Building Optimization Testing Framework (BOPTEST)

LBNL, NREL, ORNL, PNNL, Arup, Johnson Controls

David Blum, Ph.D, Computational Research Scientist/Engineer, LBNL <u>dhblum@lbl.gov</u>

WBS 3.2.6.25

Project Summary

Objective and outcome

Enable virtual benchmarking and rapid prototyping of building HVAC control algorithms, including advanced algorithms such as MPC and Reinforcement Learning, which are critical for grid-interactive efficient buildings.

Team and Partners

LBNL: Project lead and software development

NREL: Web-service development

PNNL: Large office test case development and usage demonstration

ORNL: FRP test case development and calibration **Arup (cost share)**: Commercialization for controller evaluation convises

evaluation services

Johnson Controls (cost share): BACnet interface and semantic models, user testing

IBPSA Project (not budgeted): International research and industry development partners

<u>Stats</u>

Performance Period:

Current FY23-FY25, Previously FY18-FY22

DOE budget:

Current FY23-FY25: DOE \$550k/yr, Cost Share \$300k/yr in-kind

Previously Spent FY18-FY22: \$3.4 M

Milestone 1: BOPTEST available as a web-service Q1FY23

Milestone 2: BOPTEST 0.4.0 and Service 0.2.0 release Q2FY23

Problem

Many new and advanced control strategies hold promise ...

But they all have different requirements for:

- Data
- Modeling
- Computation
- Expertise

How do they <u>compare</u> in terms of:

- Providing comfort
- Energy management
- Implementation cost
- Reliability

Alignment and Impact

Comparative evaluation would accelerate the development and deployment of new controls

Impact on stakeholders:

- <u>Building and home owners</u> Identify value among new and existing control products.
- <u>Mechanical and control engineers</u> Specify best strategies for climate, system, performance objectives.
- <u>Control developers</u>

Streamline development and deployment of new control products.

Policy makers and code bodies

Establish performance expectations and design incentive programs.

Educators and workforce development programs

Train students on control performance expectations and commissioning

Approach: How is it done today?

Individualized case studies

- Findings are specific to building, HVAC, climate, study period, performance metrics, baseline controls
- Difficult to replicate and extend to new control strategies in future studies
- Effort and expertise to set up case study (real and simulated buildings) limits rapid prototyping and development by experts in fields outside building industry

Real or simulated buildings for control evaluation

Characteristic	Real	Simulated	
Can be faster than real time	Disadvantage	Advantage	
Low operational risk	Disadvantage	Advantage	
Replicability and experimental control	Disadvantage	Advantage	Can be
Flexible set up (system, climate, data, control)	Disadvantage	Advantage	state-of-the-art
Realistic	Advantage	Disadvantage-	→ modeling tools

Approach: Concept

Building Optimization Testing Framework (BOPTEST) A Simulation-Based Controls Testing and Benchmarking Environment

- · Deployable software runtime environment: rapidly, repeatably, and at scale
- Control-interactive high-fidelity emulator models with defined boundary conditions
- Standardized key performance indicators (KPI) that are auto-calculated

Approach: Technical

Building Emulators ("Test Cases")

- High-fidelity models with embedded baseline control in Modelica, Spawn, and CDL
- Overwritable supervisory or localloop control
- All boundary condition data defined (e.g. weather, schedules, electricity prices, carbon emission factors)
- Controlled exposure of sensor and control points
- Documentation and peer review to ensure quality and usability

HVAC System Design

Primary and secondary system designs

The HVAC system is a multi-zone single-duct Variable Air Volume (VAV) system with pressure-independent terminal boxes with reheat. A schematic of the system is shown in the figure below. The cooling and heating coils are water-based served by an air-cooled chiller and air-to-water heat pump respectively. The available sensor and control points, marked on the figure below and described in more detail in the Section Model [05, are those specified as required by ASHRAE Guideline 36 2018 Section 4 List of Hardwired Points, specifically Table 4.2 VAV Terminal Unit with Reheat and Table 4.6 Multiplie-Zone VAV Air Handling Unit, as well as some that are specified as application specific or optional.

Example test case documentation snippets

Approach: Technical

Run-Time Environment

- Rapid, repeatable deployment locally crossplatform or as web-service using Docker
- Simulation management using Functional Mockup Interface (FMI)
- HTTP RESTful API for test management and controller interaction

Evaluation Design

- Set of KPIs calculated by framework
- Predefined test scenarios
 (e.g. time period and electricity prices)
- Online dashboard for collecting, viewing, and comparing KPI results

Run-time environment architecture

Description	Unit
Energy Use	kWh / m ²
Energy Cost	\$ / m ²
Emissions	KgCO2 / m ²
Thermal Discomfort	K.h / zone
IAQ Discomfort	ppm.h / zone
Peak Elec/Gas/District Demand	kW / m ²
Computational Time Ratio	[-]

KPIs calculated by BOPTEST

Approach: Community Engagement

IBPSA International Collaboration

- BOPTEST developed under IBPSA Project 1 WP1.2 (<u>https://ibpsa.github.io/project1</u>)
- Significant contributions to design, software, test cases, outreach, and user-testing

to IBPSA Board with 18 institutions

Biannual Technical Advisory Group (TAG) Meetings

 General feedback on approaches and outcomes, average 9 participants from FY19-FY22

EBC IEA Annex 81 on Data-Driven Smart Buildings

 Subtask B.3 utilizing BOPTEST for evaluation of data-driven control strategies (<u>https://annex81.iea-ebc.org/</u>)

Energy in Building and Communities Programme

BPSA Project 1

Approach: Risks and Mitigation

Risk	Mitigation	Modelica		
Test cases are not realistic	st cases are not realistic • Modelica for realistic HVAC network pressure- flow physics and explicit control logic			
Test case models are complex and difficult to scale to larger buildings	 Leverage Modelica library and tool development through Spawn, OBC, and IBPSA and international Modelica communities 			
Not generalizable to many control strategies	 Can override set points or actuator control, allowing for replacing part or all of the baseline control logic Flexible control step time interval 	CpenBuildingContro		
No adoption by control developers and industry	 Engage with IBPSA Project, industry partners, TAG, IEA Annex 81, ASHRAE 	ASIRE BACnet		
	 Workshops, tutorial, and documentation Interfaces: HTTP RESTful, BACnet, VOLTTRON, OpenAI-Gym 			

Progress: Framework Availability

- BOPTEST v0.4.0 for core framework software and test cases
- BOPTEST-Service v0.2.0 deployed as public web-service serving users at scale

Hydronic	Air			
Single zone + Radiator	Single zone + FCU			
Single zone + Floor heat and heat pump	Single zone + RTU with DX, gas furnace			
2 zone + Floor heat and heat pump	2 zone + FCUs + AHUs with gas boiler, chiller			
8-Zone + Radiators, boiler, and split cooling	5-Zone + 1 VAV AHU with reheat with chiller and heat pump			
Single zone class + Radiator, AHU, CO2 control	10-zone + 1 VAV RTU with reheat, DX, electric heating			
	15-Zone + 3 VAV AHU with reheat, chiller, boiler			

Example MPC and RL benchmarking (Arroyo et al. 2022 https://doi.org/10.3389/fbuil.2022.849754)

Implemented, but not yet available

Available

Progress: Test Case Development

Flexible Research Platform (FRP)

- 10-zone + 1 VAV RTU with reheat, DX, electric heating
- Calibrating with real-world behavior
- Simple step tests
- Normal operation tests

Large Office

- 15-Zone + 3 VAV AHU with reheat, chiller, boiler
- Has been used for MPC testing
- Refactored for usage with Spawn

ORNL FRP test facility (left) and initial calibration result snippets for 2 zones (right)

Progress: Use for Value Identification

ARUP (USA, Australia, UK) ARUP

- Adopting to provide building owners comparative performance evaluations for predictive, data-driven, and grid-interactive controls
- Last year focused on due diligence on BOPTEST and Modelica ecosystems
- Conducting building owner and control provider interviews

EPA EnergyStar (USA)

- Improve upon Smart Thermostat rating system
- See related project "Smart Thermostat Benchmarking"

BOPTEST enables comparative control evaluation

Progress: Use by Control Providers

Johnson Controls (USA)

- Using to improve deployment process of new control products
- Prototyped BACnet interface and Semantic model usage for real-time use with control products (Fierro et al. 2022 https://dl.acm.org/doi/pdf/10.1145/3563357.3564060)

Edo Energy (USA) edo

- Using to mature MPC control solution before deployment
- Participant in DOE-funded Connected Communities demonstrations

Example BACnet application communicating with BOPTEST (courtesy Erik Paulson, Johnson Controls)

Progress: Use in Workshops

- Used BOPTEST-Service and Google Colab
- Three workshops: IBPSA BS21 (Aug 2021, 15 ppl), Energyville (Oct 2021, 17 ppl), Climate Change AI Summer School (Aug 2022, ~60 ppl)

\leftrightarrow \rightarrow	C 🕯 colab.research.google.com/github/lbpsa/project1-boptest/blob/master/docs/workshops/BS21Workshop.20210831/Introduction_to_the_BOPTEST_framework.lpynb#scroll 🔍 🖞 🛧	8	6 G	* [3 🚺 i
co	OIntroduction_to_the_BOPTEST_framework.ipynb File Edit View Insert Runtime Tools Help	Θ	Share	¢	D
	+ Code + Text 💩 Copy to Drive		Con	nect 🖣	^
۰. م	Selecting a Test Case				
{x}	We start by selecting and launching a test case from the <u>repository of currently available test cases</u> . In this example, we are going to work with the test case called <u>bestest_hydronic_hest_pump</u> , which is a single-zone residential building with radiant floor heating and a heat pump. This is a high-fidelity, yet relatively simple test case that allows us to focus on fundamental aspects of the framework. You may want to note the other test cases available in the repository as well as the fact that there are more under development.				
	We can launch our chosen test case as follows. First, import the Python requests library so that we can make HTTP requests to the BOPTEST API at the address indicated by the url. Then, use the POST /testcases/ <test_case_name>/select BOPTEST API endpoint to launch the test case and receive a corresponding testid. While the url is the common gateway for everyone to access the BOPTEST web-service, the testid is a unique identifier for you to address the test case that you have selected and launched.</test_case_name>				
	<pre>[] import requests # url for the BOPTEST service url = 'http://apl.hoptest.net' # Select test case and get identifier testcase = 'bestest_hydronic_heat_pump' # Check if already started a test case and stop it if so before starting another try: requests.put('{0}/stop/{1}'.format(url, testid)) except;</pre>				
	<pre>pass # Select and start a new test case testid = \ requests.post('(0)/testcases/(1)/select'.format(url,testcase).json()['testid']</pre>				

Participant team result Participant team result MPC result 0 0.65 0.70 0.75 0.80 0.85 Operating Cost [Eur / m²]

IBPSA BS21 exercise results where teams were tasked to improve provided feedback controller and also compare with previously-implemented MPC controller

Google Colab notebook used for workshops at IBPSA BS21 and Energyville

Lessons Learned and Future Work

Challenges and Lessons Learned

- Effort and expertise needed to design and implement high-quality, robust test cases
- Robustness of large and complex test case models
- Breadth of application areas and user requests for test cases, scenarios, and KPIs

Test Case Development

- Flexible Research Platform and Large Office test cases available (FY23)
- Expand test case offerings for new applications (through IBPSA Project and industry collaboration), such as:
 - New building types, such as K-12, hospitals, or data centers
 - Buildings with DER or TES
 - District heating, cooling, electrical networks

Future Work

Key Software Development

- Maintain software and respond to user feedback (6-month release cycle)
- Harden BACnet interface (Q3FY23) and semantic models (Q3FY24)
- Additional testing scenarios representing more realistic building operation (Q2FY24)
- Work with research and industry partners to trial new features and build out controller evaluation services (FY24-FY25)

Thank You

LBNL, NREL, ORNL, PNNL, Arup, Johnson Controls David Blum, Ph.D, Computational Research Scientist/Engineer, LBNL dhblum@lbl.gov WBS 3.2.6.25

REFERENCE SLIDES

Project Execution

	FY23			FY24				FY25				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Planned DOE Budget (\$)	555k				550k				550k			
Spent DOE Budget (\$)		22	1k									
Past Work												
Scoping and prioritization for new BOPTEST Web Service APIs and features.	x											
BOPTEST Web-Service moved to a separate GitHub repository from BOPTEST Core	x		X									
A new BOPTEST Web Service version is deployed		х										
FRP Documentation of test case development		x										
OpenModelica integrated as test case compiler option in parser.		x										
Semi-annual TAG meetings with minutes and slides distributed to TAG members.		x										
Semi-annual BOPTEST version release on GitHub.		x										
Current/Future Work												
Scoping and prioritization for new scenarios representing realistic building operation.	x		x									
Develop a demonstration showcase to engage with potential users in relevant venues			x									
BACnet-BOPTEST available on GitHub and ready for version release.			GNG									
At least one test case generated by Arup ready for peer review.				x								
BOPTEST Dashboard updates.					x							
JCI control product tested with BACnet-BOPTEST interface with memo report.					x							
New scenarios for realistic building operation available on GitHub and ready for version release.						x						
Semantic modeling capability available on GitHub and ready for version release.							GNG					
Arup-engaged control vendor product tested with BOPTEST with memo report.								x				
At least one more test case generated by Arup ready for peer review.								x				
JCI control product tested with Semantic modeling capability with memo report.									x			
Engagement with industry clients identified by Arup.										x		
Web-Service production version deployed.											GNG	
Final BOPTEST version released on GitHub.												x
Semi-annual TAG meetings with minutes and slides distributed to TAG members.				x		x		x		x		x
Semi-annual BOPTEST version release on GitHub.				x		x		x		x		x
A new BOPTEST Web Service version is deployed.				x		X		x		x		x
Red x indicates originally planned												
Web-Service established within own open-repository earlier in project.												
Scoping and prioritization for new scenarios representing realistic building operation milestone d	elayed	as Aru	ıp inve	stigate	s BOP	TEST	and M	odelica	a ecos	ystems	and to	ols.

Team

LBNL	Project lead, software development, leads IBPSA collaboration and Annex 81 Subtask B3	David BlumEttore ZanettiMichael Wetter
NREL	BOPTEST-Service development and deployment	Kyle BenneTim Coleman
PNNL	Large office test case development and usage demonstration	Yan ChenXing LuDraguna Vrabie
ORNL	Flexible Research Platform (FRP) test case development and calibration	Yeonjin BaeSen HuangPiljae Im
Arup	Adoption for commercialized controller evaluation services for building owner clients, market research, test case and scenario development	 Haico Schepers Raffe Brennan Justin Prince Robert Knight Tom Beischer
Johnson Controls	BACnet interface development, semantic model integration, framework utilization for improving control deployment process	Erik Paulson