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Abstract: Cooling and ventilating buildings is estimated to account for 10% of global electricity consumption, and dehumidification for buildings is often inefficient owing to
the large heat of condensation and low evaporator temperatures required to cool below the dew point of the air. Thus, separate latent cooling technologies have gained
significant interest in recent years to increase the efficiency of building HVAC processes. This presentation covers my work on vacuum membrane dehumidification,
iIncluding new materials and novel system concepts to achieve potential energy savings up to 50% in buildings with high ventilation rates.
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