2022.

During 2020, the U.S. Department of Energy (DOE) collaborated with the DOE National Laboratory Network to determine what could be done to improve the Fernald Preserve groundwater remediation effort. One recommendation was to utilize available software to conduct four-dimensional mapping exercises: three spatial dimensions with time as the fourth dimension. Earth Volumetric Software was utilized to carry out the recommendation. As part of that exercise, water table mapping was conducted using quarterly water level data collected from August 2014 through April 2022. A total of 30 different quarterly water level events were used for the analysis. Water table interpretation was performed using kriging with external drift, following the methodology of Tonkin and Larson (2002). The kriging results were imported into the software for visualizing and streamline analyses. The streamline capture fraction was used to assess whether full containment is being achieved by the current Operational Design. Results indicated that the current Operational Design achieves full containment of the uranium plume, consistent with previous evaluations reported in this and past Site Environmental Reports.

A.3.2 Annual Planned Well Field Shutdown

The entire well field (excluding the South Plume recovery well RW-2) was shut down from June 6 to July 18, 2022, as planned to allow water levels to recover to nonpumping elevations.

Quarterly measurement of water levels in 2022 was planned so that measurements were not collected during the planned shutdown.

Uranium is bound to sediments in the unsaturated zone of the Great Miami Aquifer in former contamination source areas. This contamination will remain bound unless water levels in the aquifer rise and saturate the contaminated sediments, allowing the bound uranium to dissolve into the groundwater.

This presents a challenge to a pump-and-treat remedy, because pumping lowers the water level. In a pump-and-treat remedy, only the dissolved uranium is removed by the pumping action. Sorbed uranium in the vadose zone is not removed. The concern is that once pumping ends, water levels will rise and provide a means for additional uranium to dissolve into the water, potentially raising dissolved contaminant levels above final remediation goals. This process is referred to as "concentration rebound" and is a concern for pump-and-treat groundwater remedies. Planned annual well field shutdowns have been conducted since 2007 to allow water levels in the aquifer to rise as high as possible to saturate aquifer material that is not normally saturated. To achieve the highest water level rise possible, the well field shutdowns are planned to coincide with seasonal high water levels in the aquifer.

A.3.2.1 Water Level Results

Pressure transducers, which automatically record water levels, are installed in 11 groundwater monitoring wells (2045, 2046, 2095, 2649, 3881, 23274, 62433, 32763, 22301, 22302, and 63119) for the shutdown (Figure A.3-7). Water level measurements were recorded twice each day at midnight and noon.

The zero hour transducer readings (midnight) were used to track water level changes in the transducer wells during the shutdown periods. The maximum water level rise at each well, measured during the shutdown period in 2022, is presented below.

Location	Elevation at Midnight Prior to Shutdown June 6, 2022 (ft amsl)	Elevation at Midnight Prior to Restart July 12, 2022 (ft amsl)	Water Level Rise (ft)
2045	518.27	519.84	1.57
2046	518.91	519.99	1.08
2649	521.80	522.14	0.34
23274	517.74	520.08	2.34
63119 ^a	Not recorded	Not recorded	Not recorded
22302	516.82	519.23	2.41
3881	517.15	518.80	1.65
22301	517.42	519.52	2.10
2095	517.60	518.85	1.25
32763	518.99	521.33	2.34
62433	515.83	519.44	3.61

Planned Shutdown: June 6 to July 12, 2022

^a Data not collected due to dead battery in datalogger.

The water level rise measurements indicate that during the shutdown, the water level rise ranged from 0.34 feet (ft) (well 2649) to 3.61 ft (well 62433).

Figure A.3-8 shows water levels versus precipitation from May 25, 2007, through January 5, 2023. Three wells are shown in the figure: well 2649 (former Waste Storage Area [WSA]), well 2046 (west side of South Field Area), and well 62433 (east side of South Field Area). The combination of the shutdown and seasonal water level rise in 2022 resulted in the following water level rises:

- 5.04 ft in the former WSA (monitoring well 2649)
- 5.27 ft in the west side of the South Field (monitoring well 2046)
- 7.26 ft in the east side of the South Field (monitoring well 62433)

A.3.2.2 Uranium Concentration Results

Consistent with previous years, total uranium concentrations were measured in six groundwater monitoring wells (2045, 2046, 23274, 83124, 83294, and 83337 [Figure A.3-9]) before, during, and after the 2022 shutdown. The results of the 2022 IEMP first-half uranium sampling are used to represent uranium concentrations in the well before the shutdown. Groundwater samples collected in June 2022 represent concentrations during the shutdown. The results of the 2022 IEMP second-half uranium sampling are used to represent uranium concentrations during the shutdown. The results of the 2022 IEMP second-half uranium sampling are used to represent uranium concentrations in the well after the shutdown exercise was completed. Due to a miscommunication between the project lead and the sampling crew post-shutdown samples at monitoring wells 2046, 23274, and 83124_C2 were not collected. The second half of the 2022 post-shutdown sample was incorrectly applied as being the pre-start sample and a true post-shutdown sample was not collected. The two shallowest channels (channels 1 and 2) of the type-8 monitoring wells were sampled with the exception of well 83124_C2 (as explained previously) or if the channel was dry. Uranium concentration measurements at the six monitoring wells before, during, and after the 2022 shutdown are provided in Table A.3-1.

A comparison of pre-shutdown uranium concentrations to pre-startup uranium concentrations in the monitoring wells indicated that concentrations increased in four of the six wells during the shutdown: 2045, 83124, 83294_C1, 83294_C2, and 83337_C2. As stated in the IEMP, during the second half of the year, the channel with the highest uranium concentration (as measured during the first half of the year) is sampled if it is not dry. If the targeted channel is dry, the next deeper channel is sampled. In the second half of 2022, 83294_C1 and 83337_C1 were dry.

As prescribed in the IEMP, uranium concentrations were also measured at the extraction wells before and daily for 4 days after the wells were restarted. After each well was restarted, the first water sample was collected after the well had been pumping for approximately 5 minutes. Results for the shutdown are provided in Table A.3-2. Recovery well RW-2 continued to run during the shutdown.

The last column of Table A.3-2 provides the difference between the maximum uranium concentration measured after the wells were restarted and the average uranium concentration measured within a month prior to the shutdown at each extraction well. As the data indicate, approximately half of the wells showed an increase in uranium concentrations. The largest increase in uranium concentration was measured in recovery well RW-3 (8.9 μ g/L).

A.3.3 Continued Transducer Monitoring

Although not required by the IEMP, pressure transducers installed in 2007 to support the first annual well field shutdown remain in the wells and continue to operate so that daily changes in water levels can be recorded on a continuous, routine basis at key points in the aquifer. The transducers are programmed to record a water level measurement twice daily, at noon and midnight. Data from three of the six locations (former WSA [2649], west side of the South Field Area [2046], and east side of the South Field Area [62433]) are shown in Figure A.3-7 and are plotted in Figure A.3-8 along with precipitation data collected through January 5, 2023. The transducers will continue to record data to provide a more complete record of seasonal and short-term water-table fluctuations and continue to be used to plan the timing of future well field shutdowns.

A.3.4 References

DOE (U.S. Department of Energy), 2014. *Operational Design Adjustments-1, WSA Phase-II Groundwater Remediation Design, Fernald Preserve*, LMS/FER/S10798, Office of Legacy Management, March.

DOE (U.S. Department of Energy), 2019. *Comprehensive Legacy Management and Institutional Controls Plan*, LMS/FER/S03496, Revision 12, Office of Legacy Management, January.

Tonkin, M.J., and S.P. Larson, 2002. "Kriging Water Levels with a Regional-Linear and Point-Logarithmic Drift," *Groundwater* 40(2):185–193.

ι ι	Uranium Concentrations at Monitoring Wells Before, During, and After the 2022 Wellfield Shut Down														
			First Half 202	2 Pre-Shutdown	Pre-Start-Up	Concentrations	Second Half 20	22 Post-Shutdown							
Well	Easting	Northing	Conce	ntrations	July	/ 2022	Conce	entrations							
			Date	Uranium (µg/L)	Date	Uranium (μg/L)	Date	Uranium (μg/L)							
2045	1348291	477158.9	4/26/2022	51.1	7/13/2022	66.4	8/11/2022	55.9							
2046	1347950	478087.8	2/9/2022	18.8	7/11/2022	16.5	Not Sampled	Not Sampled							
23274	1349406	478337	1/19/2022	67.9	7/11/2022	7/11/2022 58.8		Not Sampled							
83124_C1 83124_C2	1346826 1346826	479977.2 479977.2	5/24/2022 5/24/2022	309.0 20.5	7/12/2022 7/12/2022	498.0 31.7	9/29/2022 Not Sampled	304.0 Not Sampled							
83294_C1 83294_C2	1349599 1349599	477189.5 477189.5	3/8/2022 3/2/2022	222.0 116.0	7/12/2022 7/12/2022	241.0 102.0	Dry 10/3/2022	Dry 72.5							
83337_C1 83337_C2	1346704 1346704	481051.9 481051.9	5/17/2022 5/17/2022	1,020 5.7	7/12/2022 7/12/2022	411.0 106.0	Dry 11/7/2022	Dry 3.7							

Table A.3-1. Uranium Concentrations at Monitoring Wells Before, During, and After the 2022 Well Field Shutdown

	June 6, 2022			Total Uraniu	um Concentrat	ion (ug/L) After	· Well Field R	e-Start		Maximum Post
Extraction Well	Total Uranium Concentration (ug/L)	Date of Well Restart	1st Restart Sample	2nd Restart Sample	3rd Restart Sample	4th Restart Sample	Minimum	Maximum	Range	June 6, 2022 Concentration ^a
RW-1	10.4	7/12/2022	9.3	8.4	8.7	8.3	8.3	9.3	1.0	-1.1
RW-2 ^b	13.3	NA ^b	12.1	12.1	12.3	12.6	12.1	12.6	0.5	-0.7
RW-3	19.8	7/28/2022	28.7	28.6	28.0	27.1	27.1	28.7	1.6	8.9
RW-4 ^c	6.0	NA ^c	NA ^c	NA ^c	NA ^c	NA ^c	NA ^c	NA ^c	NA ^c	NA ^c
RW-6	28.5	7/18/2022	17.1	26.0	26.4	25.9	17.1	26.4	9.3	-2.1
RW-7	21.7	7/18/2022	27.6	17.1	17.5	17.6	17.1	27.6	10.5	5.9
EW-15A	24.9	7/21/2022	31.2	33.7	26.5	26.9	26.5	33.7	7.2	8.8
EW-17A	10.4	7/21/2022	11.3	11.9	12.5	11.4	11.3	12.5	1.2	2.1
EW-18	27.6	7/19/2022	23.0	23.8	24.5	28.0	23.0	28.0	5.0	0.4
EW-19	18.9	7/19/2022	17.6	17.9	17.4	21.0	17.4	21.0	3.6	2.1
EW-20	32.6	7/19/2022	28.5	29.2	2.8	31.4	2.8	31.4	28.6	-1.2
EW-21A	29.3	7/19/2022	37.1	34.8	32.4	36.4	32.4	37.1	4.7	7.8
EW-22	20.2	7/20/2022	16.6	18.1	20.7	20.0	16.6	20.7	4.1	0.5
EW-23	28.9	7/20/2022	15.9	19.5	23.9	24.6	15.9	24.6	8.7	-4.3
EW-24	24.6	7/20/2022	19.2	19.9	23.4	23.7	19.2	23.7	4.5	-0.9
EW-25	19.6	7/21/2022	19.4	23.2	19.7	21.9	19.4	23.2	3.8	3.6
EW-26	22.6	8/24/2022	22.6	20.7	22.5	21.3	20.7	22.6	1.9	0
EW-27 ^d	23.5	7/18/2022	19.7	23.0	22.2	23.6	19.7	23.6	3.9	0.1
EW-30	9.2	9/8/2022	6.2	4.8	5.2	6.4	4.8	6.4	1.6	-2.8
EW-33A	77.6	8/24/2022	19.0	26.4	24.3	23.1	19.0	26.4	7.4	-51.2

Table A.3-2. Total Uranium Concentration at Extraction Wells During 2022 Well Field Shutdown

Shading indicates uranium concentration after well field re-start was greater than June 6, 2022, uranium concentration.

^a Shutdown began on June 6, 2022, at 7:00 a.m. and ended on July 12, 2022, for a duration of 36 days.

^b NA= not applicable; leading edge well continued operating during the shutdown.

^c NA=not applicable; well not restarted.

^d Well operated during shutdown as necessary for treatment.

Figure A.3-1. Routine Groundwater Elevation Map, First Quarter 2022 (January 3 Through January 5, 2022)

U.S. Department of Energy

Fernald Preserve 2022 Site Environmental Report Doc. No.43783

Extraction well		Bedrock High	
	April 4 to April 7, 2022, Operationa Average Pumping Rates	al Status	N
	South Plume (6 wells): South Field Extraction (11 wells): Waste Storage Area (3 wells):	1,033 gpm 2,997 gpm 962 gpm	Scale in Feet 1,000 500 0 1,00
			NAD 1983 State Plane Ohio South

Figure A.3-2. Routine Groundwater Elevation Map, Second Quarter 2022 (April 4 Through April 7, 2022)

U.S. Department of Energy

Fernald Preserve 2022 Site Environmental Report Doc. No.43783

Figure A.3-3. Routine Groundwater Elevation Map, Third Quarter 2022 (August 29 Through August 31, 2022)

U.S. Department of Energy

Fernald Preserve 2022 Site Environmental Report Doc. No.43783

•	(Feet AMSL)	30 μg/L Footprint for 2022	
*	Extraction Well	Bedrock High	
	December 5 to Average Pumpin	6, 2022, Operational Status ng Rates	N
	South Plume (4 South Field Extr Waste Storage	wells) ^a : 843 gpm raction (9 wells): 2,841 gpm Area (3 wells): 974 gpm	Scale in Feet
	aRW-4 and RW-6	turned off December 5 and 6, 2022.	1,000 500 0 1,000 NAD 1983 State Plane Ohio South

Figure A.3-4. Routine Groundwater Elevation Map, Fourth Quarter 2022 (December 5 to December 6, 2022)

Figure A.3-6. Cumulative Annual Precipitation: 2004 Through 2022 as Recorded at the Butler County Regional Airport

Figure A.3-7. Transducer Locations for the 2022 Operational Shutdown

U.S. Department of Energy

Attachment A.3, Page 18

Figure A.3-9. Monitoring Well Locations for the 2022 Operational Shutdowns

Attachment A.4

Contents

Abbrev	viations		ii
Measu	rement	Abbreviations	ii
A.4.0	Non-U	ranium Final Remediation Level Results	1
	A.4.1	Non-Uranium FRL Exceedances for 2022	1
		A.4.1.1 Non-Uranium Direct-Push Sampling Results for 2022	2
	A.4.2	Evaluation of 2022 Non-Uranium FRL Exceedances Outside the Current	
		Operational Design Remediation Footprint	3
		A.4.2.1 Background	3
		A.4.2.2 Evaluation and Discussion	3
	A.4.3	Conclusions	4
	A.4.4	References	4

Tables

Table A.4-1. Summary Statistics and Trend Analysis for Non-Uranium Constituents with	
2022 Results Above FRLs	6
Table A.4-2. Groundwater FRL Exceedances from 1997 Through 2022	7
Table A.4-3. Summary of Persistence Evaluation of Non-Uranium FRL Exceedances Outside	
the Current Operational Design Remediation Footprint	9

Figures

Figure A.4-1. Non-Uranium Constituent Locations with 2022 Results Above FRLs 1	10
Figure A.4-2. Zinc Concentration Versus Time Plot for Monitoring Well 22205 1	11
Figure A.4-3. Zinc Concentration Versus Time Plot for Monitoring Well 3128 1	11

Abbreviations

- FRL final remediation level
- GMA Great Miami Aquifer
- IEMP Integrated Environmental Monitoring Plan
- LMICP Comprehensive Legacy Management and Institutional Controls Plan
- OSDF On-Site Disposal Facility
- WSA Waste Storage Area

Measurement Abbreviations

- mg/L milligrams per liter
- μg/L micrograms per liter
- pCi/L picocuries per liter

A.4.0 Non-Uranium Final Remediation Level Results

This attachment provides an analysis of the non-uranium final remediation level (FRL) exceedances both inside and outside the current Operational Design Remediation Footprint at the Fernald Preserve, Ohio, Site. This attachment evaluates non-uranium FRL results for 2022 collected under the Integrated Environmental Monitoring Plan (IEMP), which is Attachment D of the *Comprehensive Legacy Management and Institutional Controls Plan* (LMICP) (DOE 2019). The purpose of the evaluation is to:

- Identify 2022 non-uranium FRL exceedances (Section A.4.1).
- Determine the persistence of non-uranium FRL exceedances outside the current Operational Design Remediation Footprint (Section A.4.2).
- Describe the evaluation of 2022 non-uranium FRL exceedances outside the current Operational Design Remediation Footprint (Section A.4.2).
- Present conclusions (Section A.4.3).

Consistent with past Site Environmental Reports, non-uranium groundwater monitoring results from wells monitored in the Great Miami Aquifer (GMA) for performance of the On-Site Disposal Facility (OSDF) are included in the data evaluation presented in this section of the Site Environmental Report. Beginning in 2017, the number of non-uranium constituents being sampled in the OSDF monitoring program was reduced. Data presented and discussed in the *Fernald Preserve 2015 Site Environmental Report* (DOE 2016) supported making the changes to the OSDF monitoring program. The proposed changes were approved by the U.S. Environmental Protection Agency, the Ohio Environmental Protection Agency, and stakeholders during the routine review and approval process of the 2017 LMICP (DOE 2017a).

As a result of the OSDF monitoring changes, the following nine non-uranium constituents are no longer being routinely sampled for in the GMA as part of the OSDF monitoring program: total organic carbon, iron, sodium, cobalt, total alkalinity, barium, chloride, copper, and chromium. The non-uranium constituents currently being sampled in the GMA as part of the IEMP are provided in Table 6 in Attachment D of the LMICP (DOE 2019). A list of the constituents routinely sampled in the GMA as part of the OSDF monitoring program can be found in Section 3.2.1.3 in Attachment C of the LMICP. Tables and data analyses presented below reflect the current combined sampling effort.

A.4.1 Non-Uranium FRL Exceedances for 2022

Table A.4-1 shows the summary statistics and trend analysis for the 2022 non-uranium FRL exceedances from monitoring wells both inside and outside the current Operational Design Remediation Footprint. Five non-uranium FRL constituents had one or more FRL exceedances during 2022. Figure A.4-1 identifies the locations of these exceedances.

Figure A.4-1 shows that the non-uranium FRL exceedances in 2022 were in the former Waste Storage Area (WSA), with one exceedance along the eastern property boundary. The exceedances in the WSA are within the current Operational Design Remediation Footprint. The exceedance along the eastern property boundary was located outside the current Operational

Design Remediation Footprint. Specific discussion regarding exceedances and persistence outside the footprint is provided in Section A.4.2.

Table A.4-2 identifies the locations and constituents that have had non-uranium FRL exceedances since 1997 for constituents monitored in 2022. The first column in Table A.4-2 lists the groundwater FRL constituents monitored in 2022. As discussed above, Table A.4-2 reflects the current monitoring effort. The 2016 Site Environmental Report (DOE 2017b) provides a discussion concerning the changes implemented in 2017. The second column in Table A.4-2 identifies the wells monitored that have had an exceedance since 1997 for each constituent. The third column identifies the associated aquifer zone monitored. The fourth column identifies the associated monitoring program for each well or constituent. The remaining columns show monitoring years that reflect a semiannual sampling frequency; a "1" denotes an exceedance for one of the two samples, and a "2" denotes an exceedance for both samples. Beginning in 2017, the sampling frequency of several of the wells that had been sampled quarterly through 2013 was reduced from a semiannual to annual frequency. Data presented and discussed in the 2015 Site Environmental Report (DOE 2016) supported making the sampling frequency change. Table A.4-2 also indicates whether exceedances occurred inside or outside the remediation footprint (shading indicates the well is located outside the footprint).

As specified in Table 4 in the IEMP (DOE 2019), there were 13 non-uranium constituents monitored in 2022; as stated above, five constituents had exceedances during 2022. The following table summarizes the 2022 non-uranium monitoring information.

Constituent (units)	Groundwater Final Remediation Level	2022 Monitoring Summary	2022 Maximum Exceedance		
Antimony (mg/L)	0.0060	No exceedances	Not applicable		
Arsenic (mg/L)	0.050	No exceedances	Not applicable		
Boron (mg/L)	0.33	No exceedances	Not applicable		
Carbon disulfide (mg/L)	5.5	No exceedances	Not applicable		
Fluoride (mg/L)	4	No exceedances	Not applicable		
Lead (mg/L)	0.015	No exceedances	Not applicable		
Manganese (mg/L)	0.90	No exceedances	Not applicable		
Molybdenum (mg/L)	0.10	Exceedances in former WSA wells	0.601		
Nickel (mg/L)	0.10	No exceedances	Not applicable		
Nitrate + nitrite, as nitrogen (mg/L)	11	Exceedances in former WSA wells	46.8		
Technetium-99 (pCi/L)	94	Exceedances in former WSA wells	347		
Trichloroethene (µg/L)	5	Exceedances in former WSA wells	8.53		
Zinc (mg/L)	0.021	Exceedance in the Property Plume Boundary Wells	0.0370		

A.4.1.1 Non-Uranium Direct-Push Sampling Results for 2022

In 2022, no direct-push sampling was conducted in the former WSA.

A.4.2 Evaluation of 2022 Non-Uranium FRL Exceedances Outside the Current Operational Design Remediation Footprint

This section presents an evaluation of the persistence of non-uranium FRL exceedances outside the current Operational Design Remediation Footprint.

A.4.2.1 Background

The Restoration Area Verification Sampling Program Summary Report (DOE 1998) states that any FRL exceedance detected at the property boundary during routine monitoring outside the 10-year uranium-based restoration footprint (DOE 1997a) would also be evaluated for persistence. The evaluation would be performed using the same conservative data evaluation method approved in the Restoration Area Verification Sampling Program Project-Specific Plan (DOE 1997b) to determine whether a change in the aquifer restoration remedy is required. This evaluation was expanded, beginning with the 2000 Integrated Site Environmental Report (DOE 2001), to include all non-uranium FRL exceedances detected outside the 10-year uranium-based restoration footprint, not just those detected at the property boundary. In the 2003 Site Environmental Report (DOE 2004), the 10-year uranium-based restoration footprint was replaced with a 10-year time-of-travel remediation footprint based on 2003 target pumping rates and using the Variable Saturated Analysis Model in Three Dimensions Zoom Groundwater Model. The footprint was updated in 2005 to reflect capture during the period modeled for the WSA (Phase II) remediation design. The footprint was updated in 2014 to reflect capture during the time period modeled for the 2014 Operational Design Adjustment (DOE 2014) (Figure A.4-1).

Analytical data from samples collected immediately following an FRL exceedance are evaluated to determine whether the exceedance is persistent. In accordance with the approved *Restoration Area Verification Sampling Program Project-Specific Plan* (DOE 1997b), if two or more consecutive sampling events following an FRL exceedance indicate that the concentration has decreased below the groundwater FRL, then the exceedance is not considered persistent. If an FRL exceedance outside the current Operational Design Remediation Footprint is determined to not be persistent, then no additional action is required beyond the routine groundwater monitoring specified in the current IEMP. If an FRL exceedance is determined to be persistent, then the cause of the persistent exceedance will be identified and its effect on the aquifer remedy design assessed. Ultimately, the cause needs to be addressed either through a modification of the aquifer remedy or by other means. It is recognized that some non-uranium constituents can be oxidation-reduction sensitive, and their stability is controlled in large measure by the oxidation-reduction state of the groundwater, which can vary, perhaps causing transient FRL exceedances to come and go.

A.4.2.2 Evaluation and Discussion

Figure A.4-1 and the shaded portion of Table A.4-1 identify the 2022 non-uranium FRL exceedances outside the current Operational Design Remediation Footprint. In 2022, there was one FRL exceedance outside the current Operational Design Remediation Footprint: zinc in monitoring well 22205.

Table A.4-3 addresses possible persistent FRL exceedances that occurred outside the current Operational Design Remediation Footprint in 2022. If the results of two or more sampling events immediately following an FRL exceedance indicate that the concentration decreased below the FRL, then the exceedance is identified as not persistent in Table A.4-3.

The following is a summary of results presented in Table A.4-3:

- The zinc FRL exceedance at monitoring well 3128, identified as being potentially persistent in 2021, was shown to be not persistent in 2022.
- The zinc FRL exceedance at monitoring well 22205, identified as being potentially persistent in 2021, requires that additional data be collected to determine if it is persistent.

Figures A.4-2 and A.4-3 present individual graphs of time versus concentration for the wells listed in Table A.4-3. Semiannual sampling results from OSDF monitoring activities are included in the evaluation of property boundary wells.

The year 2022 marks 26 years that an evaluation for persistence of non-uranium FRL exceedances in wells outside the current Operational Design Remediation Footprint has been conducted, as part of the IEMP. In the past, many exceedances identified as persistent became not persistent in later years. As of 2022, no persistent exceedances are identified outside the remediation footprint.

A.4.3 Conclusions

From the information provided in this attachment, the following conclusions can be made:

- Non-uranium FRL exceedances occurring in the former WSA were taken into consideration for the current Operational Design and are within capture of the groundwater remediation system.
- In 2022, a zinc FRL exceedance in monitoring well 22205 requires that additional routine data be collected to determine whether it is persistent.
- In 2022, a zinc FRL exceedance in monitoring well 3128 (detected in 2021) was determined to be non-persistent.

A.4.4 References

DOE (U.S. Department of Energy), 1996. *Record of Decision for Remedial Actions at Operable Unit 5*, 7478 U 007 501.4, Fluor Fernald, Cincinnati, Ohio, January.

DOE (U.S. Department of Energy), 1997a. *Baseline Remedial Strategy Report, Remedial Design* for Aquifer Restoration, 2505-RP-0003, Revision 0, Fernald Environmental Management Project, Fernald Area Office, Cincinnati, Ohio, June.

DOE (U.S. Department of Energy), 1997b. *Restoration Area Verification Sampling Program Project-Specific Plan*, Fernald Environmental Management Project, Fernald Area Office, Cincinnati, Ohio.

DOE (U.S. Department of Energy), 1998. *Restoration Area Verification Sampling Program Summary Report*, Final, Fernald Environmental Management Project, Fernald Area Office, Cincinnati, Ohio.

DOE (U.S. Department of Energy), 2001. 2000 Integrated Site Environmental Report, Fernald Environmental Management Project, Fernald Area Office, Cincinnati, Ohio.

DOE (U.S. Department of Energy), 2004. 2003 Site Environmental Report, 51350-RP-0024, Fluor Fernald, Fernald Area Office, Cincinnati, Ohio, June.

DOE (U.S. Department of Energy), 2014. *Operational Design Adjustments-1, WSA-Phase-II Groundwater Remediation Design, Fernald Preserve*, LMS/FER/S10798, Office of Legacy Management, September.

DOE (U.S. Department of Energy), 2016. *Fernald Preserve 2015 Site Environmental Report*, LMS/FER/S13591, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2017a. *Comprehensive Legacy Management and Institutional Controls Plan*, LMS/FER/S03496, Revision 10, Office of Legacy Management, January.

DOE (U.S. Department of Energy), 2017b. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2019. *Comprehensive Legacy Management and Institutional Controls Plan*, LMS/FER/S03496, Revision 12, Office of Legacy Management, January.

Table A.4-1. Summary Statistics and Trend Analysis for Non-Uranium Constituents with 2022 Results Above FRLs

Constituent (FRL) ^a	Monitoring Well	No. of Samples ^{b,c,d}	No. of Samples Above FRL ^{b,c,d}	No. of Samples Above FRL for 2022 ^{b,c,d}	Maximum Exceedance for 2022 ^{b,c,d,e,f}	Minimum ^{b,c,d,e,f}	Maximum ^{b,c,d,e,f}	Average ^{b,c,d,e,f}	Standard Deviation ^{b,c,d,e,f}	Trend ^{b,c,d,e,f,g}
					(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
Molybdenum (0.10 mg/L)	2649	45	45	2	0.601	0.175	1.26	0.473	0.236	No Trend
Nitrate + nitrite as nitrogen (11 mg/L) ^h										
	83338_C1	27	22	2	46.8	0.404	73.8	39.8	20.6	No Trend
	83340_C1	29	20	1	16.6	0.470	761	43.9	139	Down
	83340_C2	32	31	2	17.4	2.93	86.7	39.5	24.1	Down
	83340_C3	32	27	1	17.9	1.13	133	38.7	32.4	Down
	83341_C1	15	11	1	37.2	0.265	56.3	22.0	19.0	Up
	83341_C2	32	9	1	11.6	0.090	258	19.1	45.7	No Trend
					(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	(pCi/L)	
Technetium-99	2649	53	49	1	347	55.2	1660	479	429	Down
(94 pCi/L)	83338_C1	27	22	2	328	10.1	515	237	132	Up
					(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	
Trichloroethene (5 μg/L)	2649	45	28	1	8.53	0.12	120	25.3	30.2	Down
Zing (0.021 mg/l.)					(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
Zinc (0.021 mg/L)	22205	59	2	1	0.0370	0.001	0.0370	0.00616	0.00699	Up

Note: Shading indicates well is outside the current Operational Design Remediation Footprint.

^a From Record of Decision for Remedial Actions at Operable Unit 5 (DOE 1996), Table 9-4.

^b Based on samples from August 1997 through 2022.

^c If more than one sample is collected per well per day (e.g., duplicate), then only one sample is counted for the total number of samples, and the sample with the maximum representative concentration is used for determining the summary statistics (minimum, maximum, average, and standard deviation) and Mann-Kendall test for trend.

^d Rejected data qualified with an R were not included in the count, the summary statistics, or Mann-Kendall test for trend.

^e If the number of samples is greater than or equal to four, then the Mann-Kendall test for trend and all of the summary statistics are reported. If the total number of samples is equal to three, then the minimum, maximum, and average are reported. If the total number of samples is equal to two, then the minimum and maximum are reported. If the total number of samples is equal to two, then the minimum and maximum are reported. If the total number of samples is equal to two, then the minimum and maximum are reported. If the total number of samples is equal to one, then the data point is reported as the minimum.

^f For results where the concentrations are below the detection limit, the results used in the summary statistics and Mann-Kendall test for trend are each set at half the detection limit.

⁹ Mann-Kendall test for trend is performed with a 95% confidence interval, using data from third quarter 1998 through 2022.

^h FRL based upon nitrate from *Record of Decision for Remedial Actions at Operable Unit* 5 (DOE 1996), Table 9–4.

Constituent	Well ^a	Aquifer	Project ^b	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016 ^d	2017 ^e	2018 ^e	2019 ^e	2020 ^e	2021 ^e	2021 ^e
Antimony		Zone	.,	2°	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	1 2	12	1 2	12	12	1 2	1 2	1 2	1 2	1 2
,,	22198	0	P/PB													1	1												
	22199 22204	0	P/PB P/PB													1													
	22205	0	P/PB													1													
	22208	0	P/PB							1				1		1													
	2431	0	P/PB							1						1													
	2432 2636	0 4	P/PB PRRS								1	1		1 1		1	1	1					1						
	2733	0	P/PB											1															
	3070 31217	2	P/PB P/PB											1		1													
	3398	2	P/PB											1															
	3424 3426	0	P/PB P/PB											1 1		1													
	3431	0	P/PB													1													
	3432 4398	0	P/PB P/PB											1		1													
Arsenic																													
	2636 2898	4 4	PRRS PRRS	1	1	2	1		1		1						1												
	2900	4	PRRS				1																						
Boron	2045	2	SF			1 1	1																						
	2049	2	SF	2	2	22	2 1		1																				
Carbon disulfide	2649	1	WSA		1																								
	3821	1	WSA			1					1																		
Fluoride	2431	0	P/PB		1																								
Lead																													
	22198 2431	0	P/PB P/PB				1										1												
	3733	0	P/PB	1			1																						
Manganese	2010	1	WSA				1	1		1 1	1 1	1	1 1	1 1	1 1	1		1 1	1 1	2 1	1			1			1	1	
	22198	0	P/PB						1																				
	22203	0	P/PB P/PB							1	1	1 1	1 1	1 1	1 1	22	2 1	1 2	22	2 2	2 2	22	1 2 2	1					
	22205	0	P/PB									1					1												
	2431	0	P/PB		2													1											
	2432	0	P/PB	1	1	1	1	2	1	1	1	1	1																
	2733	0	P/PB				1	1	1			1	1							1									
	3093	4	P/PB			1	1	1	1	1 1	1	1	1	1 1	1 1	1	1 1	1 1	1 1										
	83337_C1	1	WSA			l '	ľ	ľ	'		ľ		1		1 1			ľ '											
	83337_C2	1	WSA												1	1													
	83338_C2	1	WSA											1	1	1			1										
	83339_C1	1	WSA											1	1 1	4													
	83339_C2 83339_C3	1	WSA												1	'		1											
	83341_C1	1	WSA											1	1 1			4	1	4			1			1	1		
	83346_C1	1	WSA											1	1 1	1		ľ		'									
Mahihdanum	83346_C2	1	WSA											1 1	1	1													
Molybaenum	2649	1	WSA	1	1	1	1	1	1	1 1	1 1	1 1	1	1	1 1	1 1	1 1	1 1	1 1	2 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1
Nickel	22108	0	P/PB			1																							
	2398	2	P/PB	1	22	2																							
	4398 83346_C1	2	P/PB			1									1														
	83346_C2	1	WSA												1	1													
Nitrate/Nitrite	2648	1	WSA		1	1	1	1		1	1 1		1																
	2649	1	WSA	1	1 1	1 1	1 1	2 2	2 1	1 1	1 1	1	1	1	1 1			1	1	1									
	2821 3821	1 1	WSA WSA			1	1			1		1	1 1	1 1	1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1	2 1	1 1	1 1	1	1 1	1 1	1	1 1	1	
	83338_C1	1	WSA														1	1 1	1	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1	1 1
	83338_C2 83338_C3	1 1	WSA WSA											1		1 1 1	1 1 1 1	1 1 1	1 1	1 1	1	1 1		1		1			
	83340_C1	1	WSA											1	1 1	1	1	1 1	1 1	1	1 1			1	1 1	1	1 1	1	1
	83340_C2 83340_C3	1 1	WSA WSA											1 1	1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1	1 1	1 1 1 1	1 1 1	1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1 1	1 1 1	1 1 1
	83341_C1	1	WSA											1					1 1	1				1	1	1 1	1	1	1
	83341_C2 83341_C3	1 1	WSA WSA											1	1				1		1		1		1	1 1 1 1	1		1
Selenium	00400		D/DD																										
	22198 22199	0	P/PB P/PB																									1	
	22203	0	P/PB																									1	
	22200	3	P/PB																									1	
Technotium 00	22212	3	P/PB																									1	
rechnetium-33	2648	1	WSA			1		2		1																			
	2649	1	WSA	1	1 1	1 1	1 1	22	2 1	1 1	1 1	1 1	1	1	1 1	1 1	1 1	1 1	1 1	2 1	1 1	1 1	1 1	1 1	1 1	1 1	1		1
	83338_C1	1	WSA			Ċ					· ·						1	1 1	1	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1	1 1
	83338_C2 83338_C3	1	WSA WSA											1		1	1 1 1 1	1 1 1	1 1	1 1	1	1							
	83340_C1	1	WSA											1	1 1	1	1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1 1	1	1 1		
	83340_C2 83340 C3	1 1	WSA WSA											1 1 1 1	1 1 1 1	1 1 1 1		1	1										
Trichloroethene				1		İ										<u> </u>	İ												
	2649 2821	1 1	WSA WSA		1	1	1	1	1	1 1	1 1	1 1	1	1 1 1	1	1 1 1	1 1	1 1 1 1	1 1 1 1	1 1 2				1	1 1	1 1	1		1
Zinc	00.55		D/2-																										
	22198 22199	0	P/PB P/PB							1							1												
	22204	0	P/PB							1					1		1												
	22205 22210	0	P/PB P/PB									1	1			1										1			1
	2398	2	P/PB		1																								
	2431 2432	0	P/PB P/PB		2	1	1 1 1																						
	2625	4	PRRS												1 1			1 1	1	1 1	1	1	1 1						
	2636 2733	4 0	PRRS P/PB			1									1 1					1									
	2900	4	PRRS				1				1			1															
	3128 3426	4 0	PRRS P/PB			1 1						1											1					1	
	3429	0	P/PB			2																			1				
	3431 3733	0	P/PB P/PB						1	1																			
	2800	4	DDDS					1																					

Table A.4-2. Groundwater FRL Exceedances from 1997 Through 2022

 Note:
 Shading indicates well is outside the current Operational Design remediation footprint.

 ^aA '1' denotes an exceedance for the time period; a '2' denotes two exceedances during the time period due to quarterly sampling frequency or multiple sampling projects.

 ^bWSA = Waste Storage Area
 SF = South Field

 P/PB = Property/Plume Boundary for FRL Exceedances
 PRRS = Property/Plume Boundary for Paddys Run Road Site

 ^cSampling for the IEMP was initiated in August 1997.
 ^a Prior to 2017, P/PB included OSDF monitoring results for some constituents.

 ^e Beginning in 2017, monitoring frequency for PI/PB and PRRS projects changed from semi-annual to annual.

U.S. Department of Energy

Constituent	Monitoring Well	Monitoring Program	Pertinent 2021 Results	2022 FRL Exceedance	Evaluation Results for 2022	Figure Number
Zinc	22205	Property/Plume Boundary	Additional routine data required	Yes	Additional routine data required	A.4-2
Zinc	3128	Property/Plume Boundary	Not applicable	No	Not persistent	A.4-3

Table A.4-3. Summary of Persistence Evaluation of Non-Uranium FRL ExceedancesOutside the Current Operational Design Remediation Footprint

Figure A.4-1. Non-Uranium Constituent Locations with 2022 Results Above FRLs

Figure A.4-2. Zinc Concentration Versus Time Plot for Monitoring Well 22205

Figure A.4-3. Zinc Concentration Versus Time Plot for Monitoring Well 3128

Attachment A.5
Contents

Abbrev	viations			ii
Measu	rement A	bbreviatior	18	ii
A.5.0	On-Site	Disposal Fa	acility Monitoring Results	1
	A.5.1	Flow and	Hydraulic Performance	3
		A.5.1.1	Overall LCS Volumes	3
		A.5.1.2	LDS Accumulation Rates and Volumes	4
		A.5.1.3	Liner Efficiencies	7
		A.5.1.4	HTW Water Yields	8
	A.5.2	Water Qua	ality: Data Presentations and Evaluations	8
		A.5.2.1	Semiannual Monitoring Summary Statistics	9
		A.5.2.2	Concentration Plots	10
		A.5.2.3	Control Charts	11
		A.5.2.4	Bivariate Plots	12
		A.5.2.5	Upward Concentration Trends in the HTW and GMA Wells	13
	A.5.3	Cell Cap I	nspections	14
	A.5.4	Summary	of Overall Performance and Findings and Recommendations	14
	A.5.5	Reference	s	16

Tables

Table A.5-1. OSDF Initiation and Completion Dates	. 17
Table A.5-2. Rules for Summary Statistics for Cells 1 Through 8	. 19
Table A.5-3. OSDF Groundwater, Leachate, and LDS Monitoring Summary	. 20

Figures

Figure A.5-1. Cross Section of OSDF Liner System with HTW at the Drainage Corridor	22
Figure A.5-2. OSDF Footprint and Monitoring Well Locations	23
Figure A.5-3. OSDF Monthly LCS Flow (October 2006 Through December 2022)	24
Figure A.5-4. OSDF Annual LCS Flow (2007 Through 2022)	25
Figure A.5-5. Maximum LDS Accumulation Rate Between 2006 and 2022	26
Figure A.5-6. OSDF Statistical Evaluation Process	27
Figure A.5-7. Cell 4 LDS Concentration, Accumulation Rate, and Uranium Mass	
Comparison	28
Figure A.5-8. Cell 6 LDS Concentration, Accumulation Rate, and Uranium Mass	
Comparison	29

Abbreviations

CAWWT	Converted Advanced Wastewater Treatment
CUSUM	Shewhart-cumulative sum
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
GMA	Great Miami Aquifer
GWLMP	Groundwater/Leak Detection and Leachate Monitoring Plan
HTW	horizontal till well
LCS	leachate collection system
LDS	leak detection system
LMICP	Comprehensive Legacy Management and Institutional Controls Plan
Ohio EPA	Ohio Environmental Protection Agency
OSDF	On-Site Disposal Facility
SCL	Shewhart control limit

Measurement Abbreviations

ft	feet
gpad	gallons per acre per day
μg/L	micrograms per liter

A.5.0 On-Site Disposal Facility Monitoring Results

This attachment provides results for the On-Site Disposal Facility (OSDF) leak detection and leachate monitoring program at the Fernald Preserve, Ohio, Site. Monitoring and sampling were conducted in accordance with the *Comprehensive Legacy Management and Institutional Controls Plan* (LMICP), Attachment C, "Groundwater/Leak Detection and Leachate Monitoring Plan" (GWLMP) (DOE 2019a). The objective of the GWLMP is to meet regulatory requirements for groundwater detection monitoring in the Great Miami Aquifer (GMA) and perched groundwater system and to provide leachate monitoring information.

Facility Description

The OSDF is in the northeast area of the Fernald Preserve. It has a capacity of 2.96 million cubic yards and a maximum height of approximately 65 feet (ft). A security fence surrounds the OSDF and defines a footprint that occupies approximately 100 acres. The facility consists of eight individual cells. All eight cells were completely full and capped by October 2006.

Protection of the GMA and the overlying perched groundwater system includes the following measures for each of the eight cells (refer to Figure A.5-1 for a cross section of the liner system):

- Multilayer composite cap system
- Leachate collection system (LCS)
- Leak detection system (LDS)
- Multilayer composite liner system

The LCS consists of a gravel layer installed beneath the encapsulated waste to collect rainwater that came in contact with the waste during cell construction and additional moisture that is draining from the waste following capping. The LDS is located beneath both the LCS and the primary geosynthetic liner system and provides a mechanism for collecting and monitoring leakage through the primary liner layer of the OSDF before any releases to the environment. Both systems drain to the west and extend beyond the synthetic liner systems into valve houses, where leachate is collected in tanks for sampling.

The base of each cell liner also slopes toward the centerline of the cell, and the centerline of the base is sloped toward the west. Leachate moving along the top of a liner would first travel toward the centerline and then west along the centerline to be drained from the cell via piping at the penetration box, which is the lowest elevation point of the cell.

Each cell is monitored below the penetration box with a horizontal till well (HTW), which represents the first monitoring point for a potential release from a cell. HTWs provide monitoring of the perched groundwater quality beneath the point where the LCS and LDS pipes exit the liner system. The GMA is monitored by both an upgradient and a downgradient monitoring well for each cell. Figure A.5-2 identifies the well locations associated with the OSDF. Table A.5-1 identifies specific dates for the following cell activities:

- Sample initiation for each monitoring horizon
- Waste placement initiation

- LDS volume measurement initiation
- Cap geomembrane layer completion
- Cap completion (through seeding)

A construction quality assurance and quality control program was executed for each cell of the OSDF. The synthetic liners and caps of each cell were inspected and tested for defects at the time of installation. Given the attention to quality assurance and quality control during the installation of the OSDF liner system, it is doubtful that a breach in the liner would have gone unnoticed, but it is possible that a breach could develop. Such a breach would provide a potential pathway for leachate migration, but adequate hydraulic head is needed to drive leachate through the breach and clay liner into the underlying horizon.

The GWLMP summarizes the principal geologic, hydrogeologic, and subsurface contaminant conditions in the OSDF area that had a direct bearing on the development of the monitoring program for the OSDF facility. As discussed in the GWLMP, the conceptual flow path or migration pathway for a leak from the facility involves understanding:

- How each cell was constructed and how a cell transmits leachate from the facility.
- The impact of hydraulic head within the facility in the LDS and the design action leakage rate.
- The nature, thickness, and hydraulic conductivity of glacial clay beneath the facility.
- Residual soil contamination beneath the facility and its possible impact to HTW water quality results.
- The groundwater model evaluations of transport times and modeled flow paths for use in placing monitoring wells for the monitoring network in the GMA.
- Modeled breakthrough travel times through the glacial clay for uranium (the main contaminant of concern) and for technetium-99 (the most mobile contaminant).

Information Organization

The 2022 OSDF leak detection and leachate monitoring information is organized into the following sections:

- Flow and Hydraulic Performance (Section A.5.1)
- Water Quality: Data Presentations and Evaluations (Section A.5.2)
- Cell Cap Inspections (Section A.5.3)
- Summary of Overall Performance and Findings and Recommendations (Section A.5.4)

Subattachments A.5.1 through A.5.8 provide cell-specific information for Cells 1 through 8.

A.5.1 Flow and Hydraulic Performance

A.5.1.1 Overall LCS Volumes

Capacitance probes are used to measure water levels in each LCS tank. The water levels in the tanks are communicated to the Converted Advanced Wastewater Treatment (CAWWT) facility via radio signal. When the water level in the tank reaches 1.86 ft, the tank is approximately 80% full, and the pump automatically starts to pump water from the tank to the leachate lift station. The water in the lift station is pumped to the CAWWT facility backwash basin. To determine the volume of leachate pumped, the change in water level after pumping is converted to gallons using an equation from the tank manufacturer. If communication to the CAWWT facility is not functioning, tanks are pumped manually when tanks are between 40% and 80% full of water. In this case, volumes pumped are recorded manually on the leachate round sheet. Tanks are also pumped manually after each sampling event.

Leachate volumes have been measured since waste placement began. Figure A.5-3 is a graph showing monthly leachate volumes from October 2006 through December 2022. Figure A.5-4 is a graph that shows the annual leachate volume from 2007 through 2022.

Leachate volumes shown in both figures are impacted by leachate line closures beginning in 2016 and continuing into 2019. Additional information concerning these closures is summarized in the following table. Contingencies for closing the valves are provided in the GWLMP in the 2019 LMICP (DOE 2019a). No line closures have occurred since 2019.

From an operational perspective, when the leachate line valves are closed, water begins to collect on the liner of each cell. By design, 1 ft of water should not be allowed to accumulate on the liner. As discussed in the LMICP, 156 days is the current estimated minimum number of days required to accumulate 1 ft of hydraulic head on the primary liner. As shown below, none of the closures between 2016 and 2019 exceeded 156 days.

Leachate L	ine Closure	Reason for Leachate	Days Closed During	
Shut Date Open Date		Line Closure	Calendar Year	
July 05, 2016	September 23, 2016 ^a	Unplanned power outage	79	
September 20, 2017	February 6, 2018 ^b	CAWWT facility construction	103 (2017) and 37 (2018)	
March 14, 2018	April 15, 2018	CAWWT facility construction	33	
August 13, 2019	December 3, 2019 ^c	CAWWT backwash basin refurbishment	112	

^a Valves were opened beginning September 23 and ending on September 30, 2016. Days reported are the maximum number of days for any cell.

^b Valves were opened beginning February 2 and ending on February 6, 2018. Days reported are the maximum number of days for any cell.

^c Valves were opened beginning December 3 and ending on December 6, 2019. Days reported are the maximum number of days for any cell.

Shutting the valves impacts the volume recorded for the facility over the calendar year. As reported in each annual Site Environmental Report for the year affected by valve closure, the reported leachate volumes either reflect a period that is less than a year, as in 2017, or the volume reported reflects more than a year, as in 2018. The effect of the relatively long period of leachate line closure that extended into the next reporting year affected the reporting of the

leachate volumes for both 2017 and 2018. Leachate accumulation for 2017 reflected approximately 9 months of accumulation (75% of the year), whereas 2018 leachate accumulation reflected approximately 15 months (125% of the year). In 2019, the valves were closed for a planned shutdown to support the CAWWT backwash basin refurbishment as discussed in Appendix A, Attachment A.1. The valves were shut for a period within the calendar year and did not affect the reporting of the volume in the same way as in 2017 and 2018.

Leachate volumes reported for 2019 reflect accumulation over the entire calendar year with the leachate valves being open 253 days (January 1 through August 13, and December 3 through December 31, 2019), during which time a total of 113,350 gallons of leachate were collected and pumped to the CAWWT backwash basin for subsequent treatment at the CAWWT facility.

Leachate volumes for 2022 reflect the entire calendar year with the valves open, during which time a total of 105,198 gallons of leachate were collected and pumped to the CAWWT backwash basin for subsequent treatment at the CAWWT facility. No additional closures of the OSDF leachate lines are planned in the next several years. Continued monitoring is expected to show that the annual leachate volume continues to decrease.

The volume of precipitation that fell on the OSDF in 2022 was approximately 59.5 million gallons (40.5 inches over 54.1 acres). The facility cap was designed to inhibit water from infiltrating the OSDF. Leachate collected in 2022 (105,198 gallons) represents approximately 0.18% of the 59.5 million gallons. This value indicates that in 2022 the cap was performing as designed to reduce infiltration.

The GWLMP identifies that trend analysis of the LCS flow-monitoring measurements will be conducted for capped cells to provide an indication of changes in system performance. Monthly accumulation volumes for Cells 1 through 8 are plotted and provided in Subattachments A.5.1 through A.5.8. The semilog plots indicate that leachate volumes from the capped cells continue to decline over time, but the rate of decline is decreasing.

A.5.1.2 LDS Accumulation Rates and Volumes

Quantitative measurement of the volumes accumulating in and pumped from the LDS tanks was initiated according to the various dates in Table A.5-1. These measurements began using the same methodology as described above for the LCS. These data are used to determine both accumulation rates (in gallons per acre per day [gpad]) and accumulation volumes (in gallons) for each cell's LDS. As explained below, the method of measuring flow in the LDS (for those cells that still have flow) has changed in response to the decreasing flow.

The GWLMP states that trend analysis of the LDS flow monitoring measurements will be conducted for capped cells to provide an indication of changes in system performance. Monthly accumulation volumes for Cells 1 through 8 are provided and graphically displayed in Subattachments A.5.1 through A.5.8. The graphs indicate that LDS flows are trending asymptotic at or near zero.

Through 2017, capacitance probes were used in the tank of each LDS to measure the water level within the tank. The capacitance probes can measure within hundredths of a foot of water in the bottom of the tank. Measured water levels were used to calculate the accumulation rate for each

cell. Although water may register via the probes, there may not be enough water present to physically obtain a sample. Pump out of the tank can occur automatically if an LDS tank water level reaches 80% of its capacity (1.86 ft of water). Pump out also occurs after semiannual sampling is completed to remove any water that remains after sampling, to ensure newer water is sampled for the next semiannual sampling event.

In 2022, LDS tanks for Cells 1, 2, 3, 5, 7, and 8 were too dry to collect semiannual samples, so no pump out occurred in these LDS tanks, resulting in an accumulation rate of 0.0 gpad. While no pump outs occurred in the LDS tanks for Cells 4 and 6, the LDS tanks in Cells 4 and 6 accumulated enough water to collect routine semiannual samples in 2022. However, the amount of water accumulated in each of those LDS tanks in 2022 was very low, so accumulation rates are estimated by tracking the volume of water manually pumped out of each LDS tank and the amount of time between pump outs. To be conservative, a volume of 1 gallon was assumed for each sampling event. The calculation for estimated maximum accumulation rates based on tank pump outs is summarized in the following table.

Cell	Estimated Volume Pumped from LDS (gallons)	Estimated Maximum Accumulation Rate (gpad)	
4	1	0.00086	
6	2	0.00084	

The *On-Site Disposal Facility Final Design Calculation Package* (DOE 1997) defines an initial response leakage rate for individual cells of 200 gpad. As a best management practice, the U.S. Department of Energy (DOE) imposed two lower leakage rates:

- 1. Initial response leakage rate of 20 gpad.
- 2. Low-flow response leakage rate of 2 gpad.

The highest estimated maximum accumulation rate determined for 2022 (0.00086 gpad in Cell 4) is only 0.04% of the low-flow response leakage rate of 2 gpad.

The 2022 estimated maximum LDS accumulation rates, the percent of the initial response leakage rate, and the percent of the low-flow response leakage rate for each cell are as follows.

Cell	2022 Estimated Maximum LDS Accumulation Rate Calculated from Tank Pump Outs (gpad)	Percent of Initial Response Leakage Rate	Percent of Low-Flow Response Leakage Rate
1	0.00	0.0	0.0
2	0.00	0.0	0.0
3	0.00	0.0	0.0
4	0.00086	0.004	0.04
5	0.00	0.0	0.0
6	0.00084	0.004	0.04
7	0.00	0.0	0.0
8	0.00	0.0	0.0

These estimated LDS accumulation rates indicate that the liner systems for the cells are performing well and within the specifications outlined in the approved OSDF design, as illustrated in Figure A.5-5. The initial response leakage rate of 20 gpad and the low-flow response leakage rate of 2 gpad are administrative criteria for commencing an investigation into the possibility that the cell is not performing as designed. They are one-tenth and one-hundredth of the design criterion of 200 gpad, respectively. Because all the cells are closed and capped, it is expected that LDS accumulation rates will continue to diminish over time. Rates will continue to be closely tracked to document that the primary liner systems continue to perform as designed.

The estimated maximum accumulation rate measured for the two cells that had flow in the LDS in 2022 (Cell 4 and 6) was only 0.00086 gpad. The current LDS tanks hold approximately 300 gallons of water, making them oversized for current LDS flow conditions. In the 2018 Site Environmental Report (DOE 2019b), DOE reported plans to install tubing at an existing sampling port upstream of the LDS tank to provide a means to divert any future flow into a 5-gallon container. The thought was that the smaller container would better facilitate future sampling events and LDS flow measurement capabilities. Given that the LDS systems continue to dry up, DOE decided not to install the sampling ports.

Over the years, several small, very minor leaks have occurred in the valve house piping that so far have been easily repaired. The liquid is being contained within the valve house. The leaks are the result of galvanic corrosion between two different types of metal components of the piping system. Rather than wait for more leaks to develop, and with concurrence from the U.S. Environmental Protection Agency (EPA) and the Ohio Environmental Protection Agency (Ohio EPA), DOE began replacing the metal pipes in the valve hoses with plastic piping in late 2022. Sampling ports described above on the LDS lines were also installed so that a sample from the LDS could be collected in a smaller 5-gallon container. Pipe replacements and the installation of sampling ports on the LDS lines are scheduled for completion in early 2023.

In late 2021, a small amount of water was observed in valve house 7 in the area where the LCS piping penetrates the valve house wall and enters the valve house. The LCS and LDS pipes enter the valve houses through the east wall of the valve houses. The LCS is a double-walled pipe; the secondary containment system contained no liquid, indicating that the liquid was not coming from the LCS. The amount of liquid in the valve house increased after precipitation events. Sampling of the liquid entering the valve house revealed that the uranium concentration

 $(8.2 \mu g/L)$ matched the very low historical total uranium concentrations in the perched groundwater in the area (2.0 μ g/L – 8.61 μ g/L); therefore, the liquid in the valve house is attributed to water leaking into the valve house from outside the valve house at the point where the LCS line system penetrates through the valve house wall. Any liquid that entered the valve house via this pathway was directed to the LCS tank within the valve house until repairs could be made. The small amount of liquid entering the LCS tanks via this pathway prior to repair temporarily impacted the volume and quality of water collected from the Cell 7 LCS tank. The impact was minimal. DOE repaired the leak in valve house 7 in summer 2022. Unfortunately, additional small leaks occurred along the inner surface of the same wall in valve house 7 following the repair. The repaired area in valve house 7 did not leak, but other leaks along the east wall developed. It is believed that once the initial leak was fixed, water building up on the outside of the valve house wall found other entry points through the wall. Based on the nature of the leaks observed, it is assumed that water is collecting around the base of the east side of the valve house. During heavy precipitation events, water collects and rises on the outside of the valve house wall until it finds a way to either go around or through the walls. DOE plans to continue investigating this potential cause for the leaks in late summer or early fall 2023 when seasonal precipitation is lowest and the soil outside of the valve house wall should be the driest. If this is determined to be the cause of the leaks, potential repairs will be evaluated (e.g., French drain, sump pump).

A.5.1.3 Liner Efficiencies

Cell-specific apparent liner hydraulic efficiencies are calculated using the following equation:

Hydraulic efficiency = $[1 - (Volume_{LDS}/Volume_{LCS})] \times 100$

Apparent liner hydraulic efficiency is a measure of how a cell's liner is performing. This equation considers *all* the LDS volume to be leakage through the primary liner, which is a conservative measure. In the *Report on the 1995 Workshop on Geosynthetic Clay Liners* (EPA 1996), several sources of flow from leak detection layers were identified. These sources include:

- Top liner leakage.
- Construction water and compression water.
- Consolidation water.
- Water from groundwater infiltration.

As stated previously, the LDSs in Cells 1, 2, 3, 5, 7, and 8 were dry in 2022, and no pump outs occurred in any of the eight LDS tanks resulting in an LDS volume equal to 0 for the purposes of calculating the liner efficiency. Since 2019, liner efficiencies of only those cells that had LDS volumes greater than 0 are reported (Cells 4 and 6 for 2022). In the following table, Cells 4 and 6 are reported at 100% in 2022 because, although a sample was collected, no pumping occurred from the tanks.

Quarter	Cell 4	Cell 6
First	100.00	100.00
Second	100.00	100.00
Third	100.00	100.00
Fourth	100.00	100.00

Apparent Liner Efficiency (Percent), Quarterly for 2022

A.5.1.4 HTW Water Yields

HTW water yields are monitored at each cell to document trends in perched-water purge volumes. In 2022, the HTWs were purged twice (March and September). Average annual purge water yields from the HTWs ranged from 0 gallons beneath Cell 8 to 1,050 gallons beneath Cell 5 as shown in the table. The HTW water yields will continue to be tracked and factored into the OSDF leak detection evaluation, where appropriate. Further information (total volumes pumped, number of months purged, and the average monthly purge volume) is provided in each cell's subattachment.

Horizontal Till Well Purge Events for 2022

Location ID	Cell	First Half Purge March 9, 2022 (gallons)	Second Half Purge September 12, 2022 (gallons)	Annual Total (gallons)	Annual Average (gallons)
12338	Cell 1	555	225	780	390
12339	Cell 2	790	830	1,620	810
12340	Cell 3	690	710	1,400	700
12341	Cell 4	570	550	1,120	560
12342	Cell 5	1,050	1,050	2,100	1,050
12343	Cell 6	440	280	720	360
12344	Cell 7	1,050	780	1,830	915
12345	Cell 8	Dry	Dry	Dry	Dry
	Totals	5,145	4,425	9,570	Not applicable

A.5.2 Water Quality: Data Presentations and Evaluations

The water quality and data presentations and evaluations presented in this report are as follows:

- Semiannual Monitoring Summary Statistics (Section A.5.2.1)
- Concentration Plots (Section A.5.2.2)
 - LCS, LDS, and HTW of each cell
 - HTW and GMA wells of each cell
- Control Charts (Section A.5.2.3)

- Bivariate Plots (Section A.5.2.4)
- Upward Concentration Trends in the HTW and GMA Wells (Section A.5.2.5)

A.5.2.1 Semiannual Monitoring Summary Statistics

Water quality within each cell is sampled in the LCS and LDS. Water quality beneath each cell is sampled in the HTW and GMA wells. Concentration versus time plots, bivariate plots, and control charts are used to help interpret and present results. Until 2014, quarterly water quality monitoring occurred in the LCS, LDS, HTW, and GMA wells of each cell. With EPA and Ohio EPA concurrence, monitoring changed from a quarterly sampling frequency to a semiannual sampling frequency at the start of 2014.

With EPA and Ohio EPA concurrence, DOE reduced the number of parameters sampled from 24 to 13 beginning in January 2017 (total uranium, boron, sodium, sulfate, calcium, lithium, magnesium, nitrate + nitrite as nitrogen, potassium, selenium, technetium-99, total dissolved solids, and total organic halogens). All 13 parameters are sampled in the GMA wells; 4 of the 13 parameters (total uranium, boron, sodium, and sulfate) are sampled in the LCS, LDS, and HTW for each cell. The annual sampling in the LCS of each cell for the abbreviated list of Appendix I parameters and polychlorinated biphenyls listed in *Ohio Administrative Code* 3745-27-10 was eliminated beginning in January 2017 with EPA and Ohio EPA concurrence.

Summary statistics for all the parameters monitored semiannually are provided in Subattachments A.5.1 through A.5.8 (Tables A.5.1-1 through A.5.8-1). The information provided in each summary table is based on a standardized quarterly sampling frequency. Baseline data are included in the summary statistics. A discussion of data collected for the OSDF is provided in the GWLMP (Attachment C of the LMICP).

A summary of the statistical process used is illustrated in Figure A.5-6. Table A.5-2 lists the rules that are used to report the data provided in Tables A.5.1-1 through A.5.8-1 in each subattachment. For analytical results below the detection limit, one-half the detection limit was used in calculations of the average, standard deviation, distribution, trend, serial correlation, and outliers. One objective in conducting the summary statistics is to identify the parameters that meet the requirements for control charts (i.e., greater than eight samples, normal or lognormal distribution, no trend, and no serial correlation).

Data used in the summary statistics were "quarterized" (i.e., normalized to quarterly data). The rationale is that during different periods, data were collected at varying time intervals. For example, from October 30, 1997, through December 8, 1997, 15 samples were collected for total uranium from HTW 12338. In all of 1998, only four were collected; in 1999, there were seven; in 2000, there were six; and four each were collected in 2001 through 2003. To summarize, in a 5- to 6-week period in 1997, nearly as much data were collected as were collected from 1998 to 2000. Without normalizing the data, the periods with more sampling activity would carry more weight and, therefore, with respect to the calculations, would be considered more important. Additionally, sampling the same well at too short of an interval (often just 1 day apart in 1997) also violated the statistical assumption of independence. Well data that are collected too closely in time are serially correlated and can distort the statistics underlying the control charts. Even with quarterly sampling, there is often an issue with serial correlation.

Statistical calculations were conducted using ChemStat version 6.3 (a Starpoint Software program, www.pointstar.com). ChemStat software is also used to perform the statistical analysis of groundwater monitoring data at Resource Conservation and Recovery Act facilities.

Dataset distributions were checked using the Shapiro-Wilk test (95% confidence interval) for datasets with fewer than 50 samples and the Shapiro-Francia test (95% confidence interval) for datasets with 50 samples or more. The Mann-Kendall test for trend (95% confidence interval) was used to determine the presence of either an upward or downward concentration trend over time. The rank Von Neumann test (confidence interval of 99%) was used to check for serial correlation.

As discussed in the *Fernald Preserve 2015 Site Environmental Report* (DOE 2016), low flow rates, coupled with LDS collection tanks that are open to the atmosphere, can bias analytical results high for some constituents and low for others. Because of the low-flow conditions, it is uncertain whether an LDS sample collected from a valve house tank truly represents the composition of an LDS sample from within the facility. Collecting water quality samples from the LDS and using the data to statistically demonstrate that the facility is operating as designed does not appear to be the best approach for complying with Ohio Solid Waste Regulations (Ohio Administrative Code 3745-27-19[M][5]) for the OSDF. As stated in the GWLMP of the 2019 LMICP (DOE 2019a), monitoring accumulation rates from the LDS against established design and agreed-to administrative action rates is a much better approach. It should be noted that the installation of sampling ports on the LDS lines in late 2022 through early 2023 so that a sample can be directed into a 5-gallon container will improve the sample collection process for the LDS beginning in 2023. But it should also be noted that the LDS lines continue to dry up, and in 2022, only Cells 4 and 6 had enough water present to collect a sample.

A.5.2.2 Concentration Plots

Concentration plots for the parameters monitored semiannually in 2022 are presented in Subattachments A.5.1 through A.5.8. The plots are presented with a common vertical *y* scale based on the parameter. Outliers identified in Subattachments A.5.1 through A.5.8 in Tables A.5.1-1 through A.5.8-1 are not plotted on the concentration plots.

Table A.5-3 provides an OSDF groundwater, leachate, and LDS monitoring summary. As shown in Table A.5-3 and listed below, three sampling locations had new high total uranium concentrations in 2022; two were in the LDS and one was in the GMA.

- **GMA of Cell 3:** A new high of 23.5 micrograms per liter (μ g/L) was measured in the first half of 2022 in the upgradient GMA well (22203). The previous high was 18.5 μ g/L. The concentration measured in the second half of 2022 was 9.45 μ g/L.
- LDS of Cell 4: A new high of 79.8 µg/L was measured in the first half of 2022 in the LDS of Cell 4. The previous high was 55.9 µg/L. The LDS for Cell 4 was dry in the second half of 2022.
- LDS of Cell 6: A new high of 160 μ g/L was measured in the first half of 2022. The previous high was 152 μ g/L. The concentration measured in the second half of 2022 was 133 μ g/L.

Bivariate plot results reported in Section A.5.2.4 continue to support the interpretation that chemical signatures for the different monitoring horizons are separate and distinct, indicating that mixing between the horizons is not occurring; therefore, new high uranium concentrations measured beneath the cells in GMA wells are attributed to fluctuating ambient concentrations beneath the cell and are not related to cell performance.

The new high uranium concentrations measured in the LDS of Cells 4 and 6 in 2022 are not attributed to communication with the LCS. A new high uranium concentration measured in the LDS is attributed to the impact that decreasing flow can have on the uranium concentration left in fluid remaining in the LDS as the LDS dries up. Uranium concentration versus time plots for each cell are provided in Subattachments A.5.1 through A.5.8. As shown in those figures, with the exception of Cell 3 LDS, an increasing uranium concentration trend was clearly observed in the LDS of other cells as they were drying up (Cells 1, 2, 5, and 7). For Cell 3, the last sample collected showed an increasing uranium concentration, but the overall trend in the Cell 3 LDS leading up to the last sample was not increasing. The LDS of each cell is expected to dry up over time, and this indicates that the facility continues to operate as designed.

Figures A.5-7 through A.5-8 illustrate the trends observed at the two cells that had enough fluid left in the LDS to sample in 2022. Each figure shows three graphs with a general trend line. The upper graph is the total uranium concentration versus time in the LDS fluid. The middle graph is the accumulation of fluid in gallons in the LDS, and the lower graph is the mass of uranium contained within the accumulated volume of fluid. The graphs illustrate that as the LDS dries up (decreasing accumulation volume), the uranium concentrations increase, while the mass of uranium in the accumulated fluid does not show an overall increasing trend.

A.5.2.3 Control Charts

Intrawell control charts employ historical measurements from a compliance point as background. The Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance (EPA 2009) defines the process of creating a Shewhart-cumulative sum (CUSUM) control chart. Appropriate background data are used to define a baseline for the well. The baseline parameters for the chart, estimates of the mean, and standard deviation are obtained from the background data. These baseline measurements characterize the expected background concentrations at the monitoring point. As future concentrations are measured, the baseline parameters are used to standardize the newly gathered data. After these measurements are standardized and plotted, a control chart is declared "not in control" if future concentrations exceed the baseline control limit. This is indicated on the control chart when either the Shewhart or CUSUM plot traces begin to exceed a control limit. The limit is based on the rationale that if the monitoring point remains unchanged from the baseline condition, new standardized observations should not deviate substantially from the baseline mean. If a change occurs, the standardized values will deviate significantly from the baseline and tend to exceed the control limit. Usually, two parameters are used to interpret control charts: the decision value (h) and the Shewhart control limit (SCL).

A minimum of eight samples are recommended for use in ChemStat software to define the baseline for a control chart. Therefore, only sample sets with at least eight samples were selected for control charts. By default, the ChemStat software plots both a CUSUM control limit (*h*) and

an SCL on the control chart. The software recommends a value of 5 for the CUSUM control limit and a value of 4.5 for the SCL.

EPA Statistical Analysis Unified Guidance (EPA 2009) suggests that to simplify the interpretation of the control chart, an out-of-control condition should be based on the CUSUM (*h*) limit alone. Plotting the SCL is not needed. However, the ChemStat software, by default, plots both the SCL and CUSUM control limit (*h*) on the charts. To address this issue, the SCL was defined as 5 to equal the recommended CUSUM control limit (*h*). This combined limit is identified as *h*CL on the control charts. For interpretation purposes, the *h*CL value will be regarded as the CUSUM control limit (*h*).

Eighteen Shewhart-CUSUM control charts were prepared in 2022 and are presented in Subattachments A.5.1 through A.5.8 for parameters monitored semiannually in the HTW and GMA wells in 2022 that had datasets that achieved control chart criteria (i.e., more than eight samples, normal or lognormal distribution, no trend, and no serial correlation). All of the 18 control charts exhibited "in control" conditions.

A.5.2.4 Bivariate Plots

Bivariate plots are used in an Alternate Source Determination capacity to show that water quality changes observed beneath the facility in HTW and GMA wells are not attributed to facility performance. Sodium and total uranium were selected because this combination provides a good distinction between LCS, LDS, and HTW. This combination was discovered during the Common Ion Study (DOE 2008). Although the sodium–uranium bivariate plot for Cell 8 provides a distinction between the LDS and HTW, the separation shown between the LDS and HTW is not as distinct as it is for the other seven cells; therefore, a sulfate–uranium bivariate plot is also provided for Cell 8. In 2020, the uranium concentration in the LCS of Cell 1 decreased enough to place it in the area of the bivariate plot occupied by HTW samples. The LDS of Cell 1 has been too dry to collect a sample from since 2011. An additional bivariate plot of sodium–sulfate is provided for Cell 1 to illustrate that the sodium and sulfate concentrations indicate that the LCS and HTW zones are not mixing. Other combinations may be added in the future, if deemed appropriate.

Bivariate plots are presented for each cell in Subattachments A.5.1 through A.5.8. The bivariate plots illustrate the concentration signatures in each monitoring horizon. Distinct clustering of horizon concentrations indicates that the fluids in the different horizons are not mixing. In response to an Ohio EPA comment on the *Fernald Preserve 2009 Site Environmental Report* (DOE 2010) (Ohio EPA Comment Number 35), the closest points between monitoring horizons were dated until 2018. Beginning with the *Fernald Preserve 2018 Site Environmental Report* (DOE 2019b), an arrow is provided on the plots from the first to most recent sample result for each monitoring horizon. The dates of the first and most recent sample plotted are also posted for each sampling horizon.

An additional bivariate plot for sodium–sulfate is presented for Cell 1 in Subattachment A.5.1. The additional sodium–sulfate bivariate plot provides supporting information concerning the water chemistry signatures present in the LCS and HTW of Cell 1—specifically, that they are separate and distinct.

An additional bivariate plot for uranium–sulfate is presented for Cell 8 in Subattachment A.5.8. The additional uranium–sulfate bivariate plot provides supporting information concerning the water chemistry signatures present in the LDS and HTW of Cell 8—specifically, that they are separate and distinct.

The bivariate plots for 2022 continue to support the interpretation that chemical signatures for the different monitoring horizons are separate and distinct, indicating that mixing between the horizons is not occurring; therefore, upward concentration trends measured beneath the cells in 2022 (HTW or GMA wells) are attributed to fluctuating ambient concentrations beneath the cell not related to cell performance.

In light of the water quality sampling challenges discussed in the 2016 Site Environmental Report (DOE 2017), DOE conducted an assessment to determine whether the continued use of bivariate plots with data from the LDS is still warranted. Assessment results indicated that bivariate plots continue to be a valuable tool for assessing whether the monitoring zones are mixing (Geochemical Consultants 2016).

A.5.2.5 Upward Concentration Trends in the HTW and GMA Wells

The HTW is located beneath the liner penetration box of each cell by design. This area of the liner penetration box is the lowest elevation point of each cell and potentially the weakest point in the cell design. If a leak were to develop, it should be detected beneath the liner penetration box first. Therefore, the water quality in the HTW represents the first line of evidence that a potential leak from the cell might be occurring. A leak would be indicated by an increasing concentration trend in the HTW.

GMA monitoring wells are positioned (and identified) for pre-aquifer-remediation flow conditions defined in the Operable Unit 5 Remedial Investigation Report (DOE 1995). Water level data reported in the Operable Unit 5 Remedial Investigation Report indicate that, before the start of pumping for the groundwater remediation, groundwater flow directions in the vicinity of the OSDF were generally from west to east.

Groundwater flow beneath the OSDF is currently being influenced by active pumping taking place for the groundwater remediation southwest of the OSDF. Water beneath the OSDF is generally moving in response to this pumping from northeast to southwest. When pumping for the groundwater remedy stops, groundwater flow in the vicinity of the OSDF should once again return to a direction that is generally from west to east. Trends are therefore being tracked in all GMA wells at this time.

An increasing concentration trend in a HTW or GMA monitoring well could be attributed to a possible leak from the OSDF. In addition, increasing concentration trends in the HTW or GMA wells could also be caused by fluctuating ambient concentrations beneath the cells, and not connected to the operation of the facility.

As presented in Subattachments A.5.1 through A.5.8, several parameter datasets have upward concentration trends beneath the OSDF (i.e., HTW and GMA wells). Bivariate plots (uranium–sodium, uranium–sulfate, and sodium–sulfate) indicate separate and distinct chemical signatures for the LCS, LDS, and HTW of all eight cells. This indicates that water is not mixing

from inside the facility to outside the facility, leading to the conclusion that the facility is not leaking. Therefore, concentration increases observed in the HTW and GMA wells are attributed to fluctuating ambient concentrations beneath the cells and not to cell performance. Additional information is provided in Subattachments A.5.1 through A.5.8.

A.5.3 Cell Cap Inspections

OSDF cell cap inspections are conducted quarterly and include the toe of the side slopes, the drainage features around the base of the cell cap, and the fence line. In 2022, inspections were conducted in March, June, September, and December. A complete inspection of the cell cap is conducted annually. The inspection team typically includes representatives from Ohio EPA, Ohio Department of Health, and the site contractor. Issues identified during inspections typically include rocks that surface as topsoil settles, animal burrows and digging, the presence of woody vegetation, and noxious herbaceous species.

The issues are addressed as follows:

- Rocks greater than 4 inches in diameter that surface are removed, especially if they will interfere with mowing activities or may be a source location for erosion.
- Animal burrows and holes are filled in and reseeded, if necessary.
- Woody vegetation is cut and stumps are treated with herbicide.
- Herbicide is applied to noxious weeds.

In 2022, there were no visual signs that the integrity of the cap had been compromised. Appendix C provides additional information regarding the OSDF cap inspections.

A.5.4 Summary of Overall Performance and Findings and Recommendations

Based on LCS and LDS flow data, the engineered cap, liners, and drainage features within the OSDF continue to perform as designed. Separate and distinct chemical signatures for total uranium and sodium in the LCS, LDS, and HTW of each cell (total uranium and sulfate in Cell 8, sodium sulfate in Cell 1) indicate that waters from the different horizons are not mixing, and, therefore, it can be inferred that the primary and secondary liners are not leaking. Water quality constituent concentration increases noted in the HTW and GMA wells are attributed to fluctuating ambient concentrations beneath the OSDF and not to OSDF performance. Surface inspections conducted in 2022 showed no visual signs that the integrity of the cap had been compromised in any way. It is therefore recommended that the only action to take at this time concerning the OSDF is to continue monitoring the facility as prescribed in the GWLMP.

Specific Findings:

- LCS volumes continue to diminish with time. Total facility leachate volume in 2022 was 0.64% less than in 2021 (approximately 105,198 gallons in 2022 compared with 105,874 gallons in 2021).
- In 2022, there was not enough water in the LDS of Cells 1, 2, 3, 5, 7, and 8 to collect a water sample.

- LDS accumulation rate for 2022 in Cell 4 and Cell 6 indicates that the liner systems are performing as designed. The largest estimated LDS maximum accumulation rate calculated in 2022 was 0.00086 gpad in Cell 4, approximately 0.004% of the initial response leakage rate of 20 gpad, and 0.04% of the low-flow response leakage rate of 2 gpad.
- Quarterly apparent liner efficiencies were 100% for all cells in 2022.
- Three sampling locations had new high total uranium concentrations in 2022. Two were in the LDS, and one was in the GMA.
 - **GMA of Cell 3:** A new high of 23.5 μ g/L was measured in the first half of 2022 in the upgradient GMA well (22203). The previous high was 18.5 μ g/L. The concentration measured in the second half of 2022 was 9.45 μ g/L.
 - LDS of Cell 4: A new high of 79.8 μg/L was measured in the first half of 2022 in the LDS of Cell 4. The previous high was 55.9 μg/L. The LDS of Cell 4 was dry in the second half of 2022.
 - LDS of Cell 6: A new high of 160 µg/L was measured in the first half of 2022. The previous high was 152 µg/L. The concentration measured in the second half of 2022 was 133 µg/L.
- Bivariate plots continue to show that the chemical signatures for uranium, sulfate, and sodium in the LCS, LDS, and HTW are separate and distinct, indicating that:
 - Mixing between the horizons is not occurring; therefore, concentration changes measured beneath the cells in GMA wells are attributed to fluctuating ambient concentrations beneath the cell and are not related to cell performance.
 - New high uranium concentrations measured in the LDS are not attributed to communication with the LCS. The new high uranium concentrations measured in the LDS are attributed to the impact that decreasing flow can have on the uranium concentration left in water remaining in the LDS as the LDS dries up.
- In 2022, 18 datasets met the criteria for Shewhart-CUSUM control charts. All control charts exhibited "in control" conditions.
- In 2022, quarterly physical inspections of the OSDF revealed no visual signs that the integrity of the OSDF cap had been compromised.

A.5.5 References

DOE (U.S. Department of Energy), 1995. *Remedial Investigation Report for Operable Unit 5*, Final, Fernald Environmental Management Project, Fernald Area Office, Cincinnati, Ohio, May.

DOE (U.S. Department of Energy), 1997. *On-Site Disposal Facility Final Design Calculation Package*, Volume 2 of 4, Fernald Environmental Management Project, Fernald Area Office, Cincinnati, Ohio.

DOE (U.S. Department of Energy), 2008. *Evaluation of Aqueous Ions in the Monitoring Systems of the On-Site Disposal Facility*, DOE-LM/1591-2008, Office of Legacy Management, March.

DOE (U.S. Department of Energy), 2010. *Fernald Preserve 2009 Site Environmental Report*, LMS/FER/S06109, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2016. *Fernald Preserve 2015 Site Environmental Report*, LMS/FER/S13591, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2017. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, May.

DOE (U.S. Department of Energy), 2019a. *Comprehensive Legacy Management and Institutional Controls Plan*, LMS/FER/S03496, Revision 12, Office of Legacy Management, January.

DOE (U.S. Department of Energy), 2019b. *Fernald Preserve 2018 Site Environmental Report*, LMS/FER/S23329, Office of Legacy Management, May.

EPA (U.S. Environmental Protection Agency), 1996. *Report on the 1995 Workshop on Geosynthetic Clay Liners*, EPA/600/R-96/149, Washington, D.C., June.

EPA (U.S. Environmental Protection Agency), 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance*, EPA 530/R-09-007, March.

Geochemical Consultants, 2016. Evaluation of Select Ion Concentrations and Fluid Levels in the On-Site Disposal Facility Leachate and Monitoring Systems, Draft, March.

OAC 3745-27-10. "Ground Water Monitoring Program for a Sanitary Landfill Facility," *Ohio Administrative Code*.

OAC 3745-27-19. "Operational Criteria for a Sanitary Landfill Facility," *Ohio Administrative Code*.

	Sample Initiation per	Waste Placement	LDS Volume	Cap Geomembrane Layer	
Cell	Horizon ^a	Initiation	Measurement Initiation [®]	Completion	Cap Completion ^u
1	LCS: February 17, 1998 LDS: February 18, 1998 HTW: October 30, 1997 GMA-U: March 31, 1997 GMA-D: March 31, 1997	December 23, 1997	May 1999	August 17, 2001	December 20, 2001
2	LCS: November 23, 1998 LDS: December 14, 1998 HTW: June 29, 1998 GMA-U: June 30, 1997 GMA-D: June 25, 1997	November 12, 1998	May 1999	July 17, 2003	November 12, 2003
3	LCS: October 13, 1999 LDS: August 26, 2002 HTW: July 28, 1998 GMA-U: August 24, 1998 GMA-D: August 24 1998	October 26, 1999	October 1999	July 16, 2004	September 20, 2004
4	LCS: November 4, 2002 LDS: November 4, 2002 HTW: February 26, 2002 GMA-U: November 6, 2001 GMA-D: November 5, 2001	November 08, 2002	November 2002	December 18, 2004	April 29, 2005
5	LCS: November 4, 2002 LDS: November 4, 2002 HTW: February 26, 2002 GMA-U: November 6, 2001 GMA-D: November 5, 2001	November 19, 2002	November 2002	June 22, 2005	August 29, 2005
6	LCS: October 27, 2003 LDS: October 27, 2003 HTW: March 14, 2003 GMA-U: December 16, 2002 GMA-D: December 16, 2002	November 18, 2003	January 2004	October 28, 2005	January 12, 2006

Table A.5-1. OSDF Initiation and Completion Dates

	Sample Initiation per	Waste Placement	LDS Volume	Cap Geomembrane Layer	a
Cell	Horizon ^a	Initiation	Measurement Initiation [®]	Completion ^c	Cap Completion ^a
7	LCS: September 2, 2004 LDS: September 2, 2004 HTW: February 24, 2004 GMA-U: January 21, 2004 GMA-D: January 21, 2004	September 9, 2004	September 2004	July 2006	October 25, 2006
8	LCS: October 18, 2004 LDS: October 18, 2004 HTW: May 19, 2004 GMA-U: March 31, 2004 GMA-D: March 31, 2004 GMA-SW: August 22, 2005 GMA-SE: August 22, 2005	December 2, 2004	December 2004	September 24, 2006	October 25, 2006

Table A.5-1. OSDF Initiation and Completion Dates (continued)

^aLCS = leachate collection system; LDS = leak detection system; HTW = horizontal till well; GMA-U = upgradient Great Miami Aquifer;

GMA-D = downgradient Great Miami Aquifer; GMA-SW = southwest Great Miami Aquifer; and GMA-SE = southeast Great Miami Aquifer

^bPrior to 1999, overall LDS volumes were measured. From 1999 on, LDS volumes were measured by cell.

^cThe cap geomembrane layer is made of high density polyethylene.

^dCap completion includes seeding.

	No. of Detected	Total No. of	Percent of				Standard				
Rules	Samples	Samples	Detects	Minimum ^{a,b}	Maximum ^{a,b}	Average	Deviation	Distribution Type	Trend	Serial Correlation	Outliers
Include outliers	Yes	Yes	Yes	No	No	No	No	No	No	No	
Only one result	Yes	Yes	Yes	report "NA"	report value	report "Insufficient"	report "Insufficient"	report "Insufficient"	report "Insufficient"	report "Insufficient"	
Only two results	Yes	Yes	Yes	report value	report value	report "Insufficient"	report "Insufficient"	report "Insufficient"	report "Insufficient"	report "Insufficient"	
All non-detects	Yes	Yes	Yes	report "ND"	report "NA"	report "Insufficient"	report "Insufficient"	report "Insufficient"	report "Insufficient"	report "Insufficient"	
						Need 3 detections	Need 4 detections	Need at least 3	Need at least 4	Need at least 6 samples	Need at least 4
						otherwise report	otherwise report	samples to report	detects to report	to report serial	samples to report
Other rules						"Insuff"	"Insuff"	distriburtion	trend	correlation	outliers
						If distribution is					
						"Lognormal," substitute					
Other rules						"LogMean"					
						If distribution is					
						"Undefined," substitute					
Other rules						"Median"					

Table A.5-2. Rules for Summary Statistics for Cells 1 Through 8

^aNA=not applicable; ND=not detected

^bIf reported value is a nondetected result, report ND.

U.S. Department of Energy

Cell (Waste Placement)	Monitoring Location	Monitoring Zone	Date Sampling Started	Total Number of Samples	Range of Total Uranium Concentrations ^{a,b} (µg/L)	First Half 2022 ^{a,c} (µg/L)	Second Half 2022 ^{a,c} (µg/L)	Historical Trend ^d (Year Last Sampled)
Cell 1 (Dec 1997)	12338C	LCS	Feb 17, 1998	76	ND-206	18.8	10.2	None (2022)
	12338D	LDS	Feb 18, 1998	37	1.50–37.0	DRY	DRY	Up (2011)
	12338	Glacial Till	Oct 30, 1997	85	ND-19	7.12	6.68	Up (2022)
	22201	Great Miami Aquifer	Mar 31, 1997	92	ND-12.4	5.52	6.07	Up (2022)
	22198	Great Miami Aquifer	Mar 31, 1997	140	0.540–15.2	3.08	Second Half 2022a,c (µg/L) Half 2022a,c (µg/L) 3.8 10.2 RY DRY U 12 6.68 U 52 6.07 U 52 6.07 U 58 55.9 U 6.8 17.9 U 6.8 17.9 U 6.3 1.49 U 303 1.49 U 6.3 15.2 U 6.3 15.2 U 6.3 15.2 U 08 1.96 U 13 86.4 U 13 86.4 U 13 2.40 U 14 1.14 U 13 2.40 U 14 0.269 U 31 1.62 U <t< td=""><td>Down (2022)</td></t<>	Down (2022)
	12339C	LCS	Nov 23, 1998	72	4.51–686	45.8	55.9	Up (2022)
	12339D	LDS	Dec 14, 1998	29	4.08–25.8 ^e	DRY	DRY	None (2013)
Cell 1 (Waste Placement) Cell 1 (Dec 1997) Cell 2 (Nov 1998) Cell 3 (Oct 1999) Cell 4 (Nov 2002)	12339	Glacial Till	Jun 29, 1998	96	ND-36.9	15.8	17.9	Up (2022)
	22200	Great Miami Aquifer	Jun 30, 1997	87	ND-4.69	0.303	1.49	Up (2022)
	22199	Great Miami Aquifer	Jun 25, 1997	117	ND-12.1	0.353	0.513	Down (2022)
	12340C	LCS	Oct 13, 1999	70	9.27–206	141	131	Up (2022)
	12340D	LDS	Aug 26, 2002	20	8.90–27.7 ^e	DRY	DRY	Down (2007)
Cell 3 (Oct 1999)	12340	Glacial Till	Jul 28, 1998	89	ND-58.5	16.3	15.2	None (2022)
(Oct 1999)	22203	Great Miami Aquifer	Aug 24, 1998	82	ND- 23.5	23.5	9.45	Up (2022)
	22204	Great Miami Aquifer	Aug 24, 1998	112	Part Range of Total Uranium Concentrations ^{a,b} Firs Hall 2022 (µg/L) ND-206 18.8 1.50-37.0 DRY ND-19 ND-10 7.12 ND-112.4 5.52 0.540-15.2 3.08 4.51-686 45.8 1.00-36.9 15.8 ND-36.9 15.8 ND-4.69 0.302 ND-4.69 0.302 ND-4.69 0.302 ND-36.9 15.8 ND-36.9 15.8 ND-36.9 16.3 ND-4.69 0.302 ND-36.9 16.3 ND-58.5 16.3 ND-22.9 3.08 4.41-234 113 5.74-79.8 79.8 3.40-7.91 3.46 ND-5.78 0.73 0.446-19.7 2.13 3.39-285 131 2.93-27.1 DRY ND-4.48 0.443 ND-4.48 0.443	3.08	1.96	Up (2022)
Cell 1 (Dec 1997) Cell 2 (Nov 1998) Cell 3 (Oct 1999) Cell 4 (Nov 2002)	12341C	LCS	Nov 04, 2002	56	4.41–234	113	86.4	None (2022)
	12341D	LDS	Nov 04, 2002	41	5.74– 79.8	79.8	DRY	Up (2022) ^f
	12341	Glacial Till	Feb 26, 2002	69	3.40 –7.91	3.46	3.19	Down (2022)
	22206	Great Miami Aquifer	Nov 06, 2001	73	ND-5.78	0.731	1.14	Up (2022)
	22205	Great Miami Aquifer	Nov 05, 2001	99	0.446–19.7	2.13	2.40	Historical Trend ^d (Year Last Sampled) None (2022) Up (2011) Up (2022) Up (2022)
	12342C	LCS	Nov 04, 2002	58	3.39–285	131	162	None (2022)
	12342D	LDS	Nov 04, 2002	40	2.93–27.1	DRY	DRY	Down (2013)
Cell 5 (Nov 2002)	12342	Glacial Till	Feb 26, 2002	70	7.45–21.1	7.64	8.90	Down (2022)
Cell 2 (Nov 1998) Cell 3 (Oct 1999) Cell 4 (Nov 2002) Cell 5 (Nov 2002)	22207	Great Miami Aquifer	Nov 06, 2001	73	ND-4.48	0.449	0.269	Down (2022)
	22208	Great Miami Aquifer	Nov 05, 2001	98	ND-2.1	0.361	0.254	None (2022)

Table A.5-3. OSDF Groundwater, Leachate, and LDS Monitoring Summary

Cell (Waste Placement)	Monitoring Location	Monitoring Zone	Date Sampling Started	Total Number of Samples	Range of Total Uranium Concentrations ^{a,b} (µg/L)	First Half 2022 ^{a,c} (µg/L)	Second Half 2022 ^{a,c} (µg/L)	Historical Trend ^d (Year Last Sampled)
Cell 6 (Nov 2003)	12343C	LCS	Oct 27, 2003	55	8.03–276	119	103	Down (2022)
	12343D	LDS	Oct 27, 2003	54	3.1 –160	160	133	Up (2022)
	12343	Glacial Till	Mar 14, 2003	62	ND-24.2	8.48	7.80	None (2022)
	22209	Great Miami Aquifer	Dec 16, 2002	68	ND-2.43	0.409	0.447	Down (2022)
	22210	Great Miami Aquifer	Dec 16, 2002	93	ND-1.02	0.638	0.647	None (2022)
	12344C	LCS	Sep 02, 2004	51	4.72–355	56.2	90.9	Down (2022)
	12344D	LDS	Sep 02, 2004	29	12.2–169 ^e	DRY	DRY	Up (2015)
Cell 7	12344	Glacial Till	Feb 24, 2004	59	0.674–12.1	3.54	3.91	Up (2022)
(Sep 2004)	22212	Great Miami Aquifer	Jan 21, 2004	61	ND-5.53	0.428	0.385	None (2022)
	22211	Great Miami Aquifer	Jan 21, 2004	83	ND-4.31	0.369	Second Half 2022 ^{a,c} (μg/L) Historical Trend ^d (Year Last Sampled) 103 Down (2022) 103 Down (2022) 133 Up (2022) 7.80 None (2022) 0.447 Down (2022) 0.647 None (2022) 90.9 Down (2022) 0.647 None (2022) 0.385 None (2022) 0.385 None (2022) 0.394 None (2022) 0.394 None (2022) DRY Up (2021) DRY Up (2022) 0.354 Up (2022) 0.843 Down (2022) 0.364 None (2022) 5.60 Down (2022)	
	12345C	LCS	Oct 18, 2004	48	1.51–335	147	159	None (2022)
	12345D	LDS	Oct 18, 2004	45	9.38– 315	DRY	DRY	Up (2021)
	12345	Glacial Till	May 19, 2004	20	3.48–7.3	DRY	DRY	Up (2008)
Cell 8	22213	Great Miami Aquifer	Mar 31, 2004	60	ND-0.71	0.364	0.354	Up (2022)
(Dec 2004)	22214	Great Miami Aquifer	Mar 31, 2004	83	ND-2.95	0.469	0.843	Down (2022)
	22215	Great Miami Aquifer	Aug 22, 2005	51	ND-16.4	0.679	0.364	None (2022)
	22217 ⁹	Great Miami Aquifer	Aug 22, 2005	50	ND-18.3	1.86	5.60	Down (2022)

Note: The data on this table represent the raw data from the database. However, data presented in the Attachment A.5 subattachments have gone through a statistical processing and analysis. In regard to the statistical processing, the data were quarterized (normalized to one result per quarter) and outliers were removed to arrive at an accurate distribution model. Because of the processing, the total number of samples and range of concentrations on this table might not match the text, tables, and figures in Attachment A.5. The rules used for the statistical processing and analysis in Attachment A.5 are discussed in Section A.5.2.1, and the results are summarized in Table A.5-2.

Note: Uranium concentration versus time graphs can be found in the Attachment A.5 subattachments. See Figures A.5.1-5A and A.5.1-5B for Cell 1; Figures A.5.2-5A and A.5.2-5B for Cell 2; Figures A.5.3-5A and A.5.3-5B for Cell 3; Figures A.5.4-5A and A.5.4-5B for Cell 4; Figures A.5.5-5A and A.5.5-5B for Cell 5; Figures A.5.6-5A and A.5.6-5B for Cell 6; Figures A.5.7-5A and A.5.7-5B for Cell 7; and Figures A.5.8-7A and A.5.8-7B for Cell 8.

^a Bold text indicates a new high or low detected in 2021.

^b ND = not detected.

^c Where there are more than two data points for the half year, the higher result is used.

^d The trends presented here are based on nonparametric Mann-Kendall procedure and come from the tables in Attachment A.5 subattachments for each cell. See Tables A.5.1-1, A.5.2-1,

A.5.3-1, A.5.4-1, A.5.5-1, A.5.6-1, A.5.7-1, and A.5.8-1.

^e Some data are not considered representative of LDS in Cell 2 (December 14, 1998, through May 23, 2000, dataset) due to malfunction in Cell 2 leachate pipeline and resulting mixing of

individual flows. It is suspected that some November 2004 samples were switched (i.e., 12339C with 12339D, and 12340C with 12340D). If data from these events were included above, maximum total uranium concentrations would be 71 µg/L for 12339D and 72.4 µg/L for 12340D. It is suspected that samples were switched in 2014 (i.e., 12344D with the field duplicate for 12345C). If the data point from this sampling event was not included above, maximum total uranium concentration for 12344D would be 37.6 µg/L.

^f The Cell 4 LDS was dry, resulting in no data from fourth quarter 2011 through 2016.

⁹ Monitoring location 22216 was plugged and abandoned in April 2006. Monitoring location 22217 is its replacement. The results listed for location 22217 also include the results for location 22216.

Figure A.5-1. Cross Section of OSDF Liner System with HTW at the Drainage Corridor

Figure A.5-2. OSDF Footprint and Monitoring Well Locations

Figure A.5-3. OSDF Monthly LCS Flow (October 2006 Through December 2022)

Figure A.5-4. OSDF Annual LCS Flow (2007 Through 2022)

Figure A.5-5. Maximum LDS Accumulation Rate Between 2006 and 2022

Figure A.5-6. OSDF Statistical Evaluation Process

Figure A.5-7. Cell 4 LDS Concentration, Accumulation Rate, and Uranium Mass Comparison

Figure A.5-8. Cell 6 LDS Concentration, Accumulation Rate, and Uranium Mass Comparison

This page intentionally left blank

Subattachment A.5.1

Cell 1

This page intentionally left blank

Contents

Abbreviatio	ons		iii			
Measureme	nt Abbrevia	tions	iii			
A.5.1.1	Water Quality Monitoring Results					
	A.5.1.1.1	LCS and LDS Results	1			
	A.5.1.1.2	HTW and Monitoring Well Results	2			
	A.5.1.1.3	Discussion	2			
A.5.1.2	Control Ch	arts	3			
A.5.1.3	Summary a	and Conclusions	4			
A.5.1.4	References		4			

Tables

Table A.5.1-1. Summary Statistics for Cell 1	. 5
Table A.5.1-2. OSDF Horizontal Till Well 12338 (Cell 1) Water Yield	. 6

Figures

Figure A.5.1-1. Monthly Accumulation Volumes for Cell 1 LCS	7
Figure A.5.1-2. Monthly Accumulation Volumes for Cell 1 LDS	7
Figure A.5.1-3. Total Uranium Concentration and Groundwater Elevation Versus Time	
Plot for Cell 1 Upgradient Monitoring Well 22201	8
Figure A.5.1-4. Total Uranium Concentration and Groundwater Elevation Versus Time	
Plot for Cell 1 Downgradient Monitoring Well 22198	8
Figure A.5.1-5A. Cell 1 Total Uranium Concentration Versus Time Plot for LCS, LDS,	
and HTW	9
Figure A.5.1-5B. Cell 1 Total Uranium Concentration Versus Time Plot for HTW,	
upgradient GMA Well, and downgradient GMA Well	9
Figure A.5.1-6A. Cell 1 Boron Concentration Versus Time Plot for LCS, LDS, and	
HTW	10
Figure A.5.1-6B. Cell 1 Boron Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	10
Figure A.5.1-7A. Cell 1 Sodium Concentration Versus Time Plot for LCS, LDS, and	
HTW	11
Figure A.5.1-7B. Cell 1 Sodium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	11
Figure A.5.1-8A. Cell 1 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW	12
Figure A.5.1-8B. Cell 1 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	12
Figure A.5.1-9. Cell 1 Calcium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	13
Figure A.5.1-10. Cell 1 Lithium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	13
Figure A.5.1-11. Cell 1 Magnesium Concentration Versus Time Plot for HTW,	
GMA-U Well, and GMA-D Well	14

Figure A.5.1-12. Cell 1 Nitrate + Nitrite as Nitrogen Concentration Versus Time Plot for	
HTW, GMA-U Well, and GMA-D Well	14
Figure A.5.1-13. Cell 1 Potassium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	15
Figure A.5.1-14. Cell 1 Selenium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	15
Figure A.5.1-15. Cell 1 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U	
Well, and GMA-D Well	16
Figure A.5.1-16. Cell 1 Total Dissolved Solids Concentration Versus Time Plot for HTW,	
GMA-U Well, and GMA-D Well	16
Figure A.5.1-17. Cell 1 Total Organic Halogens Concentration Versus Time Plot for HTW,	
GMA-U Well, and GMA-D Well	17
Figure A.5.1-18. Cell 1 Bivariate Plot for Uranium and Sodium	17
Figure A.5.1-19. Cell 1 Bivariate Plot for Sodium and Sulfate	18
Figure A.5.1-20. Intrawell Shewhart-CUSUM Control Chart for Lithium in Monitoring	
Well 22201	19
Abbreviations

CUSUM	Shewhart-cumulative sum
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
GMA	Great Miami Aquifer
GMA-D	upgradient Great Miami Aquifer
GMA-U	downgradient Great Miami Aquifer
HTW	horizontal till well
LCS	leachate collection system
LDS	leak detection system
Ohio EPA	Ohio Environmental Protection Agency
OSDF	On-Site Disposal Facility
SCL	Shewhart control limit

Measurement Abbreviations

- amsl above mean sea level
- mg/L milligrams per liter
- μg/L micrograms per liter
- pCi/L picocuries per liter

This page intentionally left blank

This subattachment provides the following information about On-Site Disposal Facility (OSDF) Cell 1:

- Semiannual monitoring summary statistics (Table A.5.1-1)
- Leachate collection system (LCS) monthly accumulation volumes (Figure A.5.1-1)
- Leak detection system (LDS) monthly accumulation volumes (Figure A.5.1-2)
- OSDF horizontal till well (HTW) 12338 water yield (Table A.5.1-2)
- Great Miami Aquifer (GMA) water levels and total uranium concentration versus time (Figures A.5.1-3 and A.5.1-4)
- Plots of concentration versus time (Figures A.5.1-5A through A.5.1-17)
- A bivariate plot for total uranium-sodium (Figure A.5.1-18)
- A bivariate plot for sodium-sulfate (Figure A.5.1-19)
- Control chart (Figure A.5.1-20)

A.5.1.1 Water Quality Monitoring Results

Water quality within the cell is sampled in the LCS and the LDS. Water quality beneath the cell is sampled in the HTW and GMA wells. Concentration versus time plots, bivariate plots, and control charts are used to help interpret and present the results.

Until 2014, quarterly water quality monitoring occurred in the LCS, LDS, HTW, and GMA wells of each cell for the purpose of determining whether the OSDF was operating as designed. With U.S. Environmental Protection Agency (EPA) and Ohio Environmental Protection Agency (Ohio EPA) concurrence, the U.S. Department of Energy (DOE) changed from a quarterly sampling frequency to a semiannual sampling frequency at the start of 2014.

With EPA and Ohio EPA concurrence, DOE reduced the number of parameters sampled from 24 to 13 beginning in January 2017. All 13 parameters are sampled in the GMA wells; 4 of 13 parameters (total uranium, boron, sodium, and sulfate) are sampled in the LCS, LDS, and HTW for each cell. The annual sampling in the LCS of each cell for the abbreviated list of Appendix I parameters and polychlorinated biphenyls listed in *Ohio Administrative Code* 3745-27-10 was also eliminated beginning in January 2017 with EPA and Ohio EPA concurrence (DOE 2017).

A.5.1.1.1 LCS and LDS Results

As shown in Table A.5.1-1 and summarized below, two parameters in 2022 (sodium and sulfate) have upward trends in the LCS based on the Mann-Kendall test for trend. No new high concentrations were measured in the LCS of Cell 1 in 2022. The volume of water in the LDS tank of Cell 1 has been insufficient to collect a sample since 2011.

Parameter	LCS 12338C 2022 Trend	LDS 12338D Trend (Year Last Sampled)
Sodium	Up	Up (2011)
Sulfate	Up	Up (2011)

A.5.1.1.2 HTW and Monitoring Well Results

As shown in Table A.5.1-1 and summarized below, five parameters (total uranium, boron, magnesium, nitrate + nitrite as nitrogen, and selenium) have upward trends in the HTW or the GMA wells based on the Mann-Kendall test for trend.

Doromotoro with I	Inward Concentration	Tranda in the UTW	and CMA Malla	of Coll 1
	Jpwaru Concentration		and GiviA wens	UI CEII I

Parameter	HTW 12338 ^a	GMA-U ^{a,b} 22201	GMA-D ^{a,b} 22198
Total Uranium	Up	Up	
Boron		Up	
Magnesium		Up	
Nitrate + Nitrite as Nitrogen		Up	
Selenium			Up

Notes:

^a No entry indicates that the trend was not upward.

^b GMA-U = upgradient Great Miami Aquifer, GMA-D = downgradient Great Miami Aquifer.

A.5.1.1.3 Discussion

The uranium–sodium bivariate plot for the Cell 1 LCS, LDS, and HTW is provided in Figure A.5.1-18. On the figure, the first sample ever collected from the monitoring horizon is circled. An arrow leads from the first sample to the location of the most recent sample. The plot for 2022 shows that the uranium concentrations measured in the LCS were 18.8 micrograms per liter (μ g/L) and 10.2 μ g/L. These uranium concentrations in the LCS are similar to uranium concentrations measured in the HTW in 2022. In 2022, the uranium concentrations measured in the HTW with in 2022. In 2022, the uranium concentrations measured in the HTW were 7.12 μ g/L and 6.68 μ g/L. An additional sodium-sulfate bivariate plot for Cell 1 LCS and HTW is provided in Figure A.5.1-19 for the period April 2014 to August 2022. Because the LDS has been dry since 2011, it is not shown in Figure A.5.1-19. Figure A.5.1-19 shows that the chemical signatures for sodium and sulfate in the LCS and HTW are separate and distinct, indicating that mixing between the horizons is not occurring; therefore, upward concentrations beneath the cells in GMA wells are attributed to fluctuating ambient concentrations beneath the cell and are not related to cell performance.

A.5.1.2 Control Charts

Intrawell control charts employ historical measurements from a compliance point as background. The Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance (EPA 2009) defines the process of creating a Shewhart-cumulative sum (CUSUM) control chart. Appropriate background data are used to define a baseline for the well. The baseline parameters for the chart, estimates of the mean, and standard deviation are obtained from the background data. These baseline measurements characterize the expected background concentrations at the monitoring point. As future concentrations are measured, the baseline parameters are used to standardize the newly gathered data. After these measurements are standardized and plotted, a control chart is declared "not in control" if future concentrations exceed the baseline control limit. This is indicated on the control chart when either the Shewhart or CUSUM plot traces begin to exceed a control limit. The limit is based on the rationale that if the monitoring point remains unchanged from the baseline condition, new standardized observations should not deviate substantially from the baseline mean. If a change occurs, the standardized values will deviate significantly from the baseline and tend to exceed the control limit. Usually, two parameters are used to compute standardized limits: the decision value (h) and the Shewhart control limit (SCL).

A minimum of eight samples are recommended for use in ChemStat software to define the baseline for a control chart. Therefore, only sample sets with greater than eight samples were selected for control charts. By default, the ChemStat software plots both a CUSUM control limit (h) and an SCL on the control chart. The software recommends a value of 5 for the CUSUM control limit and a value of 4.5 for the SCL.

EPA Statistical Analysis Unified Guidance (EPA 2009) suggests that, to simplify the interpretation of the control chart, a "not in control" condition should be based on the CUSUM (*h*) limit alone. Plotting the SCL is not needed. However, the ChemStat software, by default, plots both the SCL and CUSUM control limit on the charts. To address this issue, the SCL was defined as 5 to equal the recommended CUSUM control limit (*h*). This combined limit is identified as *h*CL on the control charts. For interpretation purposes, the *h*CL value will be regarded as the CUSUM control limit (*h*).

As shown in Table A.5.1-1 in gray and summarized below, one parameter in the HTW and GMA wells of Cell 1 meets the criteria for control charts (i.e., at least eight samples, normal or lognormal distribution, no trend, and no serial correlation), resulting in one control chart (Figure A.5.1-20). The one control chart for Cell 1 indicates "in control" conditions for lithium.

Parameter	Monitoring Point ^a	Well Number	Assessment	Figure Number
Lithium	GMA-U	22201	In Control	A.5.1-20

^a GMA-U = upgradient Great Miami Aquifer.

A.5.1.3 Summary and Conclusions

- Two parameters monitored semiannually within the facility in 2022 have an upward concentration trend in the LCS of Cell 1: sodium and sulfate.
- No new high concentrations were measured in the LCS of Cell 1 in 2022. The volume of water in the LDS tank of Cell 1 has been insufficient to collect a sample since 2011.
- Five parameters have an upward concentration trend beneath the facility in the HTW and GMA wells: total uranium, boron, magnesium, nitrate + nitrite as nitrogen, and selenium. Separate and distinct chemical signatures for sodium and sulfate in the LCS and HTW of Cell 1 indicate that water is not mixing between the horizons. Therefore, upward concentration trends beneath Cell 1 (i.e., HTW and GMA wells) are attributed to fluctuating ambient concentrations beneath the cell and not to cell performance.
- One control chart was constructed for Cell 1 parameters for monitoring horizons beneath the facility (HTW and GMA wells). The control chart for Cell 1 indicates "in control" conditions for lithium.

A.5.1.4 References

DOE (U.S. Department of Energy), 2017. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, Cincinnati, Ohio, May.

EPA (U.S. Environmental Protection Agency), 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance*, EPA 530/R-09-007, March.

OAC 3745-27-10. "Ground Water Monitoring Program for a Sanitary Landfill Facility," *Ohio Administrative Code*.

Table A.5.1-1. Summary Statistics for Cell 1

			Number of										
			Detected	Total Number	Percent				Standard	Distribution	Trend ^{d,†} (Year Last	Serial	
	Horizon ^a	Location	Samples	of Samples	Detects	Minimum ^b	Maximum ^b	Average ^{c,d}	Deviation ^d	Type ^{d,e}	Sampled)	Correlation ^{d,g}	Outliers ^{h,i}
	LCS	12338C	79	80	98.8	ND	159	76.2	37.7	Normal	None (2022)	Detected	206 (Q1-10)
	LDS	12338D	37	37	100	1.5	37.0	10.8	6.8	Undefined	Up (2011)	Detected	
Total Uranium (μg/L)	HTW	12338	76	78	97.4	ND	12.7	8.00	3.44	Undefined	Up (2022)	Detected	
	GMA-U	22201	81	85	95.3	ND	12.4	5.10	3.31	Undefined	Up (2022)	Detected	
	GMA-D	22198	93	93	100	0.574	15.2	4.69	2.50	Undefined	Down (2022)	Detected	
	LCS	12338C	80	81	98.8	ND	1.72	0.977	0.313	Undefined	Down (2022)	Detected	2.80(Q1-99), 2.53(Q3-04), 2.81(Q3-05), 2.33(Q4-07)
	LDS	12338D	37	38	97.4	0.169	0.345	0.243	0.043	Ln Normal	None (2011)	Not Detected	0.001(Q3-00), 0.0296(Q1-98)
Boron (mg/L)	HTW	12338	58	61	95.1	ND	0.271	0.140	0.061	Normal	None (2022)	Detected	
	GMA-U	22201	83	85	97.6	ND	0.158	0.122	0.027	Undefined	Up (2022)	Detected	
	GMA-D	22198	80	84	95.2	ND	0.131	0.055	0.016	Ln Normal	Down (2022)	Detected	
	LCS	12338C	54	54	100	11.7	22.0	18.5	2.6	Undefined	Up (2022)	Detected	29.3(Q3-05)
	LDS	12338D	9	9	100	335	896	571	216	Normal	Up (2011)	Not Detected	
Sodium (mg/L)	HTW	12338	46	46	100	8.72	23.8	13.1	3.7	Undefined	Down (2022)	Detected	
	GMA-U	22201	37	37	100	11.1	65.5	42.3	14.2	Normal	Down (2022)	Detected	
	GMA-D	22198	38	38	100	9.93	18.6	13.3	2.1	Normal	Down (2022)	Detected	
	LCS	12338C	66	66	100	707	3,360	1,800	670	Undefined	Up (2022)	Detected	
	LDS	12338D	19	19	100	675	3,500	1,590	780	Ln Normal	Up (2011)	Detected	
Sulfate (mg/L)	HTW	12338	56	56	100	376	907	620	130	Normal	Down (2022)	Detected	
	GMA-U	22201	61	61	100	91.8	735	255	146	Ln Normal	None (2022)	Detected	1,980(Q4-04)
	GMA-D	22198	61	61	100	101	506	158	90	Undefined	Down (2022)	Detected	
	GMA-U	22201	30	30	100	140	334	202	42	Ln Normal	Down (2022)	Not Detected	
Calcium (mg/L)	GMA-D	22198	30	30	100	133	192	153	14	Normal	Down (2022)	Not Detected	
Lithium (m = /l)	GMA-U	22201	37	37	100	0.00665	0.0153	0.0108	0.0025	Normal	None (2022)	Not Detected	
Lithium (mg/L)	GMA-D	22198	37	37	100	0.00624	0.0107	0.00926	0.00081	Undefined	None (2022)	Not Detected	
Magnacium (mg/L)	GMA-U	22201	30	30	100	36.1	82.2	49.5	9.4	Ln Normal	Up (2022)	Not Detected	
Wagnesium (mg/L)	GMA-D	22198	30	30	100	36.2	47.8	40.3	3.0	Normal	Down (2022)	Not Detected	
	GMA-U	22201	24	30	80.0	ND	1.44	0.270	0.478	Undefined	Up (2022)	Not Detected	
Nitrate + Nitrite, as Nitrogen (mg/L)	GMA-D	22198	9	50	18.0	ND	0.55	0.0125	0.174	Undefined	Down (2022)	Not Detected	
	GMA-U	22201	30	30	100	1.33	3.97	2.85	0.53	Normal	Down (2022)	Not Detected	
Potassium (mg/L)	GMA-D	22198	31	31	100	1.15	3.30	1.58	0.39	Undefined	Down (2022)	Detected	
Solonium (mg/l)	GMA-U	22201	3	37	8.1	ND	0.0289	0.0049	Insufficient	Insufficient	Insufficient	Insufficient	
Selenium (mg/L)	GMA-D	22198	5	57	8.8	ND	0.0153	0.0031	0.0029	Undefined	Up (2022)	Detected	
Taskastivas 00 (aCi/l)	GMA-U	22201	1	34	2.9	ND	3.86	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
recinetium-99 (pci/L)	GMA-D	22198	2	35	5.7	ND	8.30	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
Tatal Dissaluad Calida (mark)	GMA-U	22201	37	37	100	594	1600	919	197	Ln Normal	Down (2022)	Not Detected	
Total Dissolved Solids (mg/L)	GMA-D	22198	37	37	100	559	805	617	64	Undefined	Down (2022)	Not Detected	
Total Organic Halogons (m-= (1)	GMA-U	22201	37	85	43.5	ND	0.0319	0.0064	0.0068	Undefined	Down (2022)	Not Detected	0.078(Q1-97), 0.308(Q2-00)
Total Organic Halogens (mg/L)	GMA-D	22198	19	84	22.6	ND	0.0235	0.0018	0.0053	Undefined	None (2022)	Detected	0.0473(Q2-98), 0.092(Q2-00), 0.100(Q2-10)
Note 1: Cheding identifies a horizontal till a	well or Creat	Miomi Aquife	or wall with at l	aget eight comp	on Normal or I	n Normal diatri	hution no trand	(None) and no	agrial agrealatio	n (Not Dotostad) T	hono wallo ophiowo o	ontrol abort aritaria	

Note 1: Shading identifies a horizontal till well or Great Miami Aquifer well, with at least eight samples, Normal or Ln Normal distribution, no trend (None), and no serial correlation (Not Detected). These wells achieve control chart

Note 2: Data used in this table have been standardized to quarterly.

^aLCS = leachate collection system; LDS = leak detection system; HTW = horizontal till well; GMA-U = upgradient Great Miami Aquifer; and GMA-D = downgradient Great Miami Aquifer

^bND = not detected; NA = not applicable

Averages were determined based on the distribution assumption.

^dInsufficient is used for Distribution Type, Trend, or Serial Correlation whenever there is not enough data to run the test.

^eData distribution based on the Shapiro-Wilk statistic.

Normal: Normal assumption could not be rejected at the 5 percent level and has a higher probability value than the Ln Normal assumption.

In Normal: Lognormal assumption could not be rejected at the 5 percent level and has a higher probability value than the Normal assumption.

Undefined: Normal and Lognormal Distribution assumptiions are both rejected or there are less than 25 percent detected values. "Average" is defined as the Median of the data.

¹Trend based on nonparametric Mann-Kendall procedure.

⁹Serial correlation based on Rank Von Neumann test.

^hOutliers determined by Rosner's (for sample sizes greater than 25) or Dixon procedure (for sample sizes less than or equal to 25).

Q = quarter

Year	Total Volume Purged (gallons)	Number of Months Purged	Average Volume Purged (gallons)
1999	5,655	9	628
2000	6,000	6	1,000
2001	4,060	4	1,015
2002	4,060	4	1,015
2003	4,325	4	1,081
2004	3,950	4	988
2005	4,250	4	1,063
2006	4,350	4	1,088
2007	3,625	4	906
2008	3,625	4	906
2009	2,750	4	917
2010	3,405	4	851
2011	3,675	4	919
2012	1,850	4	463
2013	1,235	4	309
2014	1,770	2	885
2015	650	2	325
2016	575	2	288
2017	785	2	393
2018	495	2	248
2019	950	2	475
2020	1,050	2	525
2021	1,100	2	550
2022	780	2	390

Table A.5.1-2. OSDF Horizontal Till Well 12338 (Cell 1) Water Yield

Figure A.5.1-1. Monthly Accumulation Volumes for Cell 1 LCS

Figure A.5.1-2. Monthly Accumulation Volumes for Cell 1 LDS

Figure A.5.1-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 1 Upgradient Monitoring Well 22201

Figure A.5.1-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 1 Downgradient Monitoring Well 22198

Figure A.5.1-5A. Cell 1 Total Uranium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.1-5B. Cell 1 Total Uranium Concentration Versus Time Plot for HTW, upgradient GMA Well, and downgradient GMA Well

Figure A.5.1-6A. Cell 1 Boron Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.1-6B. Cell 1 Boron Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-7A. Cell 1 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.1-7B. Cell 1 Sodium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-8A. Cell 1 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.1-8B. Cell 1 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-9. Cell 1 Calcium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-10. Cell 1 Lithium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-11. Cell 1 Magnesium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-12. Cell 1 Nitrate + Nitrite as Nitrogen Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-13. Cell 1 Potassium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-14. Cell 1 Selenium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-15. Cell 1 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-16. Cell 1 Total Dissolved Solids Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-17. Cell 1 Total Organic Halogens Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.1-18. Cell 1 Bivariate Plot for Uranium and Sodium

Figure A.5.1-19. Cell 1 Bivariate Plot for Sodium and Sulfate

Figure A.5.1-20. Intrawell Shewhart-CUSUM Control Chart for Lithium in Monitoring Well 22201

Subattachment A.5.1, Page 19

This page intentionally left blank

Subattachment A.5.2

Cell 2

This page intentionally left blank

Contents

Abbreviatio	ns		iii
Measureme	nt Abbreviati	ons	iii
A.5.2.1	Water Quali	ity Monitoring Results	1
	A.5.2.1.1	LCS and LDS Results	1
	A.5.2.1.2	HTW and Monitoring Well Results	2
	A.5.2.1.3	Discussion	2
A.5.2.2	Control Cha	urts	2
A.5.2.3	Summary ar	nd Conclusions	3
A.5.2.4	References .		4

Tables

Table A.5.2-1. Summary Statistics for Cell 2	. 5
Table A.5.2-2. OSDF Horizontal Till Well 12339 (Cell 2) Water Yield	. 6

Figures

Figure A.5.2-1. Monthly Accumulation Volumes for Cell 2 LCS	7
Figure A.5.2-2. Monthly Accumulation Volumes for Cell 2 LDS	7
Figure A.5.2-3. Total Uranium Concentration and Groundwater Elevation Versus Time	
Plot for Cell 2 Upgradient Monitoring Well 22200	8
Figure A.5.2-4. Total Uranium Concentration and Groundwater Elevation Versus Time	
Plot for Cell 2 Downgradient Monitoring Well 22199	8
Figure A.5.2-5A. Cell 2 Total Uranium Concentration Versus Time Plot for LCS, LDS,	
and HTW	9
Figure A.5.2-5B. Cell 2 Total Uranium Concentration Versus Time Plot for HTW,	
GMA-U Well, and GMA-D Well	9
Figure A.5.2-6A. Cell 2 Boron Concentration Versus Time Plot for LCS, LDS, and	
HTW	10
Figure A.5.2-6B. Cell 2 Boron Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	10
Figure A.5.2-7A. Cell 2 Sodium Concentration Versus Time Plot for LCS, LDS, and	
HTW	11
Figure A.5.2-7B. Cell 2 Sodium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	11
Figure A.5.2-8A. Cell 2 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW	12
Figure A.5.2-8B. Cell 2 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	12
Figure A.5.2-9. Cell 2 Calcium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	13
Figure A.5.2-10. Cell 2 Lithium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	13

Figure A.5.2-11.	Cell 2 Magnesium Concentration Versus Time Plot for HTW,	
	GMA-U Well, and GMA-D Well	14
Figure A.5.2-12.	Cell 2 Nitrate + Nitrite as Nitrogen Concentration Versus Time Plot for	
	HTW, GMA-U Well, and GMA-D Well	14
Figure A.5.2-13.	Cell 2 Potassium Concentration Versus Time Plot for HTW, GMA-U Well,	
	and GMA-D Well	15
Figure A.5.2-14.	Cell 2 Selenium Concentration Versus Time Plot for HTW, GMA-U Well,	
	and GMA-D Well	15
Figure A.5.2-15.	Cell 2 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U	
	Well, and GMA-D Well	16
Figure A.5.2-16.	Cell 2 Total Dissolved Solids Concentration Versus Time Plot for HTW,	
	GMA-U Well, and GMA-D Well	16
Figure A.5.2-17.	Cell 2 Total Organic Halogens Concentration Versus Time Plot for HTW,	
	GMA-U Well, and GMA-D Well	17
Figure A.5.2-18.	Cell 2 Bivariate Plot for Uranium and Sodium	17
Figure A.5.2-19.	Intrawell Shewhart-CUSUM Control Chart for Total Dissolved Solids in	
	Monitoring Well 22199	18

Abbreviations

CUSUM	Shewhart-cumulative sum
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
GMA	Great Miami Aquifer
GMA-D	downgradient Great Miami Aquifer
GMA-U	upgradient Great Miami Aquifer
HTW	horizontal till well
LCS	leachate collection system
LDS	leak detection system
Ohio EPA	Ohio Environmental Protection Agency
OSDF	On-Site Disposal Facility
SCL	Shewhart control limit

Measurement Abbreviations

- amsl above mean sea level
- mg/L milligrams per liter
- μg/L micrograms per liter
- pCi/L picocuries per liter

This page intentionally left blank

This subattachment provides the following information about On-Site Disposal Facility (OSDF) Cell 2:

- Semiannual monitoring summary statistics (Table A.5.2-1)
- Leachate collection system (LCS) monthly accumulation volumes (Figure A.5.2-1)
- Leak detection system (LDS) monthly accumulation volumes (Figure A.5.2-2)
- OSDF horizontal till well (HTW) 12339 water yield (Table A.5.2-2)
- Great Miami Aquifer (GMA) water levels and total uranium concentration versus time (Figures A.5.2-3 and A.5.2-4)
- Plots of concentration versus time (Figures A.5.2-5A through A.5.2-17)
- A bivariate plot for uranium-sodium (Figure A.5.2-18)
- Control chart (Figure A.5.2-19)

A.5.2.1 Water Quality Monitoring Results

Water quality within the cell is sampled in the LCS and LDS. Water quality beneath the cell is sampled in the HTW and GMA wells. Concentration versus time plots, bivariate plots, and control charts are used to help interpret and present the results.

Until 2014, quarterly water quality monitoring occurred in the LCS, LDS, HTW, and GMA wells of each cell for the purpose of determining whether the OSDF is operating as designed. With U.S. Environmental Protection Agency (EPA) and Ohio Environmental Protection Agency (Ohio EPA) concurrence, the U.S. Department of Energy (DOE) changed from a quarterly sampling frequency to a semiannual sampling frequency at the start of 2014.

With EPA and Ohio EPA concurrence, DOE reduced the number of parameters sampled from 24 to 13 beginning in January 2017. All 13 parameters are sampled in the GMA wells: 4 of 13 parameters (total uranium, boron, sodium, and sulfate) are sampled in the LCS, LDS, and HTW for each cell. The annual sampling in the LCS of each cell for the abbreviated list of Appendix I parameters and polychlorinated biphenyls listed in *Ohio Administrative Code* 3745-27-10 was also eliminated beginning in January 2017 with EPA and Ohio EPA concurrence (DOE 2017).

A.5.2.1.1 LCS and LDS Results

As shown in Table A.5.2-1 and summarized below, four parameters (total uranium, boron, sodium, and sulfate) in 2022 have upward trends in the LCS or LDS based on the Mann-Kendall test for trend. No new high concentrations were measured in the LCS of Cell 2 in 2022. The volume of water in the LDS tank of Cell 2 has been insufficient to collect a sample since 2013.

Parameter	LCS 12339C 2022 Trend	LDS 12339D Trend (Year Last Sampled)ª
Total Uranium	Up	
Boron	Up	Up (2013)
Sodium	Up	Up (2013)
Sulfate	Up	Up (2013)

^a No entry indicates that the trend was not up.

A.5.2.1.2 HTW and Monitoring Well Results

As shown in Table A.5.2-1 and summarized below, five parameters in 2022 (total uranium, boron, lithium, potassium, and selenium) have upward trends in the HTW or the GMA wells based on the Mann-Kendall test for trend.

Parameters with Upward Concentration Trends in the HTW and GMA Wells of Cell 2

Parameter	HTW 12339 ^a	GMA-U ^b 22200	GMA-D ^{a,b} 22199	
Total Uranium	Up	Up		
Boron	Up	Up	Up	
Lithium		Up	Up	
Potassium		Up		
Selenium		Up		

^a No entry indicates that the trend was not up.

^b GMA-U = upgradient Great Miami Aquifer; GMA-D = downgradient Great Miami Aquifer.

A.5.2.1.3 Discussion

The uranium–sodium bivariate plot for the Cell 2 LCS, LDS, and HTW is provided in Figure A.5.2-18. On the figure, the first sample ever collected from the monitoring horizon are circled. An arrow leads from the first sample to the location of the most recent sample. The plot shows that the chemical signatures for uranium and sodium in the LCS, LDS, and HTW are separate and distinct, indicating that mixing between the horizons is not occurring; therefore, upward concentration trends measured beneath the cells in GMA wells are attributed to fluctuating ambient concentrations beneath the cell and are not related to cell performance.

A.5.2.2 Control Charts

Intrawell control charts use historical measurements from a compliance point as background. The *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance* (EPA 2009) defines the process of creating a Shewhart-cumulative sum (CUSUM) control chart. Appropriate background data are used to define a baseline for the well. The baseline parameters for the chart, estimates of the mean, and standard deviation are obtained from the background data. These baseline measurements characterize the expected background concentrations at the monitoring point. As future concentrations are measured, the baseline parameters are used to standardize the newly gathered data. After these measurements are standardized and plotted, a control chart is declared "not in control" if future concentrations exceed the baseline control limit. This is indicated on the control chart when either the Shewhart or CUSUM plot traces begin to exceed a control limit. The limit is based on the rationale that if the monitoring point remains unchanged from the baseline condition, new standardized observations should not deviate substantially from the baseline mean. If a change occurs, the standardized values will deviate significantly from the baseline and tend to exceed the control limit. Usually, two parameters are used to compute standardized limits—the decision value (*h*) and the Shewhart control limit (SCL).

A minimum of eight samples are recommended for use in ChemStat software to define the baseline for a control chart. Therefore, only sample sets with greater than eight samples were selected for control charts. By default, the ChemStat software plots both a CUSUM control limit (h) and an SCL on the control chart. The software recommends a value of 5 for the CUSUM control limit and a value of 4.5 for the SCL.

EPA Statistical Analysis Unified Guidance (EPA 2009) suggests that, to simplify the interpretation of the control chart, an out-of-control condition should be based on the CUSUM (h) limit alone. Plotting the SCL is not needed. However, the ChemStat software, by default, plots both the SCL and CUSUM control limit (h) on the charts. To address this issue, the SCL was defined as 5 to equal the recommended CUSUM control limit (h). This combined limit is identified as hCL on the control charts. For interpretation purposes, the hCL value will be regarded as the CUSUM control limit (h).

As shown in Table A.5.2-1 in gray and summarized below, one parameter in the HTW or GMA wells of Cell 2 meet the criteria for control charts (i.e., at least eight samples, normal or lognormal distribution, no trend, and no serial correlation), resulting in one control chart (Figure A.5.2-19). The control chart for Cell 2 indicates "in control" conditions for total dissolved solids.

Parameter	Monitoring Point ^a	Well Number	Assessment	Figure Number
Total Dissolved Solids	GMA-D	22199	In Control	A.5.2-19

^a GMA-D = downgradient Great Miami Aquifer.

A.5.2.3 Summary and Conclusions

- Four parameters monitored semiannually have an upward concentration trend in the LCS of Cell 2 in 2022: total uranium, boron, sodium, and sulfate. No new high concentrations were measured in the LCS of Cell 2 in 2022.
- The volume of water in the LDS tank of Cell 2 has been insufficient to collect a sample since 2013.

- Five parameters monitored semiannually in 2022 have an upward concentration trend in the HTW or GMA wells of Cell 2: total uranium, boron, lithium, potassium, and selenium. Separate and distinct chemical signatures for total uranium and sodium in the LCS, LDS, and HTW of Cell 2 indicate that water is not mixing between the horizons. Therefore, upward concentration trends beneath Cell 2 (i.e., HTW or GMA wells) are attributed to fluctuating ambient concentrations beneath the cell and not to cell performance.
- One control chart was constructed for Cell 2 parameters. The control chart exhibits "in control" conditions.

A.5.2.4 References

DOE (U.S. Department of Energy), 2017. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, Cincinnati, Ohio, May.

EPA (U.S. Environmental Protection Agency), 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance*, EPA 530/R-09-007, March.

OAC 3745-27-10. "Ground Water Monitoring Program for a Sanitary Landfill Facility," *Ohio Administrative Code*.

Table A.5.2-1. Summary Statistics for Cell 2

U.S.	
Depa	
artme	
ent o	
f Ene	
ergy	

S
ц.
g
a
t
ត
5
Ħ
ĕ
B
÷
⊳
1.
~
\mathbf{N}
_
2
ഷ
õ
S.

			Number of		-				Chandrad	Distribution	df.	Cardal	
			Detected	Total Number	Percent	h		cd	Standard	Distribution	Trend ^{e,} (Year Last	Serial	b i
Parameter	Horizon	Location	Samples	of Samples	Detects	Minimum	Maximum	Average	Deviation	Type ^{u,e}	Sampled)	Correlation ^{0,6}	Outliers
	LCS	12339C	76	76	100	4.51	686	127	114	Ln Normal	Up (2022)	Detected	
	LDS	12339D	35	35	100	4.08	71.0	14.5	13.2	Undefined	None (2013)	Detected	
Total Uranium (µg/L)	HTW	12339	77	78	98.7	ND	36.9	11.4	6.6	Undefined	Up (2022)	Detected	
	GMA-U	22200	64	84	76.2	ND	4.69	0.303	0.586	Undefined	Up (2022)	Not Detected	
	GMA-D	22199	88	93	94.6	ND	12.1	0.608	2.15	Undefined	Down (2022)	Not Detected	
	LCS	12339C	77	77	100	0.207	4.78	2.60	1.09	Ln Normal	Up (2022)	Detected	
	LDS	12339D	35	35	100	0.289	2.22	0.422	0.371	Undefined	Up (2013)	Detected	
Boron (mg/L)	HTW	12339	58	61	95.1	ND	0.213	0.102	0.052	Undefined	Up (2022)	Detected	
	GMA-U	22200	72	84	85.7	ND	0.105	0.0586	0.0238	Undefined	Up (2022)	Detected	
	GMA-D	22199	75	84	89.3	ND	0.0899	0.0499	0.0147	Normal	Up (2022)	Detected	
	LCS	12339C	53	53	100	3.32	42.8	20.4	6.5	Undefined	Up (2022)	Detected	
	LDS	12339D	10	10	100	664	2,450	1,230	540	Normal	Up (2013)	Detected	
Sodium (mg/L)	HTW	12339	46	46	100	29.5	119	43.8	23.4	Undefined	Down (2022)	Detected	
	GMA-U	22200	37	37	100	20.4	32.9	26.4	3.4	Normal	Down (2022)	Detected	
	GMA-D	22199	38	38	100	7.94	19.5	13.1	3.4	Normal	Down (2022)	Detected	
	LCS	12339C	65	65	100	155	1,960	1,590	310	Undefined	Up (2022)	Detected	1
	LDS	12339D	18	18	100	2,290	13,000	4,800	2,680	Ln Normal	Up (2013)	Detected	
Sulfate (mg/L)	HTW	12339	56	56	100	344	850	549	128	Normal	Down (2022)	Detected	
	GMA-U	22200	61	61	100	61.1	434	130	93	Undefined	Down (2022)	Not Detected	
	GMA-D	22199	61	61	100	101	540	165	85	Undefined	None (2022)	Not Detected	
	GMA-U	22200	30	30	100	115	205	136	23	Undefined	Down (2022)	Not Detected	
Calcium (mg/L)	GMA-D	22199	30	30	100	125	193	144	18	Undefined	None (2022)	Not Detected	
	GMA-U	22200	37	37	100	0.00345	0.00587	0.00439	0.00055	Ln Normal	Up (2022)	Not Detected	
Lithium (mg/L)	GMA-D	22199	37	37	100	0.00650	0.0101	0.00771	0.00076	Normal	Up (2022)	Detected	
	GMA-U	22200	30	30	100	33.1	54.9	39.6	4.8	Undefined	None (2022)	Not Detected	
Magnesium (mg/L)	GMA-D	22199	30	30	100	36.2	54.8	40.5	4.5	Undefined	None (2022)	Not Detected	
	GMA-U	22200	4	30	13.3	ND	0.200	0.0085	0.0407	Undefined	None (2022)	Not Detected	
Nitrate + Nitrite, as Nitrogen (mg/L)	GMA-D	22199	2	30	6.7	ND	0.0425	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
	GMA-U	22200	30	30	100	1.50	2.14	1.87	0.19	Normal	Up (2022)	Detected	
Potassium (mg/L)	GMA-D	22199	31	31	100	1.23	1.75	1.45	0.12	Normal	Down (2022)	Not Detected	
	GMA-U	22200	6	37	16.2	ND	0.0134	0.0030	0.0031	Undefined	Up (2022)	Detected	
Selenium (mg/L)	GMA-D	22199	1	37	2.7	ND	0.0186	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
	GMA-U	22200	0	33	0	ND	NA	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	1
Technitium-99 (pCi/L)	GMA-D	22199	0	33	0	ND	NA	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	1
	GMA-U	22200	37	37	100	497	857	611	95	Undefined	None (2022)	Not Detected	1
Total Dissolved Solids (mg/L)	GMA-D	22199	37	37	100	520	820	648	72	Normal	None (2022)	Not Detected	
	GMA-U	22200	32	84	38.1	ND	0.177	0.00453	0.0241	Undefined	Down (2022)	Detected	
Total Organic Halogens (mg/L)	GMA-D	22199	19	84	22.6	ND	0.0775	0.00250	0.0116	Undefined	Down (2022)	Detected	
											/		

Note 1: Shading identifies a horizontal till well or Great Miami Aquifer well, with at least eight samples, Normal or Ln Normal distribution, no trend (None), and no serial correlation (Not Detected). These wells achieve control chart criter Note 2: Data used in this table have been standardized to quarterly.

Note 2: Data used in this table have been standardized to quarterly.

aLCS = leachate collection system; LDS = leak detection system; HTW = horizontal till well; GMA-U = upgradient Great Miami Aquifer; and GMA-D = downgradient Great Miami Aquifer

^bND = not detected; NA = not applicable

^cAverages were determined based on the distribution assumption.

^dInsufficient is used for Distribution Type, Trend, or Serial Correlation whenever there is not enough data to run the test.

eData distribution based on the Shapiro-Wilk statistic.

Normal: Normal assumption could not be rejected at the 5 percent level and has a higher probability value than the Ln Normal assumption.

Ln Normal: Lognormal assumption could not be rejected at the 5 percent level and has a higher probability value than the normal assumption.

Undefined: Normal and Ln Normal Distribution assumptions are both rejected or there are less than 25 percent detected values. "Average" is defined as the Median of the data.

¹Trend based on nonparametric Mann-Kendall procedure.

⁹Serial correlation based on Rank Von Neumann test.

^hOutliers determined by Rosner's (for sample sizes greater than 25) or Dixon procedure (for sample sizes less than or equal to 25).

ⁱQ = quarter

Year	Total Volume Purged (gallons)	Number of Months Purged	Average Volume Purged (gallons)
1999	5,725	7	818
2000	5,750	6	958
2001	3,395	4	849
2002	3,625	4	906
2003	3,370	4	843
2004	3,220	4	805
2005	3,275	4	819
2006	3,175	4	1,088
2007	3,325	4	831
2008	3,050	4	763
2009	2,400	4	800
2010	3,275	4	819
2011	3,200	4	800
2012	3,110	4	778
2013	2,945	4	736
2014	1,605	2	803
2015	1,450	2	725
2016	1,535	2	768
2017	1,600	2	800
2018	1,605	2	803
2019	1,580	2	790
2020	1,645	2	823
2021	1,610	2	805
2022	1,620	2	810

Table A.5.2-2. OSDF Horizontal Till Well 12339 (Cell 2) Water Yield

Figure A.5.2-1. Monthly Accumulation Volumes for Cell 2 LCS

Figure A.5.2-2. Monthly Accumulation Volumes for Cell 2 LDS

Figure A.5.2-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 2 Upgradient Monitoring Well 22200

Figure A.5.2-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 2 Downgradient Monitoring Well 22199

Figure A.5.2-5A. Cell 2 Total Uranium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.2-5B. Cell 2 Total Uranium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-6A. Cell 2 Boron Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.2-6B. Cell 2 Boron Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-7A. Cell 2 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.2-7B. Cell 2 Sodium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-8A. Cell 2 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.2-8B. Cell 2 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-9. Cell 2 Calcium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-10. Cell 2 Lithium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-11. Cell 2 Magnesium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-12. Cell 2 Nitrate + Nitrite as Nitrogen Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-13. Cell 2 Potassium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-14. Cell 2 Selenium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-15. Cell 2 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-16. Cell 2 Total Dissolved Solids Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-17. Cell 2 Total Organic Halogens Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.2-18. Cell 2 Bivariate Plot for Uranium and Sodium

Subattachment A.5.3

Cell 3

This page intentionally left blank

Contents

Abbreviatio	ons		iii
Measureme	nt Abbreviati	ons	iii
A.5.3.1	Water Quali	ity Monitoring Results	1
	A.5.3.1.1	LCS and LDS Results	1
	A.5.3.1.2	HTW and Monitoring Well Results	2
	A.5.3.1.3	Discussion	2
A.5.3.2	Control Cha	urts	2
A.5.3.3	Summary ar	nd Conclusions	3
A.5.3.4	References .		4

Tables

Table A.5.3-1. Summary Statistics for Cell 3	. 5
Table A.5.3-2. OSDF Horizontal Till Well 12340 (Cell 3) Water Yield	. 6

Figures

Figure A.5.3-1. Monthly Accumulation Volumes for Cell 3 LCS	7
Figure A.5.3-2. Monthly Accumulation Volumes for Cell 3 LDS	7
Figure A.5.3-3. Total Uranium Concentration and Groundwater Elevation Versus Time	
Plot for Cell 3 Upgradient Monitoring Well 22203	8
Figure A.5.3-4. Total Uranium Concentration and Groundwater Elevation Versus Time	
Plot for Cell 3 Downgradient Monitoring Well 22204	8
Figure A.5.3-5A. Cell 3 Total Uranium Concentration Versus Time Plot for LCS, LDS,	
and HTW	9
Figure A.5.3-5B. Cell 3 Total Uranium Concentration Versus Time Plot for HTW,	
GMA-U Well, and GMA-D Well	9
Figure A.5.3-6A. Cell 3 Boron Concentration Versus Time Plot for LCS, LDS, and HTW	10
Figure A.5.3-6B. Cell 3 Boron Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	10
Figure A.5.3-7A. Cell 3 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW	11
Figure A.5.3-7B. Cell 3 Sodium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	11
Figure A.5.3-8A. Cell 3 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW	12
Figure A.5.3-8B. Cell 3 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	12
Figure A.5.3-9. Cell 3 Calcium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	13
Figure A.5.3-10. Cell 3 Lithium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	13
Figure A.5.3-11. Cell 3 Magnesium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	14

Figure A.5.3-12. Cell 3 Nitrate + Nitrate as Nitrogen Concentration Versus Time Plot for	
HTW, GMA-U Well, and GMA-D Well 1	4
Figure A.5.3-13. Cell 3 Potassium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well1	5
Figure A.5.3-14. Cell 3 Selenium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well1	5
Figure A.5.3-15. Cell 3 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U	
Well, and GMA-D Well1	6
Figure A.5.3-16. Cell 3 Total Dissolved Solid Concentration Versus Time Plot for HTW,	
GMA-U Well, and GMA-D Well 1	6
Figure A.5.3-17. Cell 3 Total Organic Halogens Concentration Versus Time Plot for HTW,	
GMA-U Well, and GMA-D Well1	7
Figure A.5.3-18. Cell 3 Bivariate Plot for Uranium and Sodium 1	7
Figure A.5.3-19. Intrawell Shewhart-CUSUM Control Chart for Calcium in Monitoring	
Well 222031	8
Figure A.5.3-20. Intrawell Shewhart-CUSUM Control Chart for Lithium in Monitoring	
Well 222041	9

Abbreviations

CUSUM	Shewhart-cumulative sum
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
GMA	Great Miami Aquifer
GMA-D	downgradient Great Miami Aquifer
GMA-U	upgradient Great Miami Aquifer
HTW	horizontal till well
LCS	leachate collection system
LDS	leak detection system
Ohio EPA	Ohio Environmental Protection Agency
OSDF	On-Site Disposal Facility
SCL	Shewhart control limit

Measurement Abbreviations

- amsl above mean sea level
- mg/L milligrams per liter
- μg/L micrograms per liter
- pCi/L picocuries per liter

This page intentionally left blank

This subattachment provides the following information about the On-Site Disposal Facility (OSDF) Cell 3:

- Semiannual monitoring summary statistics (Table A.5.3-1)
- Leachate collection system (LCS) monthly accumulation volumes (Figure A.5.3-1)
- Leak detection system (LDS) monthly accumulation volumes (Figure A.5.3-2)
- OSDF horizontal till well (HTW) 12340 water yield (Table A.5.3-2)
- Great Miami Aquifer (GMA) water levels and total uranium concentration versus time (Figures A.5.3-3 and A.5.3-4)
- Plots of concentration versus time (Figures A.5.3-5A through A.5.3-17)
- A bivariate plot for uranium-sodium (Figure A.5.3-18)
- Control charts (Figures A.5.3-19 through A.5.3-21)

A.5.3.1 Water Quality Monitoring Results

Water quality within the cell is sampled in the LCS and LDS. Water quality beneath the cell is sampled in the HTW and GMA wells. Concentration versus time plots, bivariate plots, and control charts are used to help interpret and present the results.

Until 2014, quarterly water quality monitoring occurred in the LCS, LDS, HTW, and GMA wells of each cell for the purpose of determining if the OSDF is operating as designed. With U.S. Environmental Protection Agency (EPA) and Ohio Environmental Protection Agency (Ohio EPA) concurrence, the U.S. Department of Energy (DOE) changed from a quarterly sampling frequency to a semiannual sampling frequency at the start of 2014.

With EPA and Ohio EPA concurrence, DOE reduced the number of parameters sampled from 24 to 13 beginning in January 2017. All 13 parameters are sampled in the GMA wells; 4 of 13 parameters (total uranium, boron, sodium, and sulfate) are sampled in the LCS, LDS, and HTW of each cell. The annual sampling in the LCS of each cell for the abbreviated list of Appendix I parameters and polychlorinated biphenyls listed in *Ohio Administrative Code* 3745-27-10 was also eliminated beginning in January 2017 with EPA and Ohio EPA concurrence (DOE 2017).

A.5.3.1.1 LCS and LDS Results

As shown in Table A.5.3-1 and summarized below, four parameters (total uranium, boron, sodium, and sulfate) in 2022 have upward trends in the LCS based on the Mann-Kendall test for trend. No new high concentrations were measured in the LCS of Cell 3 in 2022. Since 2007, the volume of water in the LDS tank of Cell 3 has been insufficient to collect a sample.

Parameter	LCS 12340C 2022 Trend	LDS 12340D Trend (Year Last Sampled) ^a		
Total Uranium	Up	Down (2007)		
Boron	Up			
Sodium	Up	Down (2007)		
Sulfate	Up	Down (2007)		

^a No entry indicates that the trend was not up.

A.5.3.1.2 HTW and Monitoring Well Results

As shown in Table A.5.3-1 and summarized here, seven parameters (total uranium, boron, lithium, magnesium, nitrate + nitrite as nitrogen, selenium, and total dissolved solids) have upward trends in the HTW or the GMA wells based on the Mann-Kendall test for trend.

Parameters with Upward Concentration Trends in the HTW and GMA Wells of Cell 3

Parameter	HTW 12340 ^a	GMA-U 22203⁵	GMA-D 22204 ^{a,b}
Total Uranium		Up	Up
Boron	Up	Up	Up
Lithium		Up	
Magnesium		Up	
Nitrate + Nitrite as Nitrogen		Up	
Selenium		Up	Up
Total Dissolved Solids		Up	

^a No entry indicates that the trend was not up.

^b GMA-U = upgradient Great Miami Aquifer; GMA-D = downgradient Great Miami Aquifer.

A.5.3.1.3 Discussion

The uranium–sodium bivariate plot for the Cell 3 LCS, LDS, and HTW is provided in Figure A.5.3-18. On the figure, the first sample ever collected from the monitoring horizon is circled. An arrow leads from the first sample to the location of the most recent sample. The plot shows that the chemical signatures for uranium and sodium in the LCS, LDS, and HTW are separate and distinct, indicating that mixing between the horizons is not occurring; therefore, upward concentration trends measured beneath the cells in GMA wells are attributed to fluctuating ambient concentrations beneath the cell and are not related to cell performance.

A.5.3.2 Control Charts

Intrawell control charts use historical measurements from a compliance point as background. The *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance* (EPA 2009) defines the process of creating a Shewhart-cumulative sum (CUSUM) control chart. Appropriate background data are used to define a baseline for the well. The baseline parameters for the chart, estimates of the mean, and standard deviation are obtained from the background data. These baseline measurements characterize the expected background concentrations at the monitoring point. As future concentrations are measured, the baseline parameters are used to standardize the newly gathered data. After these measurements are standardized and plotted, a control chart is declared "not in control" if future concentrations exceed the baseline control limit. This is indicated on the control chart when either the Shewhart or CUSUM plot traces begin to exceed a control limit. The limit is based on the rationale that if the monitoring point remains unchanged from the baseline mean. If a change occurs, the standardized values will deviate significantly from the baseline and tend to exceed the control limit. Usually, two parameters are used to compute standardized limits—the decision value (h) and the Shewhart control limit (SCL).

A minimum of eight samples are recommended for use in ChemStat software to define the baseline for a control chart. Therefore, only sample sets with greater than eight samples were selected for control charts. By default, the ChemStat software plots both a CUSUM control limit (h) and an SCL on the control chart. The software recommends a value of 5 for the CUSUM control limit and a value of 4.5 for the SCL.

EPA Statistical Analysis Unified Guidance (EPA 2009) suggests that, to simplify the interpretation of the control chart, an out-of-control condition should be based on the CUSUM (h) limit alone. Plotting the SCL is not needed. However, the ChemStat software, by default, plots both the SCL and CUSUM control limit (h) on the charts. To address this issue, the SCL was defined as 5 to equal the recommended CUSUM control limit (h). This combined limit is identified as hCL on the control charts. For interpretation purposes, the hCL value will be regarded as the CUSUM control limit (h).

As shown in Table A.5.3-1 in gray shading and as summarized below, two parameter in the HTW and GMA wells of Cell 3 meet the criteria for control charts (i.e., at least eight samples, normal or lognormal distribution, no trend, and no serial correlation), resulting in two control charts (Figures A.5.3-19 and A.5.3-20). Both control chart for Cell 3 exhibited "in control" conditions.

Parameter	Monitoring Point ^a	Well Number	Assessment	Figure Number	
Calcium	GMA-U	22203	In Control	A.5.3-19	
Lithium	GMA-D	22204	In Control	A.5.3-20	

^a GMA-D = downgradient Great Miami Aquifer; GMA-U = upgradient Great Miami Aquifer.

A.5.3.3 Summary and Conclusions

- Four parameters monitored semiannually in 2022 have an upward concentration trend in the LCS of Cell 3: total uranium, boron, sodium, and sulfate. No new high concentrations were measured in the LCS of Cell 3 in 2022.
- The volume of water in the LDS tank of Cell 3 has been insufficient to collect a sample since 2007.

- Seven parameters monitored semiannually have an upward concentration trend in the HTW or GMA wells of Cell 3: total uranium, boron, lithium, magnesium, nitrate + nitrite as nitrogen, selenium, and total dissolved solids. Separate and distinct chemical signatures for total uranium and sodium in the LCS, LDS, and HTW of Cell 3 indicate that water is not mixing between the horizons. Therefore, upward concentration trends beneath Cell 3 (i.e., HTW or GMA wells) are attributed to fluctuating ambient concentrations beneath the cell and not to cell performance.
- Two control charts were constructed for Cell 3 parameters. Both control charts exhibit "in control" conditions.

A.5.3.4 References

DOE (U.S. Department of Energy), 2017. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, Cincinnati, Ohio, May.

EPA (U.S. Environmental Protection Agency), 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance*, EPA 530/R-09-007, March.

OAC 3745-27-10. "Ground Water Monitoring Program for a Sanitary Landfill Facility," *Ohio Administrative Code*.

Table A.5.3-1. Summary Statistics for Cell 3

			Number of										
			Detected	Total Number	Percent				Standard	Distribution	Trend ^{d,†} (Year Last	Serial	
Parameter	Horizon ^a	Location	Samples	of Samples	Detects	Minimum ^b	Maximum ^b	Average ^{c,d}	Deviation ^d	Type ^{d,e}	Sampled)	Correlation ^{d,g}	Outliers ^{h,i}
	LCS	12340C	74	74	100	9.35	206	85.0	40.3	Normal	Up (2022)	Detected	
	LDS	12340D	21	21	100	8.90	27.7	19.7	13.0	Normal	Down (2007)	Not Detected	72.4 (Q4-04)
Total Uranium (μg/L)	HTW	12340	77	77	100	3.89	29.3	18.0	7.8	Undefined	None (2022)	Detected	58.5 (Q3-09), 42.1 (Q3-16)
	GMA-U	22203	76	79	96.2	ND	23.5	2.33	4.62	Ln Normal	Up (2022)	Detected	
	GMA-D	22204	87	88	98.9	ND	22.9	3.79	4.58	Undefined	Up (2022)	Detected	
	LCS	12340C	74	75	98.7	ND	9.19	4.47	1.81	Undefined	Up (2022)	Detected	
	LDS	12340D	20	21	95.2	ND	0.557	0.128	0.149	Undefined	Down (2007)	Not Detected	
Boron (mg/L)	HTW	12340	60	60	100	0.0481	0.259	0.141	0.051	Normal	Up (2022)	Detected	0.960 (Q3-06)
	GMA-U	22203	68	79	86.1	ND	0.0870	0.0499	0.0170	Normal	Up (2022)	Detected	
	GMA-D	22204	71	79	89.9	ND	0.0887	0.0457	0.0150	Normal	Up (2022)	Detected	
	LCS	12340C	54	54	100	4.35	49.9	27.4	7.6	Undefined	Up (2022)	Detected	
	LDS	12340D	9	9	100	263	344	315	27	Normal	None (2007)	Not Detected	
Sodium (mg/L)	HTW	12340	46	46	100	10.2	74.1	34.7	17.4	Ln Normal	Down (2022)	Detected	
	GMA-U	22203	37	37	100	15.9	30.7	21.0	3.8	Ln Normal	Down (2022)	Detected	
	GMA-D	22204	38	38	100	7.88	20.5	13.2	3.8	Ln Normal	Down (2022)	Detected	
	LCS	12340C	66	66	100	26.1	2,650	1,860	520	Undefined	Up (2022)	Detected	
	LDS	12340D	19	19	100	112	2,510	1,250	700	Undefined	Down (2007)	Not Detected	
Sulfate (mg/L)	HTW	12340	56	56	100	352	958	627	157	Normal	Down (2022)	Detected	
	GMA-U	22203	61	61	100	64.2	738	253	147	Ln Normal	None (2022)	Detected	4,020 (Q3-12)
	GMA-D	22204	61	61	100	186	779	427	159	Normal	Down (2022)	Detected	
	GMA-U	22203	30	30	100	135	290	180	38	Ln Normal	None (2022)	Not Detected	
Calcium (mg/L)	GMA-D	22204	30	30	100	134	365	222	58	Ln Normal	Down (2022)	Detected	
	GMA-U	22203	37	37	100	0.00577	0.0229	0.00980	0.00535	Undefined	Up (2022)	Not Detected	
Litnium (mg/L)	GMA-D	22204	37	37	100	0.00694	0.0102	0.00864	0.00088	Normal	None (2022)	Not Detected	
	GMA-U	22203	30	30	100	32.5	65.6	48.0	9.5	Normal	Up (2022)	Not Detected	
Magnesium (mg/L)	GMA-D	22204	30	30	100	37.2	66.6	48.7	8.1	Normal	Down (2022)	Not Detected	
	GMA-U	22203	17	30	56.7	ND	0.0360	0.0876	0.090253	Undefined	Up (2022)	Not Detected	
Nitrate + Nitrite, as Nitrogen (mg/L)	GMA-D	22204	1	30	3.3	ND	0.0425	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
	GMA-U	22203	30	30	100	2.07	3.50	2.56	0.35	Ln Normal	Down (2022)	Not Detected	
Potassium (mg/L)	GMA-D	22204	31	31	100	1.17	3.07	2.00	0.54	Normal	Down (2022)	Detected	
	GMA-U	22203	5	37	13.5	ND	0.0130	0.00300	0.00291	Undefined	Up (2022)	Detected	
Selenium (mg/L)	GMA-D	22204	5	37	13.5	ND	0.0178	0.00300	0.00335	Undefined	Up (2022)	Detected	
- 1	GMA-U	22203	1	28	3.6	ND	8.44	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
Technitium-99 (pCi/L)	GMA-D	22204	0	28	0	ND	NA	Insufficient	insufficient	Insufficient	Insufficient	Insufficient	
	GMA-U	22203	37	37	100	524	1,410	720	195	Undefined	Up (2022)	Detected	
Total Dissolved Solids (mg/L)	GMA-D	22204	37	37	100	487	1,530	945	233	Normal	Down (2022)	Not Detected	
	GMA-U	22203	42	79	53.2	ND	0.213	0.00524	0.0250	Undefined	None (2022)	Detected	
Total Organic Halogens (mg/L)	GMA-D	22204	17	79	21.5	ND	0.0270	0.0075	0.0187	Undefined	Down (2022)	Detected	0.165 (Q2-00)
			an complete state and t										

^aLCS = leachate collection system; LDS = leak detection system; HTW = horizontal till well; GMA-U = upgradient Great Miami Aquifer; and GMA-D = downgradient Great Miami Aquifer

^bND = not detected; NA = not applicable

^cAverages were determined based on the distribution assumption.

^dInsufficient is used for Distribution Type, Trend, or Serial Correlation whenever there is not enough data to run the test.

^eData distribution based on the Shapiro-Wilk statistic.

Normal: Normal assumption could not be rejected at the 5 percent level and has a higher probability value than the Ln Normal assumption.

In Normal: Lognormal assumption could not be rejected at the 5 percent level and has a higher probability value than the Normal assumption.

Undefined: Normal and Lognormal Distribution assumptiions are both rejected or there are less than 25 percent detected values. "Average" is defined as the Median of the data.

¹Trend based on nonparametric Mann-Kendall procedure.

⁹Serial correlation based on Rank Von Neumann test.

^hOutliers determined by Rosner's (for sample sizes greater than 25) or Dixon procedure (for sample sizes less than or equal to 25).

ⁱQ = quarter

Year	Total Volume Purged (gallons)	Number of Months Purged	Average Volume Purged (gallons)
1999	4,880	11	444
2000	1,090	6	182
2001	1,050	4	263
2002	1,200	4	300
2003	1,770	4	443
2004	2,875	4	719
2005	3,330	4	833
2006	3,115	4	779
2007	2,895	4	724
2008	2,875	4	719
2009	2,100	4	700
2010	2,650	4	663
2011	2,600	4	650
2012	2,150	4	538
2013	2,725	4	681
2014	1,455	2	728
2015	1,050	2	525
2016	1,445	2	723
2017	1,425	2	713
2018	1,400	2	700
2019	1,475	2	738
2020	1,550	2	775
2021	1,435	2	718
2022	1,400	2	700

Table A.5.3-2. OSDF Horizontal Till Well 12340 (Cell 3) Water Yield

Figure A.5.3-1. Monthly Accumulation Volumes for Cell 3 LCS

Figure A.5.3-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 3 Upgradient Monitoring Well 22203

Figure A.5.3-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 3 Downgradient Monitoring Well 22204

Figure A.5.3-5A. Cell 3 Total Uranium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.3-5B. Cell 3 Total Uranium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-6A. Cell 3 Boron Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.3-6B. Cell 3 Boron Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-7A. Cell 3 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.3-7B. Cell 3 Sodium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-8A. Cell 3 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.3-8B. Cell 3 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-9. Cell 3 Calcium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-10. Cell 3 Lithium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-11. Cell 3 Magnesium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-12. Cell 3 Nitrate + Nitrate as Nitrogen Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-13. Cell 3 Potassium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-14. Cell 3 Selenium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-15. Cell 3 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-16. Cell 3 Total Dissolved Solid Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-18B. Cell 3 Total Organic Halogens Concentration vs. Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-17. Cell 3 Total Organic Halogens Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.3-18. Cell 3 Bivariate Plot for Uranium and Sodium

This page intentionally left blank
Subattachment A.5.4

Cell 4

Contents

Abbreviatio	ns		iii
Measureme	nt Abbreviation	ons	iii
A.5.4.1	Water Quality	ty Monitoring Results	1
	A.5.4.1.1	LCS and LDS Results	1
	A.5.4.1.2	HTW and Monitoring Well Results	2
	A.5.4.1.3	Discussion	2
A.5.4.2	Control Cha	rts	3
A.5.4.3	Summary an	d Conclusions	4
A.5.4.4	References .		4

Tables

Table A.5.4-1. Summary Statistics for Cell 4	. 5
Table A.5.4-2. OSDF Horizontal Till Well 12341 (Cell 4) Water Yield	6

Figures

Figure A.5.4-1. Monthly Accumulation Volumes for Cell 4 LCS	7
Figure A.5.4-2. Monthly Accumulation Volumes for Cell 4 LDS	7
Figure A.5.4-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot	
for Cell 4 Upgradient Monitoring Well 22206	8
Figure A.5.4-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot	
for Cell 4 Downgradient Monitoring Well 22205	8
Figure A.5.4-5A. Cell 4 Total Uranium Concentration Versus Time Plot for LCS, LDS, and	
HTW	9
Figure A.5.4-5B. Cell 4 Total Uranium Concentration Versus Time Plot for HTW, GMA-U	
Well, and GMA-D Well	9
Figure A.5.4-6A. Cell 4 Boron Concentration Versus Time Plot for LCS, LDS, and HTW	10
Figure A.5.4-6B. Cell 4 Boron Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	10
Figure A.5.4-7A. Cell 4 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW	11
Figure A.5.4-7B. Cell 4 Sodium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	11
Figure A.5.4-8A. Cell 4 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW	12
Figure A.5.4-8B. Cell 4 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	12
Figure A.5.4-9. Cell 4 Calcium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	13
Figure A.5.4-10. Cell 4 Lithium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	13
Figure A.5.4-11. Cell 4 Magnesium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	14

Figure A.5.4-12.	Cell 4 Nitrate + Nitrite as Nitrogen Concentration Versus Time Plot for	
	HTW, GMA-U Well, and GMA-D Well1	4
Figure A.5.4-13.	Cell 4 Potassium Concentration Versus Time Plot for HTW, GMA-U Well,	
-	and GMA-D Well	5
Figure A.5.4-14.	Cell 4 Selenium Concentration Versus Time Plot for HTW, GMA-U Well,	
-	and GMA-D Well	5
Figure A.5.4-15.	Cell 4 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U	
	Well, and GMA-D Well	6
Figure A.5.4-16.	Cell 4 Total Dissolved Solids Concentration Versus Time Plot for HTW,	
	GMA-U Well, and GMA-D Well	6
Figure A.5.4-17.	Cell 4 Total Organic Halogens Concentration Versus Time Plot for HTW,	
	GMA-U Well, and GMA-D Well 1	7
Figure A.5.4-18.	Cell 4 Bivariate Plot for Uranium and Sodium	7
Figure A.5.4-19.	Intrawell Shewhart-CUSUM Control Chart for Total Uranium in Monitoring	
	Well 222051	8
Figure A.5.4-20.	Intrawell Shewhart-CUSUM Control Chart for Sulfate in Monitoring	
	Well 222051	9
Figure A.5.4-21.	Intrawell Shewhart-CUSUM Control Chart for Magnesium in Monitoring	
	Well 22205	0
Figure A.5.4-22.	Intrawell Shewhart-CUSUM Control Chart for Magnesium in Monitoring	
	Well 22206	1
Figure A.5.4-23.	Intrawell Shewhart-CUSUM Control Chart for Total Dissolved Solids in	
	Monitoring Well 22205	2

Abbreviations

CUSUM	Shewhart-cumulative sum
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
GMA	Great Miami Aquifer
GMA-D	downgradient Great Miami Aquifer
GMA-U	upgradient Great Miami Aquifer
HTW	horizontal till well
LCS	leachate collection system
LDS	leak detection system
Ohio EPA	Ohio Environmental Protection Agency
OSDF	On-Site Disposal Facility
SCL	Shewhart control limit

Measurement Abbreviations

- amsl above mean sea level
- mg/L milligrams per liter
- μg/L micrograms per liter
- pCi/L picocuries per liter

This subattachment provides the following information about the On-Site Disposal Facility (OSDF) Cell 4:

- Semiannual monitoring summary statistics (Table A.5.4-1)
- Leachate collection system (LCS) monthly accumulation volumes (Figure A.5.4-1)
- Leak detection system (LDS) monthly accumulation volumes (Figure A.5.4-2)
- OSDF horizontal till well (HTW) 12341 water yield (Table A.5.4-2)
- Great Miami Aquifer (GMA) water levels and total uranium concentration versus time (Figures A.5.4-3 and A.5.4-4)
- Plots of concentration versus time (Figures A.5.4-5A through A.5.4-17)
- A bivariate plot for uranium-sodium (Figure A.5.4-18)
- Control charts (Figures A.5.4-19 through A.5.4-23)

A.5.4.1 Water Quality Monitoring Results

Water quality within the cell is sampled in the LCS and LDS. Water quality beneath the cell is sampled in the HTW and GMA wells. Concentration versus time plots, bivariate plots, and control charts are used to help interpret and present the results.

Until 2014, quarterly water quality monitoring occurred in the LCS, LDS, HTW, and GMA wells of each cell for the purpose of determining if the OSDF is operating as designed. With U.S. Environmental Protection Agency (EPA) and Ohio Environmental Protection Agency (Ohio EPA) concurrence, the U.S. Department of Energy (DOE) changed from a quarterly sampling frequency to a semiannual sampling frequency at the start of 2014.

With EPA and Ohio EPA concurrence, DOE reduced the number of parameters sampled from 24 to 13 beginning in January 2017. All 13 parameters are sampled in the GMA wells; 4 of 13 parameters (total uranium, boron, sodium, and sulfate) are sampled in the LCS, LDS, and HTW of each cell. The annual sampling in the LCS of each cell for the abbreviated list of Appendix I parameters and polychlorinated biphenyls listed in *Ohio Administrative Code* 3745-27-10 was also eliminated beginning in January 2017 with EPA and Ohio EPA concurrence (DOE 2017).

A.5.4.1.1 LCS and LDS Results

As shown in Table A.5.4-1 and summarized below, four parameters (total uranium, boron, sodium, and sulfate) have upward trends in the LCS or LDS based on the Mann-Kendall test for trend.

From 2012 to 2016, the volume of water in the LDS tank of Cell 4 was insufficient to collect a sample. From 2016 to 2019, enough water was present in the LDS tank of Cell 4 to sample it twice a year. The volume of water in the LDS tank of Cell 4 was insufficient to collect a sample in 2020. In 2021, enough water was present in the LDS tank of Cell 4 to collect a sample in the second half of the year. In 2022, enough water was present in the LDS tank of Cell 4 to collect a sample in the first half of 2022. New high concentrations of uranium (79.8 micrograms per liter [μ g/L]), boron (3.74 milligrams per liter [mg/L]), sodium (4,440 μ g/L)], and sulfate (25,500 μ g/L) were measured

in the LDS of Cell 4 in 2022. The previous highs for uranium, boron, sodium, and sulfate were 55.9 μ g/L, 2.89 mg/L, 1,750 mg/L, and 11,600 mg/L, respectively.

Parameter	LCS 12341C 2021 Trendª	LDS 12341D Trend (Year Last Sampled)
Total Uranium		Up (2022)
Boron		Up (2022)
Sodium	Up	Up (2022)
Sulfate	Up	Up (2022)

Parameters with Upward Concentration Trends in the LCS and LDS of Cell 4

^a No entry indicates that the trend was not up.

A.5.4.1.2 HTW and Monitoring Well Results

As shown in Table A.5.4-1 and summarized below, six parameters (total uranium, boron, sodium, sulfate, lithium, and selenium) have upward trends in the HTW or GMA wells based on the Mann-Kendall test for trend.

Parameters with I	Inward Concentration	Trends in the HTV	N and GMA Well	s of Cell 4
i alameters with 0				

Parameter	HTW 12341 ^a	GMA-U 22206 ^{a,b}	GMA-D 22205 ^{a,b}
Total Uranium		Up	
Boron	Up	Up	Up
Sodium		Up	
Sulfate	Up	Up	
Lithium			Up
Selenium		Up	Up

^a No entry indicates that the trend was not up.

^b GMA-U = upgradient Great Miami Aquifer; GMA-D = downgradient Great Miami Aquifer; HTW = Horizontal Till Well.

A.5.4.1.3 Discussion

The uranium–sodium bivariate plot for the Cell 4 LCS, LDS, and HTW is provided in Figure A.5.4-18. On the figure, the first sample ever collected from the monitoring horizon is circled. An arrow leads from the first sample to the location of the most recent sample. The plot shows that the chemical signatures for uranium and sodium in the LCS, LDS, and HTW are separate and distinct, indicating that mixing between the horizons is not occurring; therefore, upward concentration trends measured beneath the cells in GMA wells are attributed to fluctuating ambient concentrations beneath the cell and are not related to cell performance.

A.5.4.2 Control Charts

Intrawell control charts use historical measurements from a compliance point as background. The Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance (EPA 2009) defines the process of creating a Shewhart-cumulative sum (CUSUM) control chart. Appropriate background data are used to define a baseline for the well. The baseline parameters for the chart, estimates of the mean, and standard deviation are obtained from the background data. These baseline measurements characterize the expected background concentrations at the monitoring point. As future concentrations are measured, the baseline parameters are used to standardize the newly gathered data. After these measurements are standardized and plotted, a control chart is declared "not in control" if future concentrations exceed the baseline control limit. This is indicated on the control chart when either the Shewhart or CUSUM plot traces begin to exceed a control limit. The limit is based on the rationale that if the monitoring point remains unchanged from the baseline condition, new standardized observations should not deviate substantially from the baseline mean. If a change occurs, the standardized values will deviate significantly from the baseline and tend to exceed the control limit. Usually, two parameters are used to compute standardized limits—the decision value (h) and the Shewhart control limit (SCL).

A minimum of eight samples are recommended for use in ChemStat software to define the baseline for a control chart. Therefore, only sample sets with greater than eight samples were selected for control charts. By default, the ChemStat software plots both a CUSUM control limit (h) and an SCL on the control chart. The software recommends a value of 5 for the CUSUM control limit and a value of 4.5 for the SCL.

EPA Statistical Analysis Unified Guidance (EPA 2009) suggests that, to simplify the interpretation of the control chart, an out-of-control condition should be based on the CUSUM (h) limit alone. Plotting the SCL is not needed. However, the ChemStat software, by default, plots both the SCL and CUSUM control limit (h) on the charts. To address this issue, the SCL was defined as 5 to equal the recommended CUSUM control limit (h). This combined limit is identified as hCL on the control charts. For interpretation purposes, the hCL value will be regarded as the CUSUM control limit (h).

As shown in Table A.5.4-1 in gray shading and as summarized below, four parameters in the HTW or GMA wells of Cell 4 meet the criteria for control charts (i.e., at least eight samples, normal or lognormal distribution, no trend, and no serial correlation), resulting in five control charts (A.5.4-19 through A.5.4-23).

Parameter	Monitoring Point ^a	Well Number	Assessment	Figure Number
Uranium	GMA-D	22205	In Control	A.5.4-19
Sulfate	GMA-D	22205	In Control	A.5.4-20
Magnesium	GMA-U	22205	In Control	A.5.4-21
Magnesium	GMA-D	22206	In Control	A.5.4-22
Total Dissolved Solids	GMA-D	22205	In Control	A.5.4-23

All of the control charts for Cell 4 exhibit "in control" conditions.

^a GMA-U = upgradient Great Miami Aquifer, GMA-D = downgradient Great Miami Aquifer

A.5.4.3 Summary and Conclusions

- Four parameters in 2022 (total uranium, boron, sodium, and sulfate) have upward trends in the LCS or LDS based on the Mann-Kendall test for trend.
- New high concentrations of uranium (79.8 µg/L), boron (3.74 mg/L), sodium (4,440 µg/L), and sulfate (25,500 µg/L) were measured in the LDS of Cell 4 in 2022. The previous highs for uranium, boron, sodium, and sulfate were 55.9 µg/L, 2.89 mg/L, 1,750 mg/L, and 11,600 mg/L, respectively.
- Six parameters monitored semiannually have an upward concentration in the HTW or GMA wells of Cell 4: total uranium, boron, sodium, sulfate, lithium, and selenium. Separate and distinct chemical signatures for total uranium and sodium in the LCS, LDS, and HTW of Cell 4 indicate that water is not mixing between the horizons. Therefore, upward concentration trends beneath Cell 4 (i.e., HTW or GMA wells) are attributed to fluctuating ambient concentrations beneath the cell and not to cell performance.
- Five control charts were constructed for Cell 4 parameters. All control charts exhibit "in control" conditions.

A.5.4.4 References

DOE (U.S. Department of Energy), 2017. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, Cincinnati, Ohio, May.

EPA (U.S. Environmental Protection Agency), 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance*, EPA 530/R-09-007, March.

OAC 3745-27-10. "Ground Water Monitoring Program for a Sanitary Landfill Facility," *Ohio Administrative Code*.

Table A.5.4-1. Summary Statistics for Cell 4

U.S. Department of Energy

			Detected	Total Number	Percent				Standard	Distribution	Trend ^{d,T} (Year Last	Serial	
Parameter	Horizon ^a	Location	Samples	of Samples	Detects	Minimum ^b	Maximum ^b	Average ^{c,d}	Deviation ^d	Type ^{d,e}	Sampled)	Correlation ^{d,g}	Outliers ^{h,i}
	LCS	12341C	60	60	100	4.41	234	88.2	35.0	Undefined	None (2022)	Detected	
	LDS	12341D	42	42	100	5.74	79.8	15.1	14.8	Undefined	Up (2022)	Detected	
Total Uranium (μg/L)	HTW	12341	65	65	100	3.19	7.89	5.34	1.09	Normal	Down (2022)	Detected	
	GMA-U	22206	62	66	93.9	ND	4.67	1.35	0.96	Ln Normal	Up (2022)	Not Detected	
	GMA-D	22205	75	75	100	0.525	12.1	2.48	2.27	Ln Normal	None (2022)	Not Detected	
	LCS	12341C	60	60	100	0.0626	1.93	0.848	0.264	Undefined	Down (2022)	Detected	
	LDS	12341D	42	42	100	0.415	3.74	0.708	0.777	Undefined	Up (2022)	Detected	
Boron (mg/L)	HTW	12341	45	48	93.8	ND	1.24	0.0937	0.207	Undefined	Up (2022)	Detected	
	GMA-U	22206	61	66	92.4	ND	0.0817	0.0471	0.0137	Normal	Up (2022)	Detected	
	GMA-D	22205	59	66	89.4	ND	0.0807	0.0461	0.0141	Normal	Up (2022)	Detected	
	LCS	12341C	50	50	100	22.0	117	54.6	12.7	Undefined	Up (2022)	Detected	
	LDS	12341D	28	28	100	307	4,440	504	799	Undefined	Up (2022)	Detected	
Sodium (mg/L)	HTW	12341	46	46	100	13.7	18.1	15.2	1.0	Ln Normal	Down (2022)	Detected	
	GMA-U	22206	37	37	100	12.3	22.3	17.1	2.9	Normal	Up (2022)	Detected	
	GMA-D	22205	38	38	100	8.53	22.2	14.9	4.3	Undefined	Down (2022)	Detected	
	LCS	12341C	60	60	100	140	3,940	2,780	760	Undefined	Up (2022)	Detected	
	LDS	12341D	42	42	100	1,470	25,500	2,660	4,100	Undefined	Up (2022)	Detected	
Sulfate (mg/L)	HTW	12341	56	56	100	153	531	294	119	Undefined	Up (2022)	Detected	
	GMA-U	22206	61	61	100	90.4	559	211	105	Ln Normal	Down (2022)	Detected	3,720 (Q3-12)
	GMA-D	22205	61	61	100	199	535	334	75	Normal	None (2022)	Not Detected	
Coloison (mall)	GMA-U	22206	30	30	100	137	217	149	22	Undefined	None (2022)	Not Detected	
Calcium (mg/L)	GMA-D	22205	30	30	100	163	268	216	24	Normal	Down (2022)	Not Detected	
	GMA-U	22206	37	37	100	0.00729	0.0175	0.0118	0.0025	Normal	Down (2022)	Detected	
Lithium (mg/L)	GMA-D	22205	37	37	100	0.00665	0.0167	0.00843	0.00219	Undefined	Up (2022)	Detected	
Magnosium (mg/L)	GMA-U	22206	30	30	100	30.2	43.8	35.9	3.5	Normal	None (2022)	Not Detected	
Wagnesium (mg/L)	GMA-D	22205	30	30	100	40.1	63.2	51.9	5.6	Normal	None (2022)	Not Detected	
	GMA-U	22206	3	30	10.0	ND	0.0850	0.0193	Insufficient	Insufficient	Insufficient	Insufficient	
Nitrate + Nitrite, as Nitrogen (mg/L)	GMA-D	22205	4	30	13.3	ND	0.0818	0.0085	0.0174	Undefined	None (2022)	Not Detected	
	GMA-U	22206	30	30	100	2.69	4.39	3.62	0.41	Normal	Down (2022)	Detected	
Potassium (mg/L)	GMA-D	22205	31	31	100	1.64	3.22	2.29	0.43	Normal	Down (2022)	Detected	
	GMA-U	22206	4	37	10.8	ND	0.0294	0.00300	0.00558	Undefined	Up (2022)	Detected	
Selenium (mg/L)	GMA-D	22205	6	37	16.2	ND	0.0180	0.00300	0.00393	Undefined	Up (2022)	Detected	
Table 11 and 00 (a Chill)	GMA-U	22206	1	27	3.7	ND	8.54	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
Technitium-99 (pCI/L)	GMA-D	22205	0	27	0	ND	NA	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
The Direct of California (C	GMA-U	22206	37	37	100	551	877	624	81	Undefined	None (2022)	Not Detected	
Iotal Dissolved Solids (mg/L)	GMA-D	22205	37	37	100	726	1180	929	106	Normal	None (2022)	Not Detected	
	GMA-U	22206	23	66	34.8	ND	0.0640	0.00341	0.00946	Undefined	Down (2022)	Detected	
i otai Organic Halogens (mg/L)	GMA-D	22205	15	66	22.7	ND	0.0142	0.00166	0.00388	Undefined	Down (2022)	Detected	0.0340 (Q2-13)
Note 1: Shading identifies a horizontal till	well or Croot	Miomi Aquif	or well with at I	east sight samp	loo Normol or I	n Normal diatri	bution no trand	(None) and no	-	n (Not Dotostod) T	hono walla achiova a	antrol abort aritaria	•

Note 1: Shading identifies a horizontal till well or Great Miami Aquifer well, with at least eight samples, Normal or Ln Normal distribution, no trend (None), and no serial correlation (Not Detected). These wells achieve control chart

Note 2: Data used in this table have been standardized to quarterly.

^aLCS = leachate collection system; LDS = leak detection system; HTW = horizontal till well; GMA-U = upgradient Great Miami Aquifer; and GMA-D = downgradient Great Miami Aquifer

^bND = not detected; NA = not applicable

^cAverages were determined based on the distribution assumption.

^dInsufficient is used for Distribution Type, Trend, or Serial Correlation whenever there is not enough data to run the test.

^eData distribution based on the Shapiro-Wilk statistic.

Normal: Normal assumption could not be rejected at the 5 percent level and has a higher probability value than the Ln Normal assumption.

Number of

In Normal: Lognormal assumption could not be rejected at the 5 percent level and has a higher probability value than the Normal assumption.

Undefined: Normal and Lognormal Distribution assumptiions are both rejected or there are less than 25 percent detected values. "Average" is defined as the Median of the data.

¹Trend based on nonparametric Mann-Kendall procedure.

⁹Serial correlation based on Rank Von Neumann test.

^hOutliers determined by Rosner's (for sample sizes greater than 25) or Dixon procedure (for sample sizes less than or equal to 25). Q = quarter

Subattachment A.5.4, Page 5

Year	Total Volume Purged (gallons)	Number of Months Purged	Average Volume Purged (gallons)
2002	21,115	9	2,346
2003	3,950	6	658
2004	2,935	5	587
2005	2,500	4	625
2006	2,475	4	619
2007	2,425	4	606
2008	2,220	4	555
2009	2,150	4	717
2010	2,575	4	644
2011	2,350	4	588
2012	2,240	4	560
2013	2,460	4	615
2014	1,140	2	570
2015	975	2	488
2016	1,025	2	513
2017	1,175	2	588
2018	1,155	2	578
2019	1,045	2	523
2020	1,000	2	500
2021	1,160	2	580
2022	1,120	2	560

Table A.5.4-2. OSDF Horizontal Till Well 12341 (Cell 4) Water Yield

Figure A.5.4-1. Monthly Accumulation Volumes for Cell 4 LCS

Figure A.5.4-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 4 Upgradient Monitoring Well 22206

Figure A.5.4-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 4 Downgradient Monitoring Well 22205

Figure A.5.4-5A. Cell 4 Total Uranium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.4-5B. Cell 4 Total Uranium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-6A. Cell 4 Boron Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.4-6B. Cell 4 Boron Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-7A. Cell 4 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.4-7B. Cell 4 Sodium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-8A. Cell 4 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.4-8B. Cell 4 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-9. Cell 4 Calcium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-10. Cell 4 Lithium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-11. Cell 4 Magnesium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-12. Cell 4 Nitrate + Nitrite as Nitrogen Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-13. Cell 4 Potassium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-14. Cell 4 Selenium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-15. Cell 4 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-16. Cell 4 Total Dissolved Solids Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-17. Cell 4 Total Organic Halogens Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.4-19. Intrawell Shewhart-CUSUM Control Chart for Total Uranium in Monitoring Well 22205

Figure A.5.4-20. Intrawell Shewhart-CUSUM Control Chart for Sulfate in Monitoring Well 22205

Figure A.5.4-21. Intrawell Shewhart-CUSUM Control Chart for Magnesium in Monitoring Well 22205

Figure A.5.4-22. Intrawell Shewhart-CUSUM Control Chart for Magnesium in Monitoring Well 22206

Figure A.5.4-23. Intrawell Shewhart-CUSUM Control Chart for Total Dissolved Solids in Monitoring Well 22205

Subattachment A.5.5

Cell 5

Contents

Abbreviatio	ons		iii		
Measureme	nt Abbreviati	ons	iii		
A.5.5.1	Water Quali	ty Monitoring Results	.1		
	A.5.5.1.1	LCS and LDS Results	.1		
	A.5.5.1.2	HTW and Monitoring Well Results	.2		
	A.5.5.1.3	Discussion	.2		
A.5.5.2	Control Cha	rts	.2		
A.5.5.3	Summary and Conclusions				
A.5.5.4	References .		.4		

Tables

Table A.5.5-1. Summary Statistics for Cell 5	. 5
Table A.5.5-2. OSDF Horizontal Till Well 12342 (Cell 5) Water Yield	. 6

Figures

Figure A.5.5-1. Monthly Accumulation Volumes for Cell 5 LCS	7
Figure A.5.5-2. Monthly Accumulation Volumes for Cell 5 LDS	7
Figure A.5.5-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot	
for Cell 5 Upgradient Monitoring Well 22207	8
Figure A.5.5-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot	
for Cell 5 Downgradient Monitoring Well 22208	8
Figure A.5.5-5A. Cell 5 Total Uranium Concentration Versus Time Plot for LCS, LDS,	
and HTW	9
Figure A.5.5-5B. Cell 5 Total Uranium Concentration Versus Time Plot for HTW, GMA-U	
Well, and GMA-D Well	9
Figure A.5.5-6A. Cell 5 Boron Concentration Versus Time Plot for LCS, LDS, and HTW	. 10
Figure A.5.5-6B. Cell 5 Boron Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	. 10
Figure A.5.5-7A. Cell 5 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW	. 11
Figure A.5.5-7B. Cell 5 Sodium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	. 11
Figure A.5.5-8A. Cell 5 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW	. 12
Figure A.5.5-8B. Cell 5 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	. 12
Figure A.5.5-9. Cell 5 Calcium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	. 13
Figure A.5.5-10. Cell 5 Lithium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	. 13
Figure A.5.5-11. Cell 5 Magnesium Concentration Versus Time Plot for HTW, GMA-U	
Well, and GMA-D Well	. 14

Figure A.5.5-12. Cell 5 Nitrate + Nitrate as Nitrogen Concentration Versus Time Plot for	
HTW, GMA-U Well, and GMA-D Well	14
Figure A.5.5-13. Cell 5 Potassium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	15
Figure A.5.5-14. Cell 5 Selenium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	15
Figure A.5.5-15. Cell 5 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U	
Well, and GMA-D Well	16
Figure A.5.5-16. Cell 5 Total Dissolved Solids Concentration Versus Time Plot for HTW,	
GMA-U Well, and GMA-D Well	16
Figure A.5.5-17. Cell 5 Total Organic Halogens Concentration Versus Time Plot for HTW,	
GMA-U Well, and GMA-D Well	17
Figure A.5.5-18. Cell 5 Bivariate Plot for Uranium and Sodium	17
Figure A.5.5-19. Intrawell Shewhart-CUSUM Control Chart for Calcium in Monitoring	
Well 222071	18
Figure A.5.5-20. Intrawell Shewhart-CUSUM Control Chart for Uranium in Monitoring	
Well 222081	19

Abbreviations

CUSUM	Shewhart-cumulative sum
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
GMA	Great Miami Aquifer
GMA-D	downgradient Great Miami Aquifer
GMA-U	upgradient Great Miami Aquifer
HTW	horizontal till well
LCS	leachate collection system
LDS	leak detection system
Ohio EPA	Ohio Environmental Protection Agency
OSDF	On-Site Disposal Facility
SCL	Shewhart control limit

Measurement Abbreviations

- amsl above mean sea level
- mg/L milligrams per liter
- μg/L micrograms per liter
- pCi/L picocuries per liter

This subattachment provides the following information about the On-Site Disposal Facility (OSDF) Cell 5:

- Semiannual monitoring summary statistics (Table A.5.5-1)
- Leachate collection system (LCS) monthly accumulation volumes (Figure A.5.5-1)
- Leak detection system (LDS) monthly accumulation volumes (Figure A.5.5-2)
- OSDF horizontal till well (HTW) 12342 water yield (Table A.5.5-2)
- Great Miami Aquifer (GMA) water levels and total uranium concentration versus time (Figures A.5.5-3 and A.5.5-4)
- Plots of concentration versus time (Figures A.5.5-5A through A.5.5-17)
- A bivariate plot for uranium-sodium (Figure A.5.5-18)
- Control chart (Figure A.5.5-19 through A.5.5-20)

A.5.5.1 Water Quality Monitoring Results

Water quality within the cell is sampled in the LCS and LDS. Water quality beneath the cell is sampled in the HTW and GMA wells. Concentration versus time plots, bivariate plots, and control charts are used to help interpret and present the results.

Until 2014, quarterly water quality monitoring occurred in the LCS, LDS, HTW, and GMA wells of each cell for the purpose of determining if the OSDF was operating as designed. With U.S. Environmental Protection Agency (EPA) and Ohio Environmental Protection Agency (Ohio EPA) concurrence, the U.S. Department of Energy (DOE) changed from a quarterly sampling frequency to a semiannual sampling frequency at the start of 2014.

With EPA and Ohio EPA concurrence, DOE reduced the number of parameters sampled from 24 to 13 beginning in January 2017. All 13 parameters are sampled in the GMA wells; 4 of 13 parameters (total uranium, boron, sodium, and sulfate) are sampled in the LCS, LDS, and HTW of each cell. The annual sampling in the LCS of each cell for the abbreviated list of Appendix I parameters and polychlorinated biphenyls listed in *Ohio Administrative Code* 3745-27-10 was also eliminated beginning in January 2017 with EPA and Ohio EPA concurrence (DOE 2017).

A.5.5.1.1 LCS and LDS Results

As shown in Table A.5.5-1 and summarized below, one parameter (sulfate) had an upward trend in the LCS based on the Mann-Kendall test for trend in 2022. The volume of water in the LDS tank of Cell 5 was insufficient to collect a sample in 2022.

Parameter	LCSLDSParameter12342C12342D2022 TrendTrend (Year Last Same		
Sulfate	Up	Up (2013)	

Parameters with Upward Concentration Trends in the LCS and LDS of Cell 5

A.5.5.1.2 HTW and Monitoring Well Results

As shown in Table A.5.5-1 and summarized below, five parameters (boron, sodium, sulfate, lithium, potassium, and selenium) have upward trends in the HTW or GMA wells based on the Mann-Kendall test for trend.

Parameter	HTW 12342 ^a	GMA-U 22207 ^{a,b}	GMA-D 22208 ^{a,b}
Boron		Up	Up
Sodium		Up	
Sulfate	Up		
Lithium		Up	
Potassium		Up	
Selenium			Up

Parameters with Upward Concentration Trends in the HTW and GMA Wells of Cell 5

^a No entry indicates that the trend was not up.

^b GMA-U = upgradient Great Miami Aquifer; GMA-D = downgradient Great Miami Aquifer; HTW = horizontal till well.

A.5.5.1.3 Discussion

The uranium-sodium bivariate plot for the Cell 5 LCS, LDS, and HTW is provided in Figure A.5.5-18. On the figure, the first sample ever collected from the monitoring horizon is circled. An arrow leads from the first sample to the location of the most recent sample. The plot shows that the chemical signatures for uranium and sodium in the LCS, LDS, and HTW are separate and distinct, indicating that mixing between the horizons is not occurring; therefore, upward concentration trends measured beneath the cells in GMA wells are attributed to fluctuating ambient concentrations beneath the cell and are not related to cell performance.

A.5.5.2 Control Charts

Intrawell control charts use historical measurements from a compliance point as background. The Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance (EPA 2009) defines the process of creating a Shewhart-cumulative sum (CUSUM) control chart. Appropriate background data are used to define a baseline for the well. The baseline parameters for the chart, estimates of the mean, and standard deviation are obtained from the background data. These baseline measurements characterize the expected background concentrations at the monitoring point. As future concentrations are measured, the baseline parameters are used to standardize the newly gathered data. After these measurements are standardized and plotted, a control chart is declared "not in control" if future concentrations exceed the baseline control limit. This is indicated on the control chart when either the Shewhart or CUSUM plot traces begin to exceed a control limit. The limit is based on the rationale that if the monitoring point remains unchanged from the baseline condition, new standardized observations should not deviate substantially from the baseline mean. If a change occurs, the standardized values will deviate significantly from the baseline and tend to exceed the control limit. Usually, two parameters are used to compute standardized limits—the decision value (h) and the Shewhart control limit (SCL).
A minimum of eight samples are recommended for use in ChemStat software to define the baseline for a control chart. Therefore, only sample sets with greater than eight samples were selected for control charts. By default, the ChemStat software plots both a CUSUM control limit (h) and an SCL on the control chart. The software recommends a value of 5 for the CUSUM control limit and a value of 4.5 for the SCL.

EPA Statistical Analysis Unified Guidance (EPA 2009) suggests that, to simplify the interpretation of the control chart, an out-of-control condition should be based on the CUSUM (h) limit alone. Plotting the SCL is not needed. However, the ChemStat software, by default, plots both the SCL and CUSUM control limit (h) on the charts. To address this issue, the SCL was defined as 5 to equal the recommended CUSUM control limit (h). This combined limit is identified as hCL on the control charts. For interpretation purposes, the hCL value will be regarded as the CUSUM control limit (h).

As shown in Table A.5.5-1 in gray shading and as summarized below, two parameters in the HTW or GMA wells of Cell 5 met the criteria for control charts (i.e., at least eight samples, normal or lognormal distribution, no trend, and no serial correlation), resulting in two control charts (Figures A.5.5-19 and A.5-20) which exhibits "in control" conditions.

Parameter	Monitoring Point	Well Number	Assessment	Figure Number
Calcium	GMA-U	22207	In Control	A.5.5-19
Uranium	GMA-D	22208	In Control	A.5.5-20

^a GMA-U = upgradient Great Miami Aquifer; GMA-D = downgradient Great Miami Aquifer.

A.5.5.3 Summary and Conclusions

- One parameter (sulfate) had an upward trend in the LCS in 2022 based on the Mann-Kendall test for trend.
- The volume of water in the LDS tank of Cell 5 was insufficient to collect a sample in 2022.
- Six parameters monitored semiannually have an upward concentration trend in the HTW or GMA wells of Cell 5: boron, sodium, sulfate, lithium, potassium, and selenium. Separate and distinct chemical signatures for total uranium and sodium in the LCS, LDS, and HTW of Cell 5 indicate that water is not mixing between the horizons. Therefore, upward concentration trends beneath Cell 5 (i.e., HTW or GMA wells) are attributed to fluctuating ambient concentrations beneath the cell and not to cell performance.
- Two control charts were constructed for Cell 5 parameters. Both exhibit "in control" conditions.

A.5.5.4 References

DOE (U.S. Department of Energy), 2017. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, Cincinnati, Ohio, May.

EPA (U.S. Environmental Protection Agency), 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance*, EPA 530/R-09-007, March.

OAC 3745-27-10. "Ground Water Monitoring Program for a Sanitary Landfill Facility," *Ohio Administrative Code*.

Table A.5.5-1. Summary Statistics for Cell 5

			Number of										
			Detected	Total Number	Percent	h	h	c d	Standard	Distribution	Trend ^{d,f} (Year Last	Serial	b.i
Parameter	Horizon	Location	Samples	of Samples	Detects	Minimum	Maximum	Average ^{c,u}	Deviation	Type ^{u,e}	Sampled)	Correlation	Outliers ^{11,4}
	LCS	12342C	62	62	100	3.39	285	125	45	Undefined	None (2022)	Detected	
	LDS	12342D	40	40	100	2.93	27.1	15.6	5.2	Normal	Down (2013)	Detected	
Total Uranium (μg/L)	HTW	12342	65	65	100	7.45	19.2	8.99	2.15	Undefined	Down (2022)	Detected	
	GMA-U	22207	55	66	83.3	ND	0.631	0.313	0.125	Ln Normal	Down (2022)	Not Detected	2.39 (Q3-02)
	GMA-D	22208	64	75	85.3	ND	0.540	0.339	0.090	Normal	None (2022)	Not Detected	2.10 (Q2-04); 0.800 (Q1-05); 0.006 (Q2-05); 0.710 (Q2-08)
	LCS	12342C	60	62	96.8	ND	1.59	0.764	0.261	Undefined	None (2022)	Detected	
	LDS	12342D	40	40	100	0.202	1.20	0.398	0.272	Undefined	None (2013)	Detected	
Boron (mg/L)	HTW	12342	46	48	95.8	ND	0.221	0.0862	0.0421	Undefined	Down (2022)	Detected	
	GMA-U	22207	61	66	92.4	ND	0.0912	0.0418	0.0141	Undefined	Up (2022)	Detected	
	GMA-D	22208	60	66	90.9	ND	0.0618	0.0369	0.0116	Normal	Up (2022)	Detected	
	LCS	12342C	49	50	98.0	57.0	79.7	68.1	4.9	Normal	Down (2022)	Detected	16.4 (Q2-03), 19.7 (Q2-04), 22.2 (Q2-05), 108 (Q3-05)
	LDS	12342D	27	27	100	84.6	808	432	137	Normal	Up (2013)	Detected	
Sodium (mg/L)	HTW	12342	46	46	100	17.0	33.6	25.9	4.7	Undefined	Down (2022)	Detected	
	GMA-U	22207	37	37	100	13	23.1	16.7	2.6	Normal	Up (2022)	Detected	
	GMA-D	22208	38	38	100	8.99	17.9	15.2	2.7	Undefined	Down (2022)	Detected	
	LCS	12342C	62	62	100	218	5910	3,570	1,240	Undefined	Up (2022)	Detected	
	LDS	12342D	40	40	100	1130	6100	2,160	1,030	Ln Normal	Up (2013)	Detected	
Sulfate (mg/L)	HTW	12342	56	56	100	101	578	370	128	Undefined	Up (2022)	Detected	
	GMA-U	22207	61	61	100	97.8	552	186	98	Undefined	Down (2022)	Detected	770 (Q2-05)
	GMA-D	22208	61	61	100	98.1	671	358	103	Normal	Down (2022)	Detected	
Coloise (molt)	GMA-U	22207	30	30	100	124	187	153	11	Normal	None (2022)	Not Detected	
Calcium (mg/L)	GMA-D	22208	30	30	100	107	285	211	36	Normal	Down (2022)	Detected	
	GMA-U	22207	37	37	100	0.00642	0.0165	0.0141	0.0031	Undefined	Up (2022)	Detected	
Lithium (mg/L)	GMA-D	22208	37	37	100	0.00659	0.00985	0.00808	0.00068	Normal	None (2022)	Detected	0.00425 (Q1-17)
	GMA-U	22207	30	30	100	26.1	38.5	33.7	3.1	Normal	Up (2022)	Detected	
Wagnesium (mg/L)	GMA-D	22208	30	30	100	43.9	66.4	53.1	6.2	Normal	Down (2022)	Detected	24.3 (Q1-17)
	GMA-U	22207	2	30	6.7	ND	0.425	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
Nitrate + Nitrite, as Nitrogen (mg/L)	GMA-D	22208	3	30	10.0	ND	0.05	0.0182	Insufficient	Insufficient	Insufficient	Insufficient	
	GMA-U	22207	30	30	100	2.75	4.82	3.75	0.60	Normal	Up (2022)	Detected	
Potassium (mg/L)	GMA-D	22208	31	31	100	2.15	3.53	2.95	0.36	Normal	Down (2022)	Detected	
Coloris in (math)	GMA-U	22207	3	37	8.1	ND	0.018	0.004	Insufficient	Insufficient	Insufficient	Insufficient	
Selenium (mg/L)	GMA-D	22208	5	37	13.5	ND	0.0157	0.00300	0.00359	Undefined	Up (2022)	Detected	
	GMA-U	22207	0	27	0	ND	NA	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
Technitium-99 (pCI/L)	GMA-D	22208	1	27	3.7	ND	6.40	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
THE DIVERSION OF THE AVER	GMA-U	22207	37	37	100	552	770	636	47	Normal	None (2022)	Detected	987 (Q4-09)
i otal Dissolved Solids (mg/L)	GMA-D	22208	37	37	100	456	1290	933	154	Normal	Down (2022)	Detected	
	GMA-U	22207	22	66	33.3	ND	0.047	0.00207	0.00729	Undefined	None (2022)	Detected	
i otai Urganic Halogens (mg/L)	GMA-D	22208	18	66	27.3	ND	0.026	0.00259	0.00519	Undefined	Down (2022)	Detected	
Note 1: Shading indentifies a horizontal ti	II well or Grea	at Miami Aqu	ifer well, with a	t least eight sam	ples, Normal o	r Ln Normal dis	tribution, no trer	nds (None), and	no serial correla	ation (Not Detected)	. These wells achiev	e control chart criter	ia.
tote 2: Data used in this table have been standardized to quarterly.													

LCS = leachate collection system; LDS = leak detection system; HTW = horizontal till well; GMA-U = upgradient Great Miami Aquifer; and GMA-D = downgradient Great Miami Aquifer

^bND = not detected; NA = not applicable

^cAverages were determined based on the distribution assumption.

dInsufficient is used for Distribution Type, Trend, or Serial Correlation whenever there is not enough data to run the test.

^eData distribution based on the Shapiro-Wilk statistic.

Normal: Normal assumption could not be rejected at the 5 percent level and has a higher probability value than the Ln Normal assumption.

Ln Normal: Lognormal assumption could not be rejected at the 5 percent level and has a higher probability value than the Normal assumption.

Undefined: Normal and Lognormal Distribution assumptiions are both rejected or there are less than 25 percent detected values. "Average" is defined as the Median of the data.

^fTrend based on nonparametric Mann-Kendall procedure.

⁹Serial correlation based on Rank Von Neumann test.

^hOutliers determined by Rosner's (for sample sizes greater than 25) or Dixon procedure (for sample sizes less than or equal to 25).

Q = quarter

Year	Total Volume Purged (gallons)	Number of Months Purged	Average Volume Purged (gallons)
2002	35,815	10	3,582
2003	6,200	6	1,033
2004	5,425	5	1,085
2005	4,270	4	1,068
2006	3,710	4	928
2007	4,250	4	1,063
2008	4,225	4	1,056
2009	3,225	4	1,075
2010	4,325	4	1,081
2011	4,225	4	1,056
2012	4,200	4	1,050
2013	4,200	4	1,050
2014	2,100	2	1,050
2015	2,100	2	1,050
2016	2,100	2	1,050
2017	2,100	2	1,050
2018	2,100	2	1,050
2019	2,100	2	1,050
2020	2,100	2	1,050
2021	2,100	2	1,050
2022	2,100	2	1,050

Table A.5.5-2. OSDF Horizontal Till Well 12342 (Cell 5) Water Yield

Figure A.5.5-1. Monthly Accumulation Volumes for Cell 5 LCS

Figure A.5.5-2. Monthly Accumulation Volumes for Cell 5 LDS

Figure A.5.5-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 5 Upgradient Monitoring Well 22207

Figure A.5.5-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 5 Downgradient Monitoring Well 22208

Figure A.5.5-5A. Cell 5 Total Uranium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.5-5B. Cell 5 Total Uranium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-6A. Cell 5 Boron Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.5-6B. Cell 5 Boron Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-7A. Cell 5 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.5-7B. Cell 5 Sodium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-8A. Cell 5 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.5-8B. Cell 5 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-9. Cell 5 Calcium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-10. Cell 5 Lithium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-11. Cell 5 Magnesium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-12. Cell 5 Nitrate + Nitrate as Nitrogen Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-13. Cell 5 Potassium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-14. Cell 5 Selenium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-15. Cell 5 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-16. Cell 5 Total Dissolved Solids Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-17. Cell 5 Total Organic Halogens Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.5-18. Cell 5 Bivariate Plot for Uranium and Sodium

Figure A.5.5-19. Intrawell Shewhart-CUSUM Control Chart for Calcium in Monitoring Well 22207

Figure A.5.5-20. Intrawell Shewhart-CUSUM Control Chart for Uranium in Monitoring Well 22208

U.S. Department of Energy

Subattachment A.5.5, Page 19

This page intentionally left blank

Subattachment A.5.6

Cell 6

This page intentionally left blank

Contents

Abbreviationsiii									
Measureme	Measurement Abbreviationsiii								
A.5.6.1	Water Quali	ty Monitoring Results	1						
	A.5.6.1.1	LCS and LDS Results	1						
	A.5.6.1.2	HTW and Monitoring Well Results	2						
	A.5.6.1.3	Discussion	2						
A.5.6.2	Control Cha	rts	3						
A.5.6.3	A.5.6.3 Summary and Conclusions								
A.5.6.4	References .		4						

Tables

Table A.5.6-1. Summary Statistics for Cell 6	. 5
Table A.5.6-2. OSDF Horizontal Till Well 12343 (Cell 6) Water Yield	. 6

Figures

Figure A.5.6-1. Monthly Accumulation Volumes for Cell 6 LCS	7
Figure A.5.6-2. Monthly Accumulation Volumes for Cell 6 LDS	7
Figure A.5.6-3. Total Uranium Concentration and Groundwater Elevation Versus Time	
Plot for Cell 6 Upgradient Monitoring Well 22209	8
Figure A.5.6-4. Total Uranium Concentration and Groundwater Elevation Versus Time	
Plot for Cell 6 Downgradient Monitoring Well 22210	8
Figure A.5.6-5A. Cell 6 Total Uranium Concentration Versus Time Plot for LCS, LDS,	
and HTW	9
Figure A.5.6-5B. Cell 6 Total Uranium Concentration Versus Time Plot for HTW,	
GMA-U Well, and GMA-D Well	9
Figure A.5.6-6A. Cell 6 Boron Concentration Versus Time Plot for LCS, LDS, and	
HTW	10
Figure A.5.6-6B. Cell 6 Boron Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	10
Figure A.5.6-7A. Cell 6 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW	11
Figure A.5.6-7B. Cell 6 Sodium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	11
Figure A.5.6-8A. Cell 6 Sulfate Concentration Versus Time Plot for LCS, LDS, and	
HTW	12
Figure A.5.6-8B. Cell 6 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	12
Figure A.5.6-9. Cell 6 Calcium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	13
Figure A.5.6-10. Cell 6 Lithium Concentration Versus Time Plot for HTW, GMA-U Well,	
and GMA-D Well	13

Figure A.5.6-11.	Cell 6 Magnesium Concentration Versus Time Plot for HTW,	
	GMA-U Well, and GMA-D Well	14
Figure A.5.6-12.	Cell 6 Nitrate + Nitrite as Nitrogen Concentration Versus Time Plot for	
	HTW, GMA-U Well, and GMA-D Well	14
Figure A.5.6-13.	Cell 6 Potassium Concentration Versus Time Plot for HTW, GMA-U Well,	
	and GMA-D Well	15
Figure A.5.6-14.	Cell 6 Selenium Concentration Versus Time Plot for HTW, GMA-U Well,	
	and GMA-D Well	15
Figure A.5.6-15.	Cell 6 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U	
	Well, and GMA-D Well.	16
Figure A.5.6-16.	Cell 6 Total Dissolved Solids Concentration Versus Time Plot for HTW,	
	GMA-U Well, and GMA-D Well	16
Figure A.5.6-17.	Cell 6 Total Organic Halogens Concentration Versus Time Plot for HTW,	
	GMA-U Well, and GMA-D Well	17
Figure A.5.6-18.	Cell 6 Bivariate Plot for Uranium and Sodium	17
Figure A.5.6-19.	Intrawell Shewhart-CUSUM Control Chart for Uranium in Monitoring	
	Well 22210	18
Figure A.5.6-20.	Intrawell Shewhart-CUSUM Control Chart for Lithium in Monitoring	
	Well 22210	19
Figure A.5.6-21.	Intrawell Shewhart-CUSUM Control Chart for Total Dissolved Solids in	
	Monitoring Well 22209	20

Abbreviations

CUSUM	Shewhart-cumulative sum
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
GMA	Great Miami Aquifer
GMA-D	downgradient Great Miami Aquifer
GMA-U	upgradient Great Miami Aquifer
HTW	horizontal till well
LCS	leachate collection system
LDS	leak detection system
Ohio EPA	Ohio Environmental Protection Agency
OSDF	On-Site Disposal Facility
SCL	Shewhart control limit

Measurement Abbreviations

- amsl above mean sea level
- mg/L milligrams per liter
- μg/L micrograms per liter

This page intentionally left blank

This subattachment provides the following information about the On-Site Disposal Facility (OSDF) Cell 6:

- Semiannual monitoring summary statistics (Table A.5.6-1)
- Leachate collection system (LCS) monthly accumulation volumes (Figure A.5.6-1)
- Leak detection system (LDS) monthly accumulation volumes (Figure A.5.6-2)
- OSDF horizontal till well (HTW) 12343 water yield (Table A.5.6-2)
- Great Miami Aquifer (GMA) water levels and total uranium concentration versus time (Figures A.5.6-3 and A.5.6-4)
- Plots of concentration versus time (Figures A.5.6-5A through A.5.6-17)
- A bivariate plot for uranium-sodium (Figure A.5.6-18)
- Control charts (Figures A.5.6-19 through A.5.6-21)

A.5.6.1 Water Quality Monitoring Results

Water quality within the cell is sampled in the LCS and LDS. Water quality beneath the cell is sampled in the HTW and GMA wells. Concentration versus time plots, bivariate plots, and control charts are used to help interpret and present the results.

Until 2014, quarterly water quality monitoring occurred in the LCS, LDS, HTW, and GMA wells of each cell for the purpose of determining if the OSDF was operating as designed. With U.S. Environmental Protection Agency (EPA) and Ohio Environmental Protection Agency (Ohio EPA) concurrence, the U.S. Department of Energy (DOE) changed from a quarterly sampling frequency to a semiannual sampling frequency at the start of 2014.

With EPA and Ohio EPA concurrence, DOE reduced the number of parameters sampled from 24 to 13 beginning in January 2017. All 13 parameters are sampled in the GMA wells; 4 of 13 parameters (total uranium, boron, sodium, and sulfate) are sampled in the LCS, LDS, and HTW of each cell. The annual sampling in the LCS of each cell for the abbreviated list of Appendix I parameters and polychlorinated biphenyls listed in *Ohio Administrative Code* 3745-27-10 was also eliminated beginning in January 2017 with EPA and Ohio EPA concurrence (DOE 2017).

A.5.6.1.1 LCS and LDS Results

As shown in Table A.5.6-1 and summarized below, four parameters (total uranium, boron, sodium, and sulfate) in 2022 have upward trends in the LCS or LDS based on the Mann-Kendall test for trend. In 2022, sufficient water was present in the LDS tank of Cell 6 to sample the tank twice.

One new high concentration (sulfate) was measured in the LCS of Cell 6 in 2022. The new high for sulfate was 5,200 milligrams per liter (mg/L). The previous high was 4,800 mg/L. Three new concentration highs were measured in the LDS tank of Cell 6 in 2022 (uranium, sodium, and sulfate). The new high for uranium in the LDS was 160 micrograms per liter (μ g/L). The previous high was 152 μ g/L. The new high for sodium in the LDS was 1,190 mg/L. The previous high was 856 mg/L. The new high for sulfate in the LDS was 10,800 mg/L. The previous high was 8,470 mg/L.

Parameter	LCS 12343C 2022 Trend ^a	LDS 12343D 2022 Trend		
Total Uranium		Up		
Boron		Up		
Sodium	Up	Up		
Sulfate	Up	Up		

Parameters with Upward Concentration Trends in the LCS and LDS of Cell 6

^a No entry indicates that the trend was not up.

A.5.6.1.2 HTW and Monitoring Well Results

As shown in Table A.5.6-1 and summarized below, eight parameters (boron, sulfate, calcium, lithium, magnesium, nitrate + nitrite as nitrogen, potassium, and selenium) have upward trends in the HTW or GMA wells based on the Mann-Kendall test for trend.

Parameters with Upward Concentration Trends in the HTW and GMA Wells of Cell 6

Parameter	HTW 12343 ^a	GMA-U ^b 22209 ^{a,b}	GMA-D 22210 ^{a,b}
Boron		Up	Up
Sulfate	Up		Up
Calcium		Up	
Lithium		Up	
Magnesium		Up	
Nitrate + Nitrite, as Nitrogen		Up	
Potassium		Up	
Selenium		Up	Up

^a No entry indicates that the trend was not up.

^b GMA-U = upgradient Great Miami Aquifer, GMA-D = downgradient Great Miami Aquifer, HTW = horizontal till well.

A.5.6.1.3 Discussion

The uranium–sodium bivariate plot for the Cell 6 LCS, LDS, and HTW is provided in Figure A.5.6-18. On the figure, the first sample ever collected from the monitoring horizon is circled. An arrow leads from the first sample to the location of the most recent sample. The plot shows that the chemical signatures for uranium and sodium in the LCS, LDS, and HTW are separate and distinct, indicating that mixing between the horizons is not occurring; therefore, upward concentration trends measured beneath the cells in GMA wells are attributed to fluctuating ambient concentrations beneath the cell and are not related to cell performance.

The new high uranium, sodium, and sulfate concentrations measured in the LDS are not attributed to communication with the LCS. They are attributed to the impact that decreasing flow

can have on the concentrations left in water remaining in the LDS as the LDS dries up. An additional discussion of this is presented in Attachment A.5, Section A.5.2.2.

A.5.6.2 Control Charts

Intrawell control charts use historical measurements from a compliance point as background. The Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance (EPA 2009) defines the process of creating a Shewhart-cumulative sum (CUSUM) control chart. Appropriate background data are used to define a baseline for the well. The baseline parameters for the chart, estimates of the mean, and standard deviation are obtained from the background data. These baseline measurements characterize the expected background concentrations at the monitoring point. As future concentrations are measured, the baseline parameters are used to standardize the newly gathered data. After these measurements are standardized and plotted, a control chart is declared "not in control" if future concentrations exceed the baseline control limit. This is indicated on the control chart when either the Shewhart or CUSUM plot traces begin to exceed a control limit. The limit is based on the rationale that if the monitoring point remains unchanged from the baseline condition, new standardized observations should not deviate substantially from the baseline mean. If a change occurs, the standardized values will deviate significantly from the baseline and tend to exceed the control limit. Usually, two parameters are used to compute standardized limits—the decision value (h) and the Shewhart control limit (SCL).

A minimum of eight samples are recommended for use in ChemStat software to define the baseline for a control chart. Therefore, only sample sets with greater than eight samples were selected for control charts. By default, the ChemStat software plots both a CUSUM control limit (h) and an SCL on the control chart. The software recommends a value of 5 for the CUSUM control limit and a value of 4.5 for the SCL.

EPA Statistical Analysis Unified Guidance (EPA 2009) suggests that, to simplify the interpretation of the control chart, an out-of-control condition should be based on the CUSUM (h) limit alone. Plotting the SCL is not needed. However, the ChemStat software, by default, plots both the SCL and CUSUM control limit (h) on the charts. To address this issue, the SCL was defined as 5 to equal the recommended CUSUM control limit (h). This combined limit is identified as hCL on the control charts. For interpretation purposes, the hCL value will be regarded as the CUSUM control limit (h).

As shown in Table A.5.6-1 in gray shading and as summarized below, three parameters in the HTW or GMA wells of Cell 6 (total uranium, lithium, and total dissolved solids) meet the criteria for control charts (i.e., at least eight samples, normal or lognormal distribution, no trend, and no serial correlation), resulting in three control charts (Figures A.5.6-19 through A.5.6-21). All of the control charts exhibit "in control" conditions.

Parameter	Monitoring Point ^a	Well Number	Assessment	Figure Number
Total Uranium	GMA-D	22210	In Control	A.5.6-19
Lithium	GMA-D	22210	In Control	A.5.6-20
Total Dissolved Solids	GMA-U	22209	In Control	A.5.6-21

^a GMA-U = upgradient Great Miami Aquifer; GMA-D = downgradient Great Miami Aquifer.

A.5.6.3 Summary and Conclusions

- Four parameters monitored semiannually have an upward concentration trend in the LCS or LDS of Cell 6: total uranium, boron, sodium, and sulfate. One new high concentration was measured in the LCS tank of Cell 6 in 2022 (sulfate). The new high for sulfate was 5,200 mg/L. The previous high was 4,800 mg/L.
- Sufficient water was present in the LDS tank of Cell 6 to sample the tank twice in 2022. Three new concentration highs were measured in the LDS tank of Cell 6 in 2022 (i.e., uranium, sodium, and sulfate). The new high for uranium in the LDS was 160 μ g/L. The previous high was 152 μ g/L. The new high for sodium in the LDS was 1,190 mg/L. The previous high was 856 mg/L. The new high for sulfate in the LDS was 10,800 mg/L. The previous high was 8,470 mg/L. The new high uranium sodium, and sulfate concentrations measured in the LDS are not attributed to communication with the LCS. They are attributed to the impact that decreasing flow can have on the concentrations left in water remaining in the LDS as the LDS dries up. An additional discussion of this is presented in Attachment A.5, Section A.5.2.2.
- Eight parameters monitored semiannually have an upward concentration trend in the HTW or GMA wells of Cell 6: boron, sulfate, calcium, lithium, magnesium, nitrate + nitrite as nitrogen, potassium, and selenium. Separate and distinct chemical signatures for uranium and sodium in the LCS, LDS, and HTW of Cell 6 indicate that water is not mixing between the horizons. Therefore, upward concentration trends beneath Cell 6 (i.e., HTW or GMA wells) are attributed to fluctuating ambient concentrations beneath the cell and not to cell performance.
- Three control charts were constructed for Cell 6 parameters. All control charts exhibit "in control" conditions.

A.5.6.4 References

DOE (U.S. Department of Energy), 2017. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, Cincinnati, Ohio, May.

EPA (U.S. Environmental Protection Agency), 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance*, EPA 530/R-09-007, March.

OAC 3745-27-10. "Ground Water Monitoring Program for a Sanitary Landfill Facility," *Ohio Administrative Code*.

Table A.5.6-1. Summary Statistics for Cell 6

			Number of						Chandrad	Distribution	.df.	Cardal	
	a		Detected	Total Number	Percent	b	b	. c.d	Standard	Distribution	Trend [®] (Year Last	Serial	e u bi
Parameter	Horizon	Location	Samples	of Samples	Detects	Minimum	Maximum	Average	Deviation	Type	Sampled)	Correlation	Outliers '
	LCS	12343C	58	58	100	43.3	276	124	33	Undefined	Down (2022)	Detected	
	LDS	12343D	58	58	100	3.10	160	29.4	40.8	Undefined	Up (2022)	Detected	
Total Uranium (µg/L)	HTW	12343	58	58	100	6.32	16.9	11.2	2.2	Normal	None (2022)	Detected	24.2 (Q1-07); 21.4 (Q2-11)
	GMA-U	22209	56	62	90.3	ND	0.928	0.480	0.377	Undefined	Down (2022)	Not Detected	2.43(Q2-06), 2.1(Q3-08), 1.64(Q3-11)
	GIVIA-D	22210	69	/1	97.2	ND	0.994	0.658	0.135	Ln Normal	None (2022)	Not Detected	
	LCS	12343C	58	58	100	0.0566	1.37	0.734	0.197	Undefined	Down (2022)	Detected	/
	LDS	12343D	58	58	100	0.289	1.22	0.417	0.161	Undefined	Up (2022)	Detected	2.38 (Q3-04)
Boron (mg/L)	HTW	12343	37	41	90.2	ND	0.124	0.0899	0.0149	Normal	None (2022)	Detected	0.0409 (Q2-06); 0.0360 (Q4-06)
	GMA-U	22209	57	62	91.9	ND	0.113	0.0384	0.0139	Undefined	Up (2022)	Detected	
	GMA-D	22210	59	62	95.2	ND	0.0616	0.0370	0.0092	Undefined	Up (2022)	Detected	
	LCS	12343C	49	49	100	44.5	107	70.8	12.2	Normal	Up (2022)	Detected	23.6 (Q2-04); 23.1 (Q2-05)
	LDS	12343D	47	47	100	109	1190	497	177	Undefined	Up (2022)	Detected	
Sodium (mg/L)	HTW	12343	45	45	100	16.3	66.0	37.0	14.6	Undefined	Down (2022)	Detected	
	GMA-U	22209	37	37	100	14.5	26.8	18.8	2.6	Normal	None (2022)	Detected	
	GMA-D	22210	38	38	100	11.1	20.4	17.0	2.5	Undefined	Down (2022)	Detected	
	LCS	12343C	58	58	100	491	5200	3500	1080	Undefined	Up (2022)	Detected	
	LDS	12343D	57	57	100	1,300	10,800	3,640	1,890	Ln Normal	Up (2022)	Detected	
Sulfate (mg/L)	HTW	12343	52	53	98.1	ND	716	495	94	Normal	Up (2022)	Detected	
	GMA-U	22209	61	61	100	2.07	406	162	66	Undefined	Down (2022)	Detected	
	GMA-D	22210	61	61	100	127	392	273	73	Normal	Up (2022)	Detected	578 (Q1-07)
Calcium (mg/L)	GMA-U	22209	30	30	100	136	184	152	11	Normal	Up (2022)	Not Detected	242 (Q3-11); 231 (Q3-13)
Calcium (mg/L)	GMA-D	22210	30	30	100	162	239	205	21	Normal	Down (2022)	Detected	
Lithium (mg/L)	GMA-U	22209	37	37	100	0.00486	0.0107	0.00678	0.00144	Ln Normal	Up (2022)	Detected	
Eithidill (llig/E)	GMA-D	22210	37	37	100	0.00631	0.00865	0.00738	0.00055	Normal	None (2022)	Not Detected	
Magnocium (mg/L)	GMA-U	22209	30	30	100	27	43.4	33.8	3.4	Normal	Up (2022)	Detected	55.4 (Q3-13)
Wagnesium (mg/L)	GMA-D	22210	30	30	100	41.5	58.3	50.2	4.7	Normal	Down (2022)	Detected	
Nituate : Nituite of Nituagen (mg/l)	GMA-U	22209	4	31	12.9	ND	0.500	0.0085	0.0877	Undefined	Up (2022)	Not Detected	
Nitrate + Nitrite, as Nitrogen (mg/L)	GMA-D	22210	1	30	3.3	ND	0.0425	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
	GMA-U	22209	30	30	100	2.31	3.78	3.28	0.26	Undefined	Up (2022)	Not Detected	
Potassium (mg/L)	GMA-D	22210	31	31	100	2.54	3.62	3.15	0.26	Normal	Down (2022)	Detected	
	GMA-U	22209	6	37	16.2	ND	0.0236	0.00300	0.00416	Undefined	Up (2022)	Detected	
Selenium (mg/L)	GMA-D	22210	5	37	13.5	ND	0.0122	0.00300	0.00258	Undefined	Up (2022)	Detected	
To shariting 00 (a Ci (i))	GMA-U	22209	1	23	4.4	ND	8.61	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
Technitium-99 (pCi/L)	GMA-D	22210	1	23	4.4	ND	6.61	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
	GMA-U	22209	37	37	100	550	720	635	41	Normal	None (2022)	Not Detected	876 (Q3-11)
Total Dissolved Solids (mg/L)	GMA-D	22210	37	37	100	680	1,020	906	89	Undefined	Down (2022)	Detected	
	GMA-U	22209	19	62	30.6	ND	0.0208	0.00166	0.00482	Undefined	None (2022)	Detected	0.0365 (Q3-06); 0.0377 (Q1-11); 0.0432 (Q1-13)
Total Organic Halogens (mg/L)	GMA-D	22210	18	62	29.0	ND	0.0230	0.00190	0.00450	Undefined	None (2022)	Detected	0.0590 (Q2-10)
				-		•							

Note 1: Shading identifies a horizontal till well or Great Miami Aquifer well, with at least eight samples, Normal or Ln Normal distribution, no trend (None), and no serial correlation (Not Detected). These wells achieve control chart criteria

Note 2: Data used in this table have been standardized to quarterly.

^aLCS = leachate collection system; LDS = leak detection system; HTW = horizontal till well; GMA-U = upgradient Great Miami Aquifer; and GMA-D = downgradient Great Miami Aquifer

^bND = not detected; NA = not applicable

^cAverages were determined based on the distribution assumption.

^dInsufficient is used for Distribution Type, Trend, or Serial Correlation whenever there is not enough data to run the test.

^eData distribution based on the Shapiro-Wilk statistic.

Normal: Normal assumption could not be rejected at the 5 percent level and has a higher probability value than the Ln Normal assumption.

Ln Normal: Lognormal assumption could not be rejected at the 5 percent level and has a higher probability value than the Normal assumption.

Undefined: Normal and Lognormal Distribution assumptiions are both rejected or there are less than 25 percent detected values. "Average" is defined as the Median of the data.

^tTrend based on nonparametric Mann-Kendall procedure.

^gSerial correlation based on Rank Von Neumann test.

^hOutliers determined by Rosner's (for sample sizes greater than 25) or Dixon procedure (for sample sizes less than or equal to 25).

iQ = quarter

Year	Total Volume Purged (gallons)	Number of Months Purged	Average Volume Purged (gallons)
2003	9,940	10	994
2004	760	6	127
2005	925	5	185
2006	565	4	141
2007	355	4	89
2008	510	4	128
2009	550	4	183
2010	935	4	234
2011	1,175	4	294
2012	1,065	4	266
2013	1,130	4	283
2014	475	2	238
2015	725	2	363
2016	600	2	300
2017	720	2	360
2018	815	2	408
2019	690	2	345
2020	740	2	370
2021	690	2	345
2022	720	2	360

Table A.5.6-2. OSDF Horizontal Till Well 12343 (Cell 6) Water Yield

Figure A.5.6-1. Monthly Accumulation Volumes for Cell 6 LCS

Figure A.5.6-2. Monthly Accumulation Volumes for Cell 6 LDS

Figure A.5.6-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 6 Upgradient Monitoring Well 22209

Figure A.5.6-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 6 Downgradient Monitoring Well 22210

Figure A.5.6-5A. Cell 6 Total Uranium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.6-5B. Cell 6 Total Uranium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-6A. Cell 6 Boron Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.6-6B. Cell 6 Boron Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-7A. Cell 6 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.6-7B. Cell 6 Sodium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-8A. Cell 6 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.6-8B. Cell 6 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-9. Cell 6 Calcium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-10. Cell 6 Lithium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-11. Cell 6 Magnesium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-12. Cell 6 Nitrate + Nitrite as Nitrogen Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-13. Cell 6 Potassium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-14. Cell 6 Selenium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-15. Cell 6 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-16. Cell 6 Total Dissolved Solids Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-17. Cell 6 Total Organic Halogens Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.6-18. Cell 6 Bivariate Plot for Uranium and Sodium

Figure A.5.6-19. Intrawell Shewhart-CUSUM Control Chart for Uranium in Monitoring Well 22210

Figure A.5.6-21. Intrawell Shewhart-CUSUM Control Chart for Total Dissolved Solids in Monitoring Well 22209

Subattachment A.5.7

Cell 7

This page intentionally left blank

Contents

Abbreviatio	ons		iii		
Measureme	nt Abbreviatio	ns	iii		
A.5.7.1	Water Quality	y Monitoring Results	.1		
	A.5.7.1.1	LCS and LDS Results	.1		
	A.5.7.1.2	HTW and Monitoring Well Results	.2		
	A.5.7.1.3	Discussion	.2		
A.5.7.2	Control Char	ts	.2		
A.5.7.3	Summary and Conclusions				
A.5.7.4	References		.4		

Tables

Table A.5.7-1. Summary Statistics for Cell 7	5
Table A.5.7-2. OSDF Horizontal Till Well 12344 (Cell 7) Water Yield	6

Figures

Figure A.5.7-1. Monthly Accumulation Volumes for Cell 7 LCS7
Figure A.5.7-2. Monthly Accumulation Volumes for Cell 7 LDS
Figure A.5.7-3. Total Uranium Concentration and Groundwater Elevation Versus
Time Plot for Cell 7 Upgradient Monitoring Well 22212
Figure A.5.7-4. Total Uranium Concentration and Groundwater Elevation Versus
Time Plot for Cell 7 Downgradient Monitoring Well 22211
Figure A.5.7-5A. Cell 7 Total Uranium Concentration Versus Time Plot for LCS, LDS,
and HTW
Figure A.5.7-5B. Cell 7 Total Uranium Concentration Versus Time Plot for HTW, GMA-U
Well, and GMA-D Well
Figure A.5.7-6A. Cell 7 Boron Concentration Versus Time Plot for LCS, LDS, and HTW 10
Figure A.5.7-6B. Cell 7 Boron Concentration Versus Time Plot for HTW, GMA-U Well,
and GMA-D Well 10
Figure A.5.7-7A. Cell 7 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW 11
Figure A.5.7-7B. Cell 7 Sodium Concentration Versus Time Plot for HTW, GMA-U Well,
and GMA-D Well
Figure A.5.7-8A. Cell 7 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW 12
Figure A.5.7-8B. Cell 7 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well,
and GMA-D Well 12
Figure A.5.7-9. Cell 7 Calcium Concentration Versus Time Plot for HTW, GMA-U Well,
and GMA-D Well13
Figure A.5.7-10. Cell 7 Lithium Concentration Versus Time Plot for HTW, GMA-U Well,
and GMA-D Well13
Figure A.5.7-11. Cell 7 Magnesium Concentration Versus Time Plot for HTW,
GMA-U Well, and GMA-D Well14
Figure A.5.7-12. Cell 7 Nitrate + Nitrite as Nitrogen Concentration Versus Time Plot for
HTW, GMA-U Well, and GMA-D Well14

Figure A.5.7-13.	Cell 7 Potassium Concentration Versus Time Plot for HTW, GMA-U Well,	
	and GMA-D Well	15
Figure A.5.7-14.	Cell 7 Selenium Concentration Versus Time Plot for HTW, GMA-U Well,	
	and GMA-D Well	15
Figure A.5.7-15.	Cell 7 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U	
	Well, and GMA-D Well	16
Figure A.5.7-16.	Cell 7 Total Dissolved Solids Concentration Versus Time Plot for HTW,	
	GMA-U Well, and GMA-D Well	16
Figure A.5.7-17.	Cell 7 Total Organic Halogens Concentration Versus Time Plot for HTW,	
	GMA-U Well, and GMA-D Well	17
Figure A.5.7-18.	Cell 7 Bivariate Plot for Uranium and Sodium	17
Figure A.5.7-19.	Intrawell Shewhart-CUSUM Control Chart for Lithium in Monitoring	
	Well 22211	18
Figure A.5.7-20.	Intrawell Shewhart-CUSUM Control Chart for Magnesium in Monitoring	
-	Well 22212	19
Figure A.5.7-21.	Intrawell Shewhart-CUSUM Control Chart for Potassium in Monitoring	
-	Well 22212	20

Abbreviations

CUSUM	Shewhart-cumulative sum
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
GMA	Great Miami Aquifer
GMA-D	downgradient Great Miami Aquifer
GMA-U	upgradient Great Miami Aquifer
HTW	horizontal till well
LCS	leachate collection system
LDS	leak detection system
Ohio EPA	Ohio Environmental Protection Agency
OSDF	On-Site Disposal Facility
SCL	Shewhart control limit

Measurement Abbreviations

- amsl above mean sea level
- mg/L milligrams per liter
- μg/L micrograms per liter
- pCi/L picocuries per liter

This page intentionally left blank

This subattachment provides the following information about the On-Site Disposal Facility (OSDF) Cell 7:

- Semiannual monitoring summary statistics (Table A.5.7-1)
- Leachate collection system (LCS) monthly accumulation volumes (Figure A.5.7-1)
- Leak detection system (LDS) monthly accumulation volumes (Figure A.5.7-2)
- OSDF horizontal till well (HTW) 12344 water yield (Table A.5.7-2)
- Great Miami Aquifer (GMA) water levels and total uranium concentration versus time (Figures A.5.7-3 and A.5.7-4)
- Plots of concentration versus time (Figures A.5.7-5A through A.5.7-17)
- A bivariate plot for uranium–sodium (Figure A.5.7-18)
- Control charts (Figures A.5.7-19 through A.5.7-21)

A.5.7.1 Water Quality Monitoring Results

Water quality within the cell is sampled in the LCS and LDS. Water quality beneath the cell is sampled in the HTW and GMA wells. Concentration versus time plots, bivariate plots, and control charts are used to help interpret and present the results.

Until 2014, quarterly water quality monitoring occurred in the LCS, LDS, HTW, and GMA wells of each cell for the purpose of determining if the OSDF is operating as designed. With U.S. Environmental Protection Agency (EPA) and Ohio Environmental Protection Agency (Ohio EPA) concurrence, the U.S. Department of Energy (DOE) changed from a quarterly sampling frequency to a semiannual sampling frequency at the start of 2014.

With EPA and Ohio EPA concurrence, DOE reduced the number of parameters sampled from 24 to 13 beginning in January 2017. All 13 parameters are sampled in the GMA wells; 4 of 13 parameters (total uranium, boron, sodium, and sulfate) are sampled in the LCS, LDS, and HTW of each cell. The annual sampling in the LCS of each cell for the abbreviated list of Appendix I parameters and polychlorinated biphenyls listed in *Ohio Administrative Code* 3745-27-10 was also eliminated beginning in January 2017 with EPA and Ohio EPA concurrence (DOE 2017).

A.5.7.1.1 LCS and LDS Results

As shown in Table A.5.7-1 and summarized below, two parameters (sodium, and sulfate) in 2022 have upward concentration trends in the LCS and/or LDS based on the Mann-Kendall test for trend. No new high concentrations were measured in the LCS of Cell 7 in 2022. The volume of water in the LDS tank of Cell 7 was insufficient to collect a sample in 2012 and 2013. Enough water was present to collect a sample in 2014 and 2015, but since 2015, the volume of water in the LDS tank of Cell 7 has been insufficient to collect a sample.

Parameter	LCS 12344C 2022 Trend	LDS 12344D Trend (Year Last Sampled)		
Sodium	Up	Up (2015)		
Sulfate	Up	Up (2015)		

A.5.7.1.2 HTW and Monitoring Well Results

As shown in Table A.5.7-1 and summarized below, six parameters (total uranium, boron, sodium, sulfate, nitrate + nitrite as nitrogen, and selenium) have upward concentration trends in the HTW or GMA wells based on the Mann-Kendall test for trend.

Deremotore with	Unword Conor	ntration Tranda	in the LITIN a	nd CNAA IAA	alla of Call 7
Parameters with	Opward Conce			IIIU GIVIA WE	

Parameter	HTW 12344 ^a	GMA-U 22212 ^{a,b}	GMA-D 22211 ^{a,b}
Total Uranium	Up		
Boron	Up	Up	Up
Sodium	Up		
Sulfate	Up		
Nitrate, Nitrite as Nitrogen			Up
Selenium		Up	Up

^a No entry indicates that the trend was not up.

^b GMA-U = upgradient Great Miami Aquifer; GMA-D = downgradient Great Miami Aquifer.

A.5.7.1.3 Discussion

The uranium–sodium bivariate plot for the Cell 7 LCS, LDS, and HTW is provided in Figure A.5.7-18. On the figure, the first sample ever collected from the monitoring horizon is circled. An arrow leads from the first sample to the location of the most recent sample. The plot shows that the chemical signatures for uranium and sodium in the LCS, LDS, and HTW are separate and distinct, indicating that mixing between the horizons is not occurring; therefore, upward concentration trends measured beneath the cells in GMA wells are attributed to fluctuating ambient concentrations beneath the cell and are not related to cell performance.

A.5.7.2 Control Charts

Intrawell control charts use historical measurements from a compliance point as background. The *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance* (EPA 2009) defines the process of creating a Shewhart-cumulative sum (CUSUM) control chart. Appropriate background data are used to define a baseline for the well. The baseline parameters for the chart, estimates of the mean, and standard deviation are obtained from the background data. These baseline measurements characterize the expected background concentrations at the monitoring point. As future concentrations are measured, the baseline parameters are used to standardize the newly gathered data. After these measurements are standardized and plotted, a control chart is declared "not in control" if future concentrations exceed the baseline control limit. This is indicated on the control chart when either the Shewhart or CUSUM plot traces begin to exceed a control limit. The limit is based on the rationale that if the monitoring point remains unchanged from the baseline condition, new standardized observations should not deviate substantially from the baseline mean. If a change occurs, the standardized values will deviate significantly from the baseline and tend to exceed the control limit. Usually, two parameters are used to compute standardized limits—the decision value (*h*) and the Shewhart control limit (SCL).

A minimum of eight samples are recommended for use in ChemStat software to define the baseline for a control chart. Therefore, only sample sets with greater than eight samples were selected for control charts. By default, the ChemStat software plots both a CUSUM control limit (h) and an SCL on the control chart. The software recommends a value of 5 for the CUSUM control limit and a value of 4.5 for the SCL.

EPA Statistical Analysis Unified Guidance (EPA 2009) suggests that, to simplify the interpretation of the control chart, an out-of-control condition should be based on the CUSUM (h) limit alone. Plotting the SCL is not needed. However, the ChemStat software, by default, plots both the SCL and CUSUM control limit (h) on the charts. To address this issue, the SCL was defined as 5 to equal the recommended CUSUM control limit (h). This combined limit is identified as hCL on the control charts. For interpretation purposes, the hCL value will be regarded as the CUSUM control limit (h).

As shown in Table A.5.7-1 in gray shading and as summarized below, three parameters in the HTW or GMA wells of Cell 7 (lithium, magnesium, and potassium) meet the criteria for control charts (i.e., at least eight samples, normal or lognormal distribution, no trend, and no serial correlation), resulting in three control charts (Figures A.5.7-19 through A.5.7-21). All of the control charts exhibit "in control" conditions.

Parameter	Monitoring Point ^a	Monitoring Well	Assessment	Figure Number
Lithium	GMA-D	22211	In Control	A.5.7-19
Magnesium	GMA-U	22212	In Control	A.5.7-20
Potassium	GMA-U	22212	In Control	A.5.7-21

^a GMA-U = upgradient Great Miami Aquifer; GMA-D = downgradient Great Miami Aquifer, HTW = Horizontal Till Well.

A.5.7.3 Summary and Conclusions

- Two parameters monitored semiannually in 2022 have an upward concentration trend in the LCS of Cell 7: sodium and sulfate. No new high concentrations were measured in the LCS of Cell 7 in 2022.
- The volume of water in the LDS tank of Cell 7 was insufficient to collect a sample in 2022.

- Six parameters monitored semiannually have an upward concentration trend in the HTW or GMA wells of Cell 7: total uranium, boron, sodium, sulfate, nitrate, nitrite as nitrogen and selenium. Separate and distinct chemical signatures for total uranium and sodium in the LCS, LDS, and HTW of Cell 7 indicate that water is not mixing between the horizons. Therefore, upward concentration trends beneath Cell 7 (i.e., HTW or GMA wells) are attributed to fluctuating ambient concentrations beneath the cell and not to cell performance.
- Three control charts were constructed for Cell 7 parameters. All control charts exhibit "in control" conditions.

A.5.7.4 References

DOE (U.S. Department of Energy), 2017. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, Cincinnati, Ohio, May.

EPA (U.S. Environmental Protection Agency), 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance*, EPA 530/R-09-007, March.

OAC 3745-27-10. "Ground Water Monitoring Program for a Sanitary Landfill Facility," *Ohio Administrative Code*.

Table A.5.7-1. Summary Statistics for Cell 7

			Number of										
			Detected	Total Number	Percent				Standard	Distribution	Trend ^{d,†} (Year Last	Serial	
Parameter	Horizon ^a	Location	Samples	of Samples	Detects	Minimum [®]	Maximum ^D	Average ^{c, a}	Deviation	Type ^{d,e}	Sampled)	Correlation ^{0,g}	Outliers ^{n,i}
	LCS	12344C	55	55	100	4.72	355	160	60	Undefined	Down (2022)	Detected	
	LDS	12344D	31	31	100	12.2	37.6	25.7	6.2	Normal	Up (2015)	Detected	169 (Q2-14)
Total Uranium (μg/L)	HTW	12344	55	55	100	2	12.1	3.81	1.83	Undefined	Up (2022)	Detected	
	GMA-U	22212	51	57	89.5	ND	0.634	0.422	0.102	Undefined	Down (2022)	Not Detected	1.64 (Q1-04); 4.46 (Q1-05); 1.70 (Q1-07); 1.73 (Q3-10); 5.53 (Q3-11)
	GMA-D	22211	62	66	93.9	ND	4.065	0.347	0.650	Undefined	None (2022)	Not Detected	
	LCS	12344C	55	55	100	0.0625	1.35	1.09	0.36	Undefined	Down (2022)	Detected	
	LDS	12344D	31	31	100	0.168	2.10	0.360	0.425	Undefined	Up (2015)	Detected	
Boron (mg/L)	HTW	12344	31	39	79.5	ND	0.075	0.0260	0.0118	Ln Normal	Up (2022)	Not Detected	
	GMA-U	22212	55	57	96.5	ND	0.0613	0.0395	0.0086	Undefined	Up (2022)	Detected	
	GMA-D	22211	54	57	94.7	ND	0.0622	0.0330	0.0101	Undefined	Up (2022)	Detected	
	LCS	12344C	48	48	100	18.1	131	97.8	27.1	Undefined	Up (2022)	Detected	
	LDS	12344D	24	24	100	186	1,590	587	374	Undefined	Up (2015)	Detected	
Sodium (mg/L)	HTW	12344	43	43	100	19.8	39.6	34.3	6.0	Undefined	Up (2022)	Detected	
	GMA-U	22212	37	37	100	15.5	27	20.2	2.9	Normal	Down (2022)	Detected	
	GMA-D	22211	38	38	100	10.1	19.2	14.0	2.6	Ln Normal	Down (2022)	Detected	
	LCS	12344C	55	55	100	122	5,470	3,630	1,310	Undefined	Up (2022)	Detected	
	LDS	12344D	31	31	100	1,280	7,370	1,770	1,880	Undefined	Up (2015)	Detected	
Sulfate (mg/L)	HTW	12344	50	50	100	80.4	765	454	261	Undefined	Up (2022)	Detected	
	GMA-U	22212	57	57	100	96.6	731	174	110	Undefined	None (2022)	Detected	
	GMA-D	22211	57	57	100	117	572	293	119	Ln Normal	Down (2022)	Detected	3,640 (Q3-12)
Calaium (mg/l)	GMA-U	22212	30	30	100	140	177	153	10	Undefined	None (2022)	Not Detected	377 (Q3-11)
Calcium (mg/ E)	GMA-D	22211	30	30	100	136	263	185	37	Ln Normal	Down (2022)	Detected	
Lithium (mg/L)	GMA-U	22212	37	37	100	0.00474	0.00892	0.00566	0.00101	Undefined	None (2022)	Not Detected	
Elenium (mg/E)	GMA-D	22211	37	37	100	0.00555	0.0093	0.00700	0.00084	Normal	None (2022)	Not Detected	
Magnosium (mg/L)	GMA-U	22212	30	30	100	28.6	41.5	34.7	2.5	Ln Normal	None (2022)	Not Detected	54.6 (Q3-11)
Wagnesium (mg/ c)	GMA-D	22211	30	30	100	34.6	64.7	46.5	8.2	Ln Normal	Down (2022)	Not Detected	
Nitrato + Nitrito, as Nitrogon (mg/L)	GMA-U	22212	3	30	10.0	ND	0.0431	0.0168	Insufficient	Insufficient	Insufficient	Insufficient	
Nitrate + Nitrite, as Nitrogen (ing/L)	GMA-D	22211	4	30	13.3	ND	0.119	0.0209	0.0232	Normal	Up (2022)	Not Detected	
Botassium (mg/L)	GMA-U	22212	30	30	100	3.05	3.81	3.51	0.299662	Normal	None (2022)	Not Detected	4.81 (Q3-11)
Potassium (mg/E)	GMA-D	22211	31	31	100	2.34	3.65	2.88	0.33	Normal	Down (2022)	Detected	
Colonium (mg/l)	GMA-U	22212	8	37	21.6	ND	0.0292	0.00300	0.00556	Undefined	Up (2022)	Detected	
Selenium (mg/L)	GMA-D	22211	3	37	8.1	ND	0.0125	0.00401	Insufficient	Undefined	Up (2022)	Detected	
Technitium 00 (nCi/l)	GMA-U	22212	1	22	4.6	ND	11	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
rechnicium-99 (pci/c)	GMA-D	22211	1	22	4.6	ND	9.38	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
Total Dissolved Colids (n - 4)	GMA-U	22212	37	37	100	519	854	653	59	Ln Normal	None (2022)	Detected	1,130 (Q2-10); 1,270 (Q3-10); 1,510 (Q3-11)
Total Dissolved Solids (mg/L)	GMA-D	22211	37	37	100	583	1350	876	213	Ln Normal	Down (2022)	Detected	
Total Organia Uslagans (GMA-U	22212	22	57	38.6	ND	0.0125	0.00313	0.00294	Undefined	None (2022)	Not Detected	0.0500 (Q2-10); 0.0190 (Q2-13)
i otal Organic Halogens (mg/L)	GMA-D	22211	20	57	35.1	ND	0.0230	0.00168	0.00435	Undefined	None (2022)	Not Detected	0.0540 (Q2-10)
Nata 4. Ob a dia a isla atifica a basica atal titi		Minut America	and the set of the set of	In a starbala bet a susse	las Manual as I	a Managal distai	had an an transf	(Alene) and an	and all an analysis	(Mat Data da d) T	The second second second second second second second second second second second second second second second s	antest shart selection	

Note 2: Data used in this table have been standardized to quarterly.

^aLCS = leachate collection system; LDS = leak detection system; HTW = horizontal till well; GMA-U = upgradient Great Miami Aquifer; and GMA-D = downgradient Great Miami Aquifer

^bND = not detected; NA = not applicable

^cAverages were determined based on the distribution assumption.

^dInsufficient is used for Distribution Type, Trend, or Serial Correlation whenever there is not enough data to run the test.

eData distribution based on the Shapiro-Wilk statistic.

Normal: Normal assumption could not be rejected at the 5 percent level and has a higher probability value than the Ln Normal assumption.

LN Normal: Lognormal assumption could not be rejected at the 5 percent level and has a higher probability value than the Normal assumption.

Undefined: Normal and Lognormal Distribution assumptions are both rejected or there are less than 25 percent detected values. "Average" is defined as the Median of the data.

Trend based on nonparametric Mann-Kendall procedure.

⁹Serial correlation based on Rank Von Neumann test.

^hOutliers determined by Rosner's (for sample sizes greater than 25) or Dixon procedure (for sample sizes less than or equal to 25). ⁱQ = quarter

Fernald Preserve 2022 Site Environmental Report Doc. No. 43783

U.S. Department of Energy

Year	Total Volume Purged (gallons)	Number of Months Purged	Average Volume Purged (gallons)
2004	2,380	6	264
2005	2,475	5	495
2006	2,375	4	594
2007	1,300	4	325
2008	2,800	4	700
2009	825	4	275
2010	675	4	169
2011	675	4	169
2012	815	4	204
2013	1,125	4	281
2014	455	2	228
2015	650	2	325
2016	665	2	333
2017	720	2	360
2018	955	2	478
2019	1520	2	760
2020	960	2	480
2021	960	2	480
2022	1,830	2	915

Table A.5.7-2. OSDF Horizontal Till Well 12344 (Cell 7) Water Yield

Figure A.5.7-1. Monthly Accumulation Volumes for Cell 7 LCS

Figure A.5.7-2. Monthly Accumulation Volumes for Cell 7 LDS

Figure A.5.7-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 7 Upgradient Monitoring Well 22212

Figure A.5.7-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 7 Downgradient Monitoring Well 22211

Figure A.5.7-5A. Cell 7 Total Uranium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.7-5B. Cell 7 Total Uranium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-6A. Cell 7 Boron Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.7-6B. Cell 7 Boron Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-7A. Cell 7 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.7-7B. Cell 7 Sodium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-8A. Cell 7 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.7-8B. Cell 7 Sulfate Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-9. Cell 7 Calcium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-10. Cell 7 Lithium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-11. Cell 7 Magnesium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-12. Cell 7 Nitrate + Nitrite as Nitrogen Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-13. Cell 7 Potassium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-14. Cell 7 Selenium Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-15. Cell 7 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-16. Cell 7 Total Dissolved Solids Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-17. Cell 7 Total Organic Halogens Concentration Versus Time Plot for HTW, GMA-U Well, and GMA-D Well

Figure A.5.7-18. Cell 7 Bivariate Plot for Uranium and Sodium

Figure A.5.7-20. Intrawell Shewhart-CUSUM Control Chart for Magnesium in Monitoring Well 22212

Figure A.5.7-21. Intrawell Shewhart-CUSUM Control Chart for Potassium in Monitoring Well 22212

Subattachment A.5.8

Cell 8

This page intentionally left blank
Contents

Abbreviatio	ns		iii
Measureme	nt Abbreviati	ons	iii
A.5.8.1	Water Quali	ty Monitoring Results	1
	A.5.8.1.1	LCS and LDS Results	1
	A.5.8.1.2	HTW and Monitoring Well Results	2
	A.5.8.1.3	Discussion	2
A.5.8.2	Control Cha	rts	3
A.5.8.3	Summary an	d Conclusions	4
A.5.8.4	References .		4

Tables

Table A.5.8-1. Summary Statistics for Cell 8	. 5
Table A.5.8-2. OSDF Horizontal Till Well 12345 (Cell 8) Water Yield	. 6

Figures

Figure A.5.8-1. Monthly Accumulation Volumes for Cell 8 LCS	7
Figure A.5.8-2. Monthly Accumulation Volumes for Cell 8 LDS	7
Figure A.5.8-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot	
for Cell 8 Upgradient Monitoring Well 22213	8
Figure A.5.8-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot	
for Cell 8 Downgradient Monitoring Well 22214	8
Figure A.5.8-5. Total Uranium Concentration and Groundwater Elevation Versus Time Plot	
for Cell 8 Downgradient Monitoring Well 22215	9
Figure A.5.8-6. Total Uranium Concentration and Groundwater Elevation Versus Time Plot	
for Cell 8 Downgradient Monitoring Well 22216/22217	9
Figure A.5.8-7A. Cell 8 Total Uranium Concentration Versus Time Plot for LCS, LDS, and	
HTW	. 10
Figure A.5.8-7B. Cell 8 Total Uranium Concentration Versus Time Plot for HTW, GMA-U,	
GMA-D, GMA-SE, and GMA-SW Wells	. 10
Figure A.5.8-8A. Cell 8 Boron Concentration Versus Time Plot for LCS, LDS, and HTW	. 11
Figure A.5.8-8B. Cell 8 Boron Concentration Versus Time Plot for HTW, GMA-U, GMA-D,	
GMA-SE, and GMA-SW Wells	. 11
Figure A.5.8-9A. Cell 8 Sodium Concentration Versus Time Plot for LCS, LDS, and	
HTW	. 12
Figure A.5.8-9B. Cell 8 Sodium Concentration Versus Time Plot for HTW, GMA-U,	
GMA-D, GMA-SE, and GMA-SW Wells	. 12
Figure A.5.8-10A. Cell 8 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW	. 13
Figure A.5.8-10B. Cell 8 Sulfate Concentration Versus Time Plot for HTW, GMA-U,	
GMA-D, GMA-SE, and GMA-SW Wells	. 13
Figure A.5.8-11. Cell 8 Calcium Concentration Versus Time Plot for HTW, GMA-U,	
GMA-D, GMA-SE, and GMA-SW Wells	. 14

Figure A.5.8-12.	Cell 8 Lithium Concentration Versus Time Plot for HTW, GMA-U,	
	GMA-D, GMA-SE, and GMA-SW Wells	14
Figure A.5.8-13.	Cell 8 Magnesium Concentration Versus Time Plot for HTW, GMA-U,	
-	GMA-D, GMA-SE, and GMA-SW Wells	15
Figure A.5.8-14.	Cell 8 Nitrate + Nitrate as Nitrogen Concentration Versus Time Plot for	
	HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells	15
Figure A.5.8-15.	Cell 8 Potassium Concentration Versus Time Plot for HTW, GMA-U,	
	GMA-D, GMA-SE, and GMA-SW Wells	16
Figure A.5.8-16.	Cell 8 Selenium Concentration Versus Time Plot for HTW, GMA-U,	
	GMA-D, GMA-SE, and GMA-SW Wells	16
Figure A.5.8-17.	Cell 8 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U,	
	GMA-D, GMA-SE, and GMA-SW Wells	17
Figure A.5.8-18.	Cell 8 Total Dissolved Solids Concentration Versus Time Plot for HTW,	
	GMA-U, GMA-D, GMA-SE, and GMA-SW Wells	17
Figure A.5.8-19.	Cell 8 Total Organic Halogens Concentration Versus Time Plot for HTW,	
	GMA-U, GMA-D, GMA-SE, and GMA-SW Wells	18
Figure A.5.8-20.	Cell 8 Bivariate Plot for Uranium and Sodium	18
Figure A.5.8-21.	Cell 8 Bivariate Plot for Uranium and Sulfate	19
Figure A.5.8-22.	Intrawell Shewhart-CUSUM Control Chart for Boron in Monitoring	
	Well 12345	20
Figure A.5.8-23.	Intrawell Shewhart-CUSUM Control Chart for Potassium in Monitoring	
	Well 22215	21

Abbreviations

CUSUM	Shewhart-cumulative sum
DOE	U.S. Department of Energy
EPA	U.S. Environmental Protection Agency
GMA	Great Miami Aquifer
GMA-D	downgradient Great Miami Aquifer
GMA-SE	southeast Great Miami Aquifer
GMA-SW	southwest Great Miami Aquifer
GMA-U	upgradient Great Miami Aquifer
HTW	horizontal till well
LCS	leachate collection system
LDS	leak detection system
Ohio EPA	Ohio Environmental Protection Agency
OSDF	On-Site Disposal Facility
SCL	Shewhart control limit

Measurement Abbreviations

- amsl above mean sea level
- mg/L milligrams per liter
- μg/L micrograms per liter
- pCi/L picocuries per liter

This page intentionally left blank

This subattachment provides the following information about the On-Site Disposal Facility (OSDF) Cell 8:

- Semiannual monitoring summary statistics (Table A.5.8-1)
- Leachate collection system (LCS) monthly accumulation volumes (Figure A.5.8-1)
- Leak detection system (LDS) monthly accumulation volumes (Figure A.5.8-2)
- OSDF horizontal till well (HTW) 12345 water yield (Table A.5.8-2)
- Great Miami Aquifer (GMA) water levels and total uranium concentration versus time (Figures A.5.8-3 through A.5.8-6)
- Plots of concentration versus time (Figures A.5.8-7A through A.5.8-19)
- Bivariate plots for uranium-sodium and uranium-sulfate (Figure A.5.8-20 and A.5.8-21)
- Control charts (Figure A.5.8-22 and Figure A.5.8-23)

A.5.8.1 Water Quality Monitoring Results

Water quality within the cell is sampled in the LCS and LDS. Water quality beneath the cell is sampled in the HTW and GMA wells. Concentration versus time plots, bivariate plots, and control charts are used to help interpret and present the results.

Until 2014, quarterly water quality monitoring occurred in the LCS, LDS, HTW, and GMA wells of each cell for the purpose of determining if the OSDF is operating as designed. With U.S. Environmental Protection Agency (EPA) and Ohio Environmental Protection Agency (Ohio EPA) concurrence, the U.S. Department of Energy (DOE) changed from a quarterly sampling frequency to a semiannual sampling frequency at the start of 2014.

With EPA and Ohio EPA concurrence, DOE reduced the number of parameters sampled from 24 to 13 beginning in January 2017. All 13 parameters are sampled in the GMA wells; 4 of 13 parameters (total uranium, boron, sodium, and sulfate) are sampled in the LCS, LDS, and HTW of each cell. The annual sampling in the LCS of each cell for the abbreviated list of Appendix I parameters and polychlorinated biphenyls listed in *Ohio Administrative Code* 3745-27-10 was also eliminated beginning in January 2017 with EPA and Ohio EPA concurrence (DOE 2017).

A.5.8.1.1 LCS and LDS Results

As shown in Table A.5.8-1, and summarized below, four parameters (total uranium, boron, sodium, and sulfate) in 2022 have upward concentration trends in the LCS or LDS based on the Mann-Kendall test for trend. There was not enough water present in the LDS of Cell 8 to collect samples in 2022. One new high concentration was measured in the LCS of Cell 8 in 2022 (sodium). The new high sodium concentration measured in the LCS of Cell 8 in 2022 was 154 milligrams per liter (mg/L), up from 150 mg/L.

Parameters	with Unward	Concentration	Trends in the I	CS and LDS of Cell 8
i arameters	with Opward	0011001111011		

Parameter	LCS 12345C 2022 Trendª	LDS 12345D 2022 Trend
Total Uranium		Up
Boron		Up
Sodium	Up	Up
Sulfate	Up	Up

^a No entry indicates that the trend was not up.

A.5.8.1.2 HTW and Monitoring Well Results

As shown in Table A.5.8-1 and summarized below, nine parameters sampled in 2022 (total uranium, boron, sodium, sulfate, lithium, magnesium, selenium, total dissolved solids, and total organic halogens) have upward concentration trends in the HTW or GMA wells based on the Mann-Kendall test for trend. Cell 8 is unique in that it has four GMA wells (upgradient GMA [GMA-U], downgradient GMA [GMA-D], southwest GMA [GMA-SW], and southeast GMA [GMA-SE]). The Cell 8 HTW did not contain enough water to collect a sample in 2022.

Parameters with Upward Concentration Trends in the HTW and GMA Wells of Cell 8

Parameter	HTW 12345 Trend (Year Last Sampled)	GMA-U 22213 ^{a,b}	GMA-D 22214 ^{a,b}	GMA-SW 22215 ^{a,b}	GMA-SE 22217 ^{a,b}
Total Uranium	Up (2008)	Up			
Boron		Up		Up	
Sodium			Up	Up	
Sulfate	Up (2008)			Up	
Lithium				Up	
Magnesium				Up	
Selenium		Up	Up	Up	Up
Total Dissolved Solids				Up	
Total Organic Halogens		Up			Up

Notes:

^a No entry indicates that the trend was not up. Magnesium, selenium, total dissolved solids, and total organic halogen are not HTW parameters.

^b GMA-U = upgradient Great Miami Aquifer, GMA-D = downgradient Great Miami Aquifer; GMA-SW = southwest Great Miami Aquifer; GMA-SE = southeast Great Miami Aquifer, HTW = horizontal till well.

A.5.8.1.3 Discussion

Two bivariate plots are used to illustrate that the LCS, LDS, and HTW of Cell 8 have separate and distinct chemical signatures. A uranium–sodium bivariate plot for the Cell 8 LCS, LDS, and HTW is provided in Figure A.5.8-20, and a uranium–sulfate bivariate plot for the Cell 8 LCS, LDS, and HTW is provided in Figure A.5.8-21. On the figures, the first sample collected from

the monitoring horizon is circled. An arrow leads from the first sample to the location of the most recent sample. Both plots show that the chemical signatures for uranium and sodium and for uranium and sulfate in the LCS are separate and distinct from the signatures seen in the LDS and HTW. The uranium–sulfate plot illustrates more clearly than the uranium–sodium plot that the chemical signatures in the LDS and HTW are also separate and distinct. Separate and distinct chemical signatures in the LCS, LDS, and HTW indicate that water is not mixing between the horizons. Therefore, the increasing concentrations measured beneath Cell 8 (i.e., HTW and GMA wells) are attributed to fluctuating ambient concentrations beneath the cell and are not related to cell performance.

A.5.8.2 Control Charts

Intrawell control charts employ historical measurements from a compliance point as background. The Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance (EPA 2009) defines the process of creating a Shewhart-cumulative sum (CUSUM) control chart. Appropriate background data are used to define a baseline for the well. The baseline parameters for the chart, estimates of the mean, and standard deviation are obtained from the background data. These baseline measurements characterize the expected background concentrations at the monitoring point. As future concentrations are measured, the baseline parameters are used to standardize the newly gathered data. After these measurements are standardized and plotted, a control chart is declared "not in control" if future concentrations exceed the baseline control limit. This is indicated on the control chart when either the Shewhart or CUSUM plot traces begin to exceed a control limit. The limit is based on the rationale that if the monitoring point remains unchanged from the baseline condition, new standardized observations should not deviate substantially from the baseline mean. If a change occurs, the standardized values will deviate significantly from the baseline and tend to exceed the control limit. Usually, two parameters are used to compute standardized limits—the decision value (h) and the Shewhart control limit (SCL).

A minimum of eight samples are recommended for use in ChemStat software to define the baseline for a control chart. Therefore, only sample sets with greater than eight samples were selected for control charts. By default, the ChemStat software plots both a CUSUM control limit (h) and an SCL on the control chart. The software recommends a value of 5 for the CUSUM control limit and a value of 4.5 for the SCL.

EPA Statistical Analysis Unified Guidance (EPA 2009) suggests that, to simplify the interpretation of the control chart, an out-of-control condition should be based on the CUSUM (h) limit alone. Plotting the SCL is not needed. However, the ChemStat software, by default, plots both the SCL and CUSUM control limit (h) on the charts. To address this issue, the SCL was defined as 5 to equal the recommended CUSUM control limit (h). This combined limit is identified as hCL on the control charts. For interpretation purposes, the hCL value will be regarded as the CUSUM control limit (h).

As shown in Table A.5.8-1 in gray shading and as summarized below, two parameters in the HTW or GMA wells of Cell 8 met the criteria for control charts (i.e., at least eight samples, normal or lognormal distribution, no trend, and no serial correlation), resulting in two control charts (Figure A.5.8-22 and Figure A.5.8-23) that exhibit "in control" conditions.

Parameter	Monitoring Point ^a	Monitoring Well	Assessment	Figure Number
Boron	HTW	12345	In Control	A.5.8-22
Potassium	GMA-SW	22215	In Control	A.5.8-23

^a GMA-SW = southwest Great Miami Aquifer, HTW = horizontal till well.

A.5.8.3 Summary and Conclusions

- Four parameters monitored semiannually have an upward concentration trend in the LCS or LDS of Cell 8: total uranium, boron, sodium, and sulfate.
- One new high concentration was measured in the LCS of Cell 8 in 2022 (sodium). The new high sodium concentrations measured in the LCS of Cell 8 in 2022 was 154 mg/L, up from 148 mg/L in 2021.
- The Cell 8 HTW did not contain enough water to collect a sample in 2022.
- Nine parameters monitored semiannually are increasing in either the HTW or GMA wells of Cell 8 (total uranium, boron, sodium, sulfate, lithium, magnesium, selenium, total dissolved solids, and total organic halogens). The chemical signatures for uranium–sodium and uranium–sulfate in the LCS of Cell 8 are separate and distinct from the signatures seen in the LDS and HTW. The signature for uranium–sodium in the HTW is also separate and distinct from the LDS signature, but low total uranium concentrations in both horizons have the clusters closer than what is seen in the other seven cells. The signature for uranium– sulfate in the HTW is separate and distinct from the LDS signature. Separate and distinct chemical signatures in the LCS, LDS, and HTW indicate that water is not mixing between the horizons. Concentration increases in the HTW and GMA wells of Cell 8 are attributed to fluctuating ambient concentrations beneath the cell and not to cell performance. The HTW of Cell 8 has been dry since the third quarter of 2008, providing additional evidence that the secondary liner is not leaking.
- Two control charts were constructed for Cell 8 parameters. Both control charts exhibited "in control" conditions.

A.5.8.4 References

DOE (U.S. Department of Energy), 2017. *Fernald Preserve 2016 Site Environmental Report*, LMS/FER/S15232, Office of Legacy Management, Cincinnati, Ohio, May.

EPA (U.S. Environmental Protection Agency), 2009. *Statistical Analysis of Groundwater Monitoring Data at RCRA Facilities—Unified Guidance*, EPA 530/R-09-007, March.

OAC 3745-27-10. "Ground Water Monitoring Program for a Sanitary Landfill Facility," *Ohio Administrative Code*.

Table A.5.8-1. Summary Statistics for Cell 8

			Number of										
			Detected	Total Number	Percent	b	Þ	. cd	Standard	Distribution	Trend ^{d,t} (Year Last	Serial	e un hi
Parameter	Horizon	Location	Samples	of Samples	Detects	Minimum	Maximum	Average ***	Deviation"	Type"/"	Sampled)	Correlation [~]	Outliers ^{**}
	LCS	12345C	54	54	100	1.51	335	166	5/	Undefined	None (2022)	Detected	
	LDS	123450	4/	47	100	9.38	7 30	25.1	57.4	Normal	Up (2021)	Not Detected	
Total Uranium (ug/L)	GMA-U	22213	49	57	86.0	ND	0.717	0.404	0.118	Undefined	Un (2022)	Detected	
	GMA-D	22214	63	66	95.4	ND	2.37	0.417	0.483	Undefined	Down (2022)	Not Detected	
	GMA-SW	22215	46	51	90.2	ND	16.4	0.480	2.48	Undefined	None (2022)	Not Detected	
	GMA-SE	22217	47	47	100	0.898	18.3	6.78	4.17	Normal	Down (2022)	Detected	
	LCS	12345C	54	54	100	0.0681	0.776	0.608	0.162	Undefined	None (2022)	Detected	
	LDS	12345D	47	47	100	0.582	9.20	1.37	1.70	Undefined	Up (2021)	Detected	
Deres (meth)	HIW	12345	15	15	100	0.0683	0.0978	0.0834	0.0079	Normal	None (2008)	Not Detected	
Boron (mg/L)	GMA-D	22213	54	57	94.7	ND	0.0583	0.0392	0.0079	Undefined	Up (2022)	Detected	
	GMA-SW	22214	49	51	96.1	ND	0.0324	0.0254	0.0070	Undefined	Lin (2022)	Detected	
	GMA-SE	22217	45	47	95.7	ND	0.0447	0.0283	0.0064	Normal	None (2022)	Detected	
	LCS	12345C	46	46	100	16.8	154	116	36	Undefined	Up (2022)	Detected	
	LDS	12345D	38	38	100	72.8	4,590	736	775	Ln Normal	Up (2021)	Detected	
	HTW	12345	7	7	100	277	385	334	45	Normal	Down (2008)	Not Detected	
Sodium (mg/L)	GMA-U	22213	37	37	100	18.3	30.3	21.5	3.6	Undefined	Down (2022)	Detected	
	GMA-D	22214	38	38	100	9.83	16.8	12.4	1.5	Normal	Up (2022)	Detected	
	GMA-SW	22215	3/	37	100	13.5	26.0	18.5	2.5	Normal	Up (2022)	Detected	
	GIVIA-SE	122450	57	57	100	146	4 190	2 020	1.020	Undefined	None (2022)	Detected	
	LDS	12345C	47	47	100	1 730	36 300	3 940	6,410	Undefined	Up (2022)	Detected	
	HTW	12345	15	15	100	95.5	152	116	18	Normal	Up (2008)	Detected	
Sulfate (mg/L)	GMA-U	22213	57	57	100	90.2	284	180	53	Normal	None (2022)	Detected	
1	GMA-D	22214	57	57	100	76.1	457	213	92	Ln Normal	Down (2022)	Detected	
	GMA-SW	22215	50	51	98.0	ND	870	241	138	Ln Normal	Up (2022)	Detected	911 (Q2-11)
	GMA-SE	22217	47	47	100	113	1,320	353	207	Ln Normal	Down (2022)	Detected	
	GMA-U	22213	30	30	100	141	186	159	11	Normal	Down (2022)	Detected	
Calcium (mg/L)	GMA-D	22214	30	30	100	89.8	230	142	38	Ln Normal	Down (2022)	Detected	
	GMA-SE	22213	30	30	100	127	334	192	50	In Normal	Down (2022)	Detected	
	GMA-U	22213	37	37	100	0.00434	0.00728	0.00544	0.00059	Normal	None (2022)	Detected	
taki wa (wa fi)	GMA-D	22214	37	37	100	0.00372	0.00858	0.00516	0.00103	Ln Normal	None (2022)	Detected	
Lithium (mg/L)	GMA-SW	22215	37	37	100	0.00467	0.00828	0.00595	0.00082	Normal	Up (2022)	Detected	
	GMA-SE	22217	37	37	100	0.00432	0.00799	0.00592	0.00096	Normal	Down (2022)	Detected	
	GMA-U	22213	30	30	100	31.7	42.0	36.2	2.6	Normal	None (2022)	Detected	
Magnesium (mg/L)	GMA-D	22214	30	30	100	22.0	53.2	34.0	8.3	Normal	Down (2022)	Detected	
	GMA-SW	22215	30	30	100	32.5	65.8	43.9	7.4	Ln Normal	Up (2022)	Not Detected	/4.5 (Q2-11)
	GMA-II	22217		30	100	ND	NA	42.3	0.0	Insufficient	Insufficient	Insufficient	
	GMA-D	22214	1	30	3.3	ND	0.0500	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
Nitrate + Nitrite, as Nitrogen (mg/L)	GMA-SW	22215	3	30	10.0	ND	0.0850	0.0225	Insufficient	Insufficient	Insufficient	Insufficient	
	GMA-SE	22217	6	30	20.0	ND	0.0850	0.00850	0.0182	Undefined	None (2022)	Not Detected	
	GMA-U	22213	30	30	100	3.3	4.14	3.67	0.18	Normal	Down (2022)	Detected	
Potassium (mg/L)	GMA-D	22214	31	31	100	2.1	3.23	2.52	0.28	Normal	Down (2022)	Detected	
	GMA-SW	22215	30	30	100	3.09	3.87	3.48	0.20	Normal	None (2022)	Not Detected	4.73 (Q2-11); 5.01 (Q3-11); 2.30 (Q4-13)
	CMA II	22217	30	30	10.0	2.4	4.05	0.00300	0.00534	Normal	D0wii (2022)	Detected	
	GMA-D	22215	4	37	16.2	ND	0.0280	0.00300	0.00524	Undefined	Up (2022)	Detected	
Selenium (mg/L)	GMA-SW	22214	9	37	24.3	ND	0.0278	0.00300	0.00514	Undefined	Un (2022)	Detected	
	GMA-SE	22217	4	37	10.8	ND	0.0201	0.00300	0.00449	Undefined	Up (2022)	Detected	
	GMA-U	22213	6	48	12.5	ND	24.8	0.450	4.20	Undefined	Down (2022)	Detected	
Technitium-99 (pCi/L)	GMA-D	22214	4	48	8.3	ND	11.8	0.015	2.37	Undefined	None (2022)	Not Detected	
reculture 55 (pcyc)	GMA-SW	22215	0	42	0	ND	NA	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
	GMA-SE	22217	0	38	0	ND	NA	Insufficient	Insufficient	Insufficient	Insufficient	Insufficient	
	GMA-U	22213	37	37	100	429	843	671	82	Undefined	Down (2022)	Detected	
Total Dissolved Solids (mg/L)	GMA-SIA	22214	3/	37	100	385	1,020	821	250	Undefined	Jown (2022)	Detected	
	GMA-SE	22215	37	37	100	514	1,550	878	248	In Normal	Down (2022)	Detected	
	GMA-U	22213	15	57	26.3	ND	0.056	0.00166	0.00822	Undefined	Un (2022)	Not Detected	
	GMA-D	22214	13	57	22.8	ND	0.059	0.00166	0.00881	Undefined	None (2022)	Not Detected	
Total Organic Halogens (mg/L)	GMA-SW	22215	15	51	29.4	ND	0.046	0.00166	0.00773	Undefined	None (2022)	Not Detected	
	GMA-SE	22217	16	47	34.0	ND	0.073	0.00166	0.0109	Undefined	Up (2022)	Not Detected	
Note 1: Shading identifies a horizontal till	well or Great	Miami Aquif	fer well, with at I	east eight samp	les, Normal or L	n Normal distri	bution, no trend	(None), and no	serial correlation	on (Not Detected). T	hese wells achieve	control chart criteria.	·
Note 2: Data used in this table have bee	n standardize	d to quarter	у.										
^a LCS = leachate collection system; LDS =	leak detection	on system; H	ITW = horizonta	I till well; GMA-U	J = upgradient (Great Miarni Aq	uifer; and GMA	-D = downgradie	ent Great Miami	Aquifer			
TND = not detected; NA = not applicable													
Averages were determined based on the	Trend or So	isl Correlati			h data ta sus th								
Pata distribution based on the Shapiro N	lifend, or Se	rial Correlati	on whenever the	ere is not enoug	n data to run th	e test.							
Normal: Normal assumption could	not be reject	ed at the Fin	ercent level and	has a higher of	obability value	than the I n No.	mal accumption	,					
Ln Normal: Lognormal assumption	could not he	rejected at	the 5 percent le	vel and has a hi	aher probability	value than the	Normal assumr	 otion.					
Undefined: Normal and Lognorma	Undefined: Normal and Lognormal Distribution assumptitions are both rejected or there are less than 25 percent detected values. "Average" is defined as the Median of the data.												
Trend based on nonparametric Mann-Kendall procedure.													
¹⁹ Serial correlation based on Rank Von Neumann test.													
^h Outliers determined by Rosner's (for sar	nple sizes gre	ater than 25	i) or Dixon proce	edure (for sampl	e sizes less tha	n or equal to 2	5).						

Year	Total Volume Purged (gallons)	Average Volume Purged (gallons)	
2004	4,020	5	804
2005	1,050	6	175
2006	3,375	4	844
2007	1,000	4	250
2008	135	4	34
2009	0	2	0
2010	0	2	0
2011	0	2	0
2012	0	2	0
2013	0	2	0
2014	0	2	0
2015	0	2	0
2016	0	2	0
2017	0	2	0
2018	0	2	0
2019	0	2	0
2020	0	2	0
2021	0	2	0
2022	0	2	0

Table A.5.8-2. OSDF Horizontal Till Well 12345 (Cell 8) Water Yield

Figure A.5.8-1. Monthly Accumulation Volumes for Cell 8 LCS

Figure A.5.8-2. Monthly Accumulation Volumes for Cell 8 LDS

Figure A.5.8-3. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 8 Upgradient Monitoring Well 22213

Figure A.5.8-4. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 8 Downgradient Monitoring Well 22214

Figure A.5.8-5. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 8 Downgradient Monitoring Well 22215

Figure A.5.8-6. Total Uranium Concentration and Groundwater Elevation Versus Time Plot for Cell 8 Downgradient Monitoring Well 22216/22217

Figure A.5.8-7A. Cell 8 Total Uranium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.8-7B. Cell 8 Total Uranium Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-8A. Cell 8 Boron Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.8-8B. Cell 8 Boron Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-9A. Cell 8 Sodium Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.8-9B. Cell 8 Sodium Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-10A. Cell 8 Sulfate Concentration Versus Time Plot for LCS, LDS, and HTW

Figure A.5.8-10B. Cell 8 Sulfate Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-11. Cell 8 Calcium Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-12. Cell 8 Lithium Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-13. Cell 8 Magnesium Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-14. Cell 8 Nitrate + Nitrate as Nitrogen Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-15. Cell 8 Potassium Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-16. Cell 8 Selenium Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-17. Cell 8 Technetium-99 Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-18. Cell 8 Total Dissolved Solids Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-19. Cell 8 Total Organic Halogens Concentration Versus Time Plot for HTW, GMA-U, GMA-D, GMA-SE, and GMA-SW Wells

Figure A.5.8-20. Cell 8 Bivariate Plot for Uranium and Sodium

Figure A.5.8-21. Cell 8 Bivariate Plot for Uranium and Sulfate

Figure A.5.8-22. Intrawell Shewhart-CUSUM Control Chart for Boron in Monitoring Well 12345

Figure A.5.8-23. Intrawell Shewhart-CUSUM Control Chart for Potassium in Monitoring Well 22215

This page intentionally left blank