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Results
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Task 4: Cyan-enhanced QD LED devices
- Stability can be conferred by increasing Cd-free HCL device brightness increased by 10% over Cd- Cd-free ODs in Device
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Before and after testing in air

* The quantum yield of the cyan QD is crucial, as the blue emission FeaK 485 613
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Planned Work for Project Year 2

Improve QD stability in silicone polymer Investigate chemically stable facets Develop novel barrier coatings Seal QDs in controlled porous glass
» Cd-free QDs need big improvements to stability » Different crystal facets have different reactivities,  |deal barrier coatings are low in organic content and * QDs can be protected further by housing them in porous
when transferred from solution to polymer ligand binding strengths, and thus stabilities have good moisture and temperature stability glass structures that can subsequently be sealed because
> Will target increased efforts on encapsulation » Focus will be added to making cube-shaped » Hydroxyapatite meets these criteria so we will QDs cannot withstand glass sintering temperatures
structures that display highly stable facets continue efforts on encapsulating QDs with this » To survive challenging LED conditions and bolster
1.0 material device reliability, QDs may be added to porous glass
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