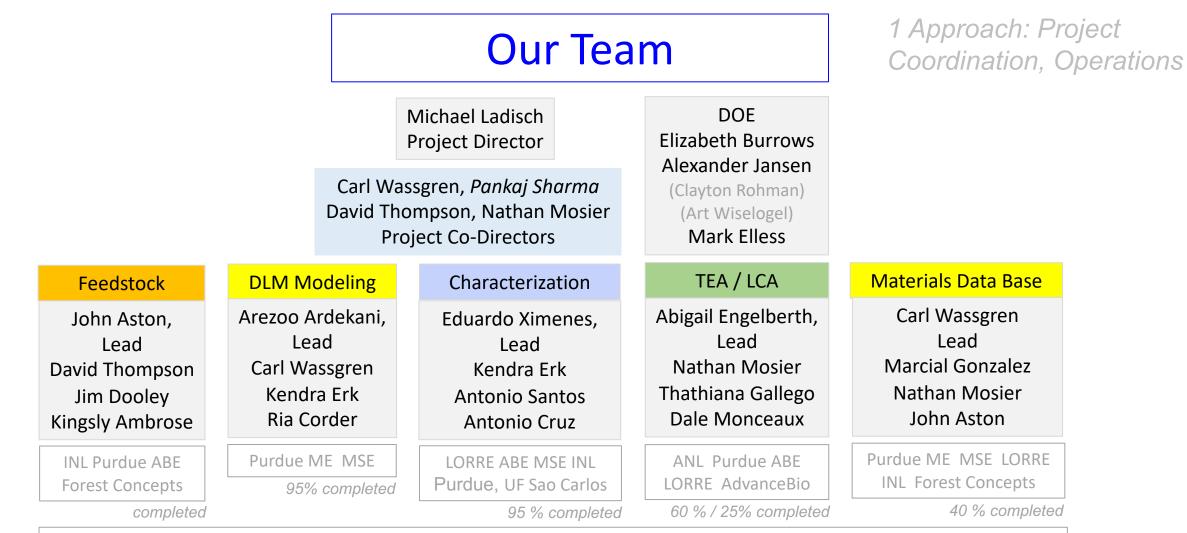
DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

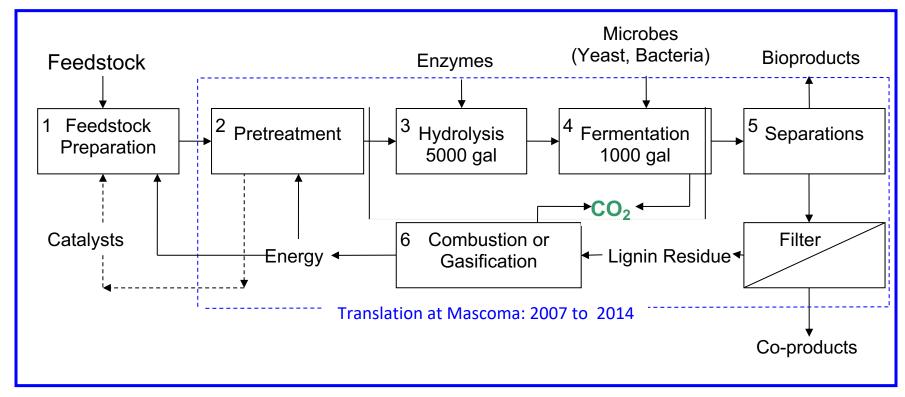
Feedstock Technologies Session

April 5, 2023 Modeling Feedstock Performance and Conversion Operations 1.2.2.103_EE00008910_Purdue University

> Michael Ladisch Purdue University

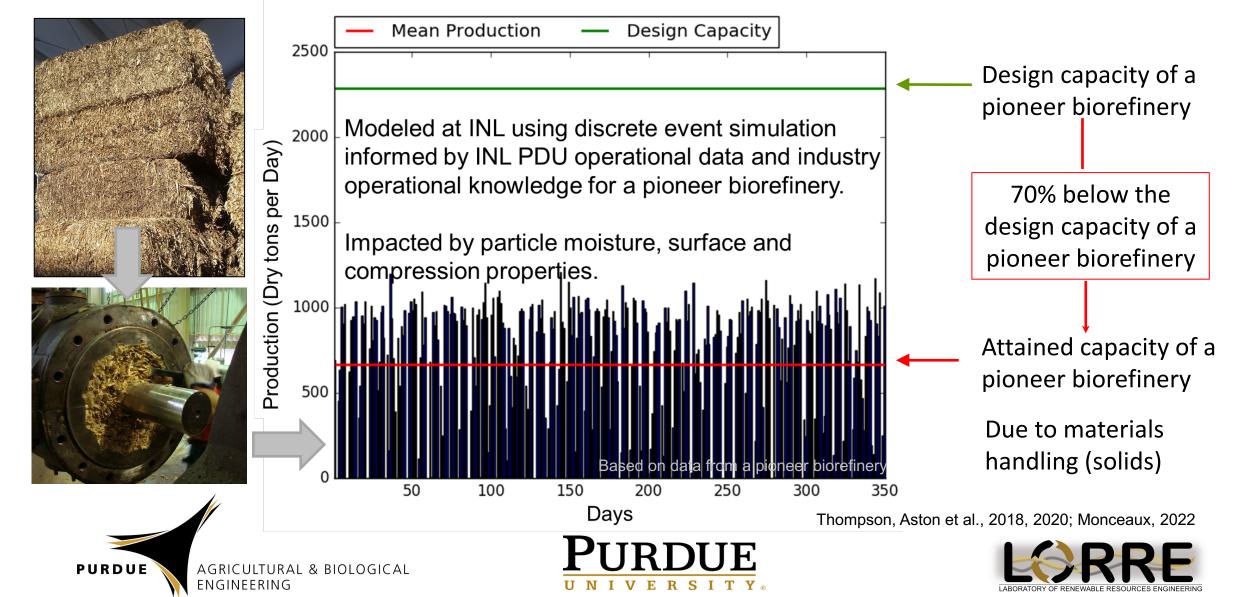
forestconcepts[™]



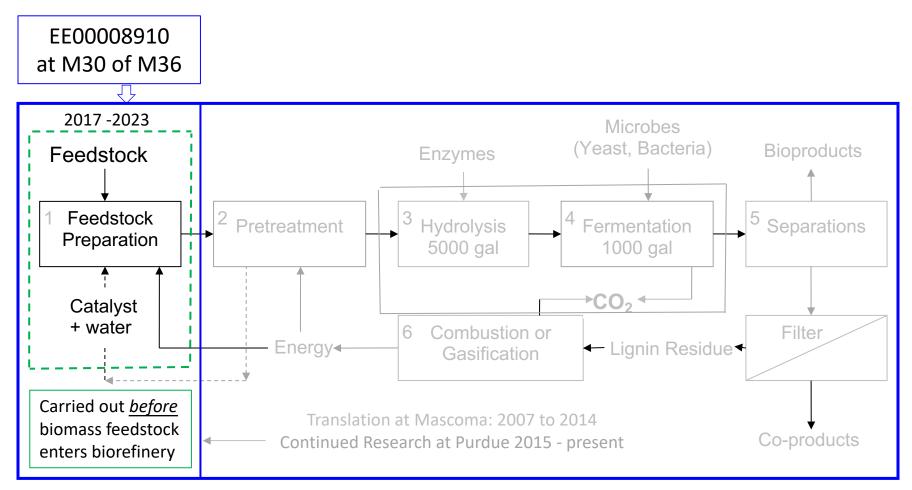

<u>Graduate students and researchers:</u> Luana Assis Serra, Zachary Bebar, Carlos Canizaros, Xueli Chen, Fernanda da Cuhna, Diana Ramirez Gutierrez, Rishabh More, Akash Patil, Abhishek Paul, Bjorn Peng, Allison Ray

The 6 Steps for Conversion of Cellulose to Bioproducts

Ladisch, YM Kim, Mosier, 2006, 2010, 2017



1 Approach


Lesson learned: materials handling matters

2 Progress

Project Overview

The 6 Steps for Conversion of Cellulose to Bioproducts

Ladisch, Thompson, et al, 2006, 2011, 2017, 2022

Statement of Project Objectives and Specific Aims: EE0008910

Purdue University, INL, ANL, Forest Concepts, AdvanceBio. Project at M30 of M36

Objectives:

Model the formation of an aqueous slurry that may be pumped and processed at high solids loadings i.e., a liquefied form of corn stover, and

relate to chemical and physical characteristics of the biomass material.

The research plan is address research gaps related to the biomass component variability and feedstock conversion interface.

<u>Specific Aims (Technical Objectives)</u>

Investigate characteristics associated with tissue components of cob, stalk, husk, and leaves from corn stover and formation into pellets

Determine how these change during preprocessing into pellets and make high loadings possible before pretreatment

Capture knowledge in dimensionless chemical engineering parameters & mathematical modeling of rheology of flowable slurries of corn stover fractions - before pretreatment – at up to 300 g/L

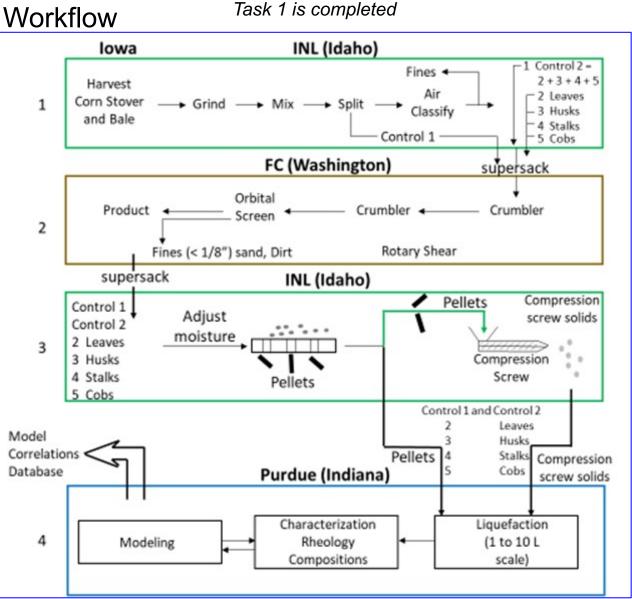
Formation of highly concentrated, fluid slurries from corn stover would enable transportation of stover as a pumped fluid rather than as a solid material that must be conveyed, resulting in significant savings in pretreatment costs and enhanced operability.

Verification 09032020

Task 1: Verify Overall Approach and Workflow

Approach
 Outcomes

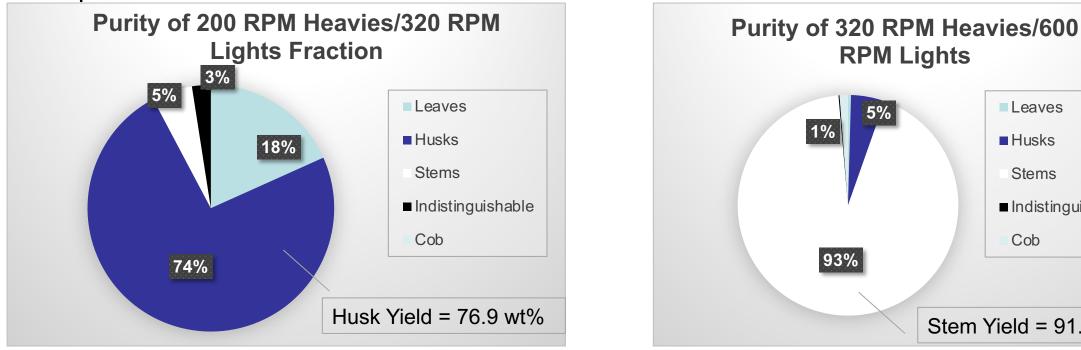
EE0008910


Tasks from SOPO

Task 1: Verification (completed)Task 2: classification of corn stover components and preparation of pellets (completed)

Task 3: computational modeling – Immersed Boundary Method (IB) for biomass slurries (95% completed)
Task 4: slurry-forming experiments with fed batch reactors, characterization, data fitted to models (90%)
Task 5: techno-economic assessment (TEA) (60%)
Task 6: life-cycle analysis (LCA) preprocessing step (25%)
Task 7: characterization of optimized materials; dimensionless correlations - materials data base (40%)
Task 8: communications, reporting, project coordination

Key elements of the technical scope: (1) verification,
(2) corn stover preparation and pelleting, (3) modeling,
(4) slurry formation; (5) material characterization; and
(6) calculate operational (OpEx) / cap (CapEx) expenses.


Project currently at month 30 of 36 month schedule

1 Approach 2 Progress

Task 2: Corn stover separated into Anatomical Fractions via Air Classification 75 wt% Target for Purity & Yield

Example:

Task 2 is completed

RPM Lights

93%

Stem Yield = 91.7 wt%

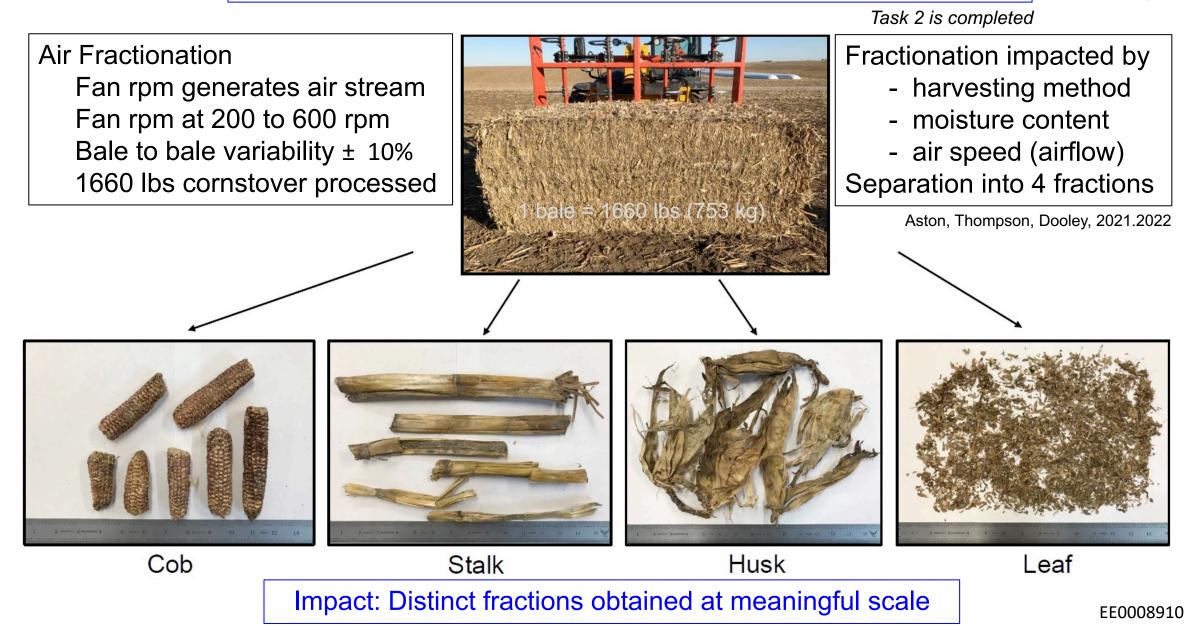
Leaves

Husks

Stems

Cob

■ Indistinguishable

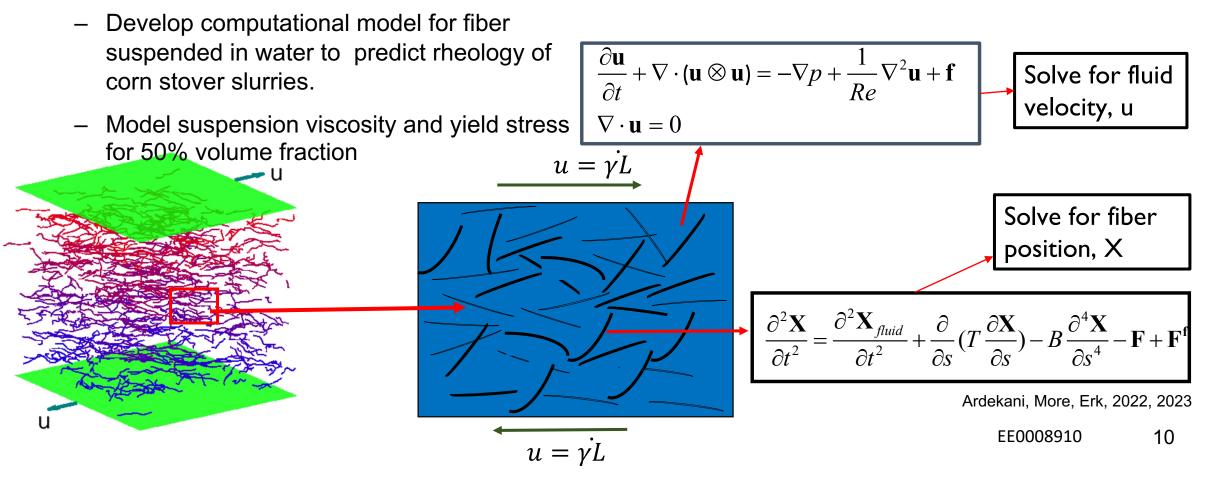

Data collected from the fractionation of a single bale (1660 lbs).

Separate project showed bale-to-bale variability of \pm 10 wt% per fraction, especially for leaf and husk fractions. Lower rpm of fan corresponds to a lower airflow and therefore separates out light fractions.

Aston, Thompson, Dooley, 2021.2022

Task 2: Bale to Anatomical Fractions at INL

3 Outcomes 4 Impact


Task 3: Modeling of Shear Stress for High Concentration Slurries

Objectives and Specific Aims

Task 3: 95% completed

Approach

- Numerically compare the shear stress at start up with experimental results for corn stover slurries
- Compare steady state shear stress with experiment for corn-stover slurries **Approach**

Task 3: Model gives good fit to experimental measurements

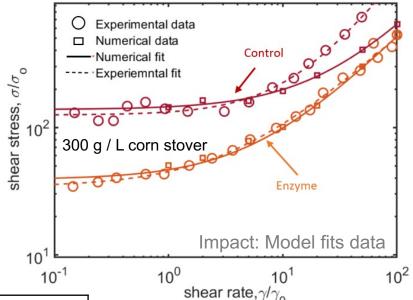
2 Progress3 Outcomes

Task 3: 95% completed

Example: comparison of steady state shear stress for corn stover slurries

Dashed line shows experimental fit Solid lines show numerical fit of Herschel-Bulkley Model:

 $\sigma/\sigma_o = \tau_y + b * (\gamma/\gamma_o)^c$

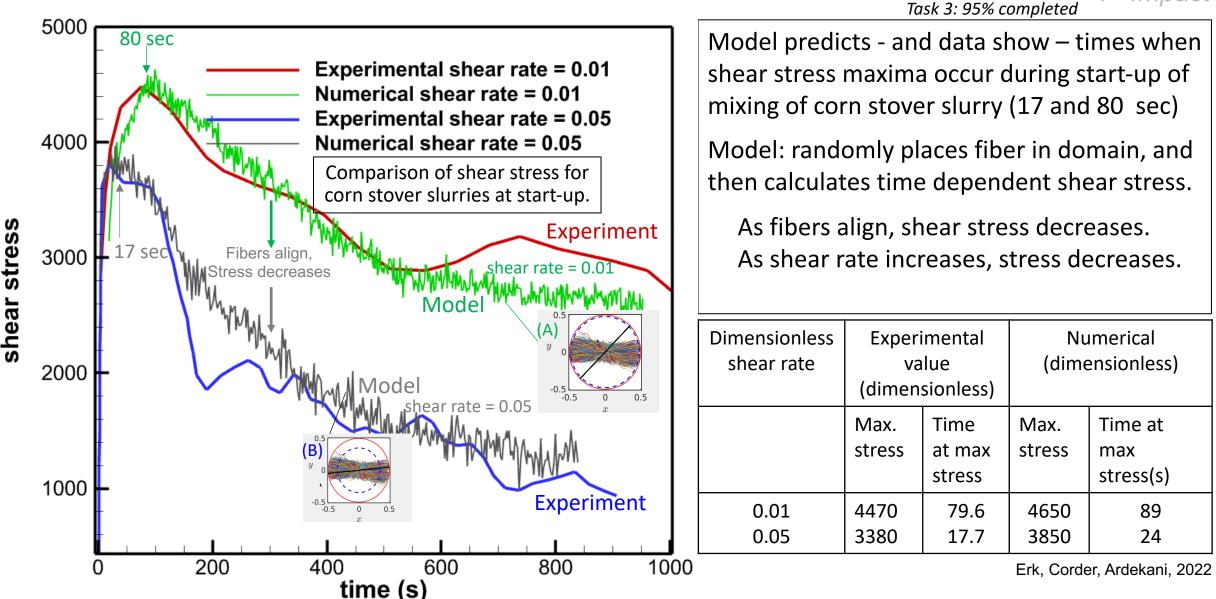

where

 τ_y , b and c are fitting parameters τ_y denotes yield stress of suspension.

Control: no enzyme, agitated at 50° C

Enzyme: 1FPU (filter paper unit) / g enzyme in agitated reactor (mechanically sheared) at 50^o C

Tabl	e. Comparison	of Herschel – Bu	Ikley model param	leter
Treatment	Parameter	Numerical	Experimental	% error
Control	$ au_y$	138	125	10.4%
	L ² - Norm	419.56	498	15.75%
Enzyme	$ au_y$	39	34	14%
	L ² - Norm	378	421	10.21%



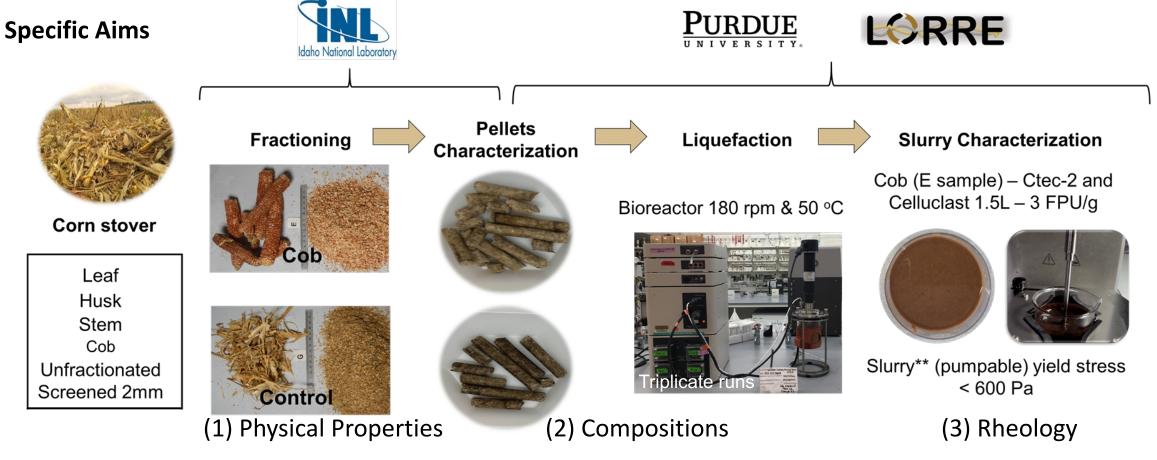
$$L^2 - Norm = \sqrt{\sum_{K=1}^{N} |\frac{\sigma}{\sigma_0}|^2}$$

Ardekani, Erk, Szeto, More, dos Santos 2022, 2023

Task 3: Modeling of Shear Stress for High Concentration Slurries

3 Outcomes4 Impact

Impact: IBM model predicts rheology based on biophysical properties of particles: shows why fed batch is needed EE0008910 12


1 Approach

Task 4: Characterization of Corn Stover Fractions

Objectives

Task 4: 95 % completed

Determine particulate physical properties, compositional analysis, rheological measurements with integration of data obtained into a corn stover particulate database for particles prepared by hammer-milling and rotary shearing, and formed into pellets during course of this project.

2 Progress

Task 4: Characterization of physical properties

2-mm particle size of different fractions prepared by Forest Concepts' rotary shear technology

100% completed

Cob

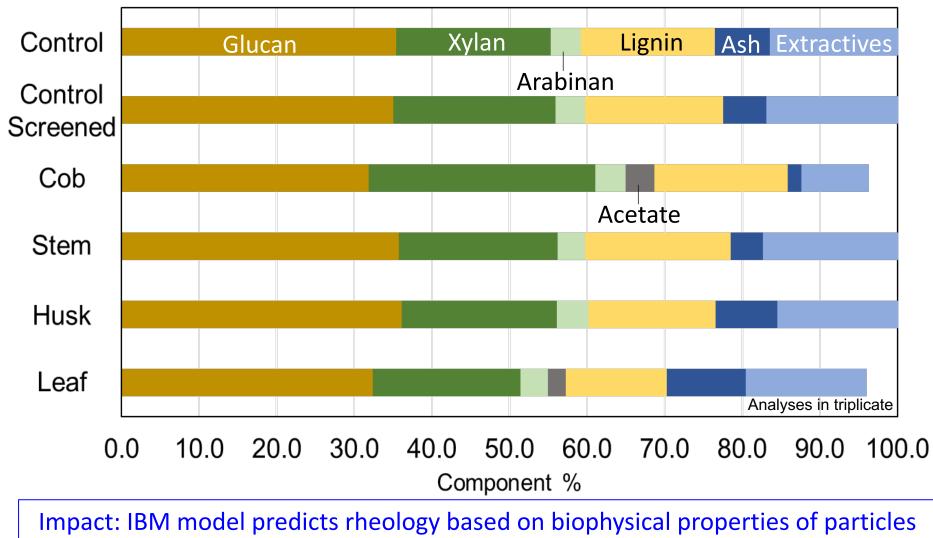
Leaf

Husk

Stem

Unfractionated Screened 2 mm Unfractionated Control

	Moisture	Partic	le Size	Bulk Density		Yield			Comminution	ı Energy	
N de travial		Initial Xgm		Loose	Tapped	0/ 1	04 F ire e e		Specific E [kWh/odt]	TEA Design E	
Material	MC (%wb)	(mm)	Xgm (mm)	(kg/m³)	(kg/m³)	% Accepts	% Fines	% Recirc	(MJ/odMg)	(kWh/odt)	
A - Leaf	10.5	12.0	1.33	97	124	96.7	3.3	65	5.5 (22.0)	7.3	
B - Husk	8.0	6.60	1.35	91	116	93.1	6.9	42	7.1 (28.3)	9.5	
C - Stem / Husk	7.7	8.93	1.38	107	134	95.4	4.6	47	5.0 (19.7)	6.7	
D - Stem	7.3	13.8	1.55	134	166	98.3	1.7	52	7.3 (29.2)	9.7	
E - Cob	9.5	90.4	1.78	224	279	99.6	0.4	63	11.1 (44.1)	14.8	
F - Unfractionated / Screened	7.5	8.08	1.58	107	139	98.2	1.8	51	4.2 (16.6)	5.6	
G - Unfractionated Control	7.8	8.26	1.46	112	142	93.9	6.1	46	6.1 (24.1)	8.1	

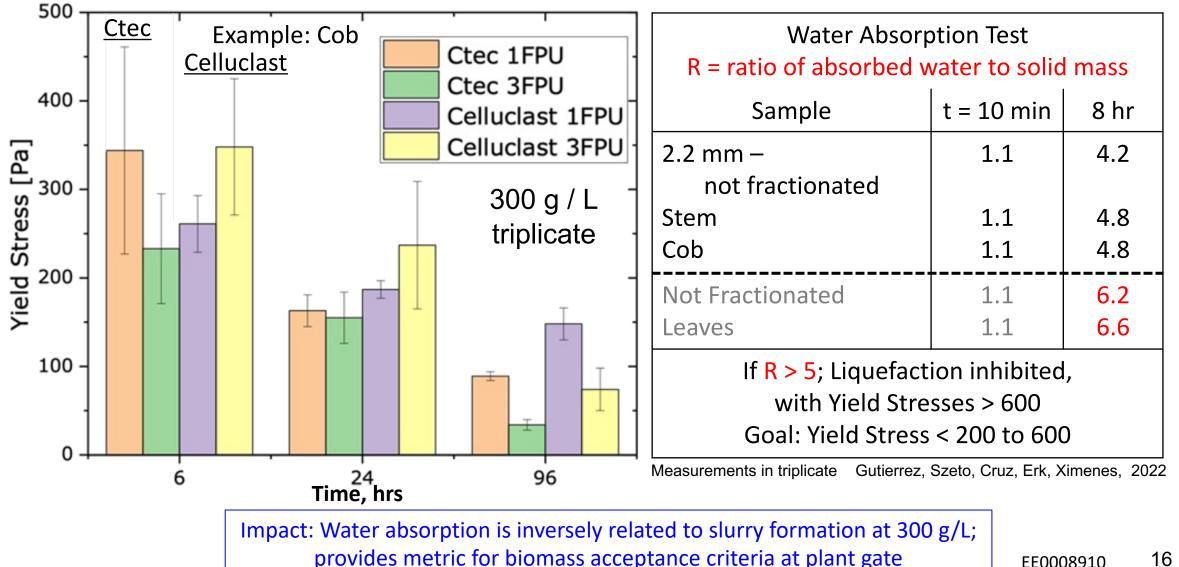

Analysis in triplicate

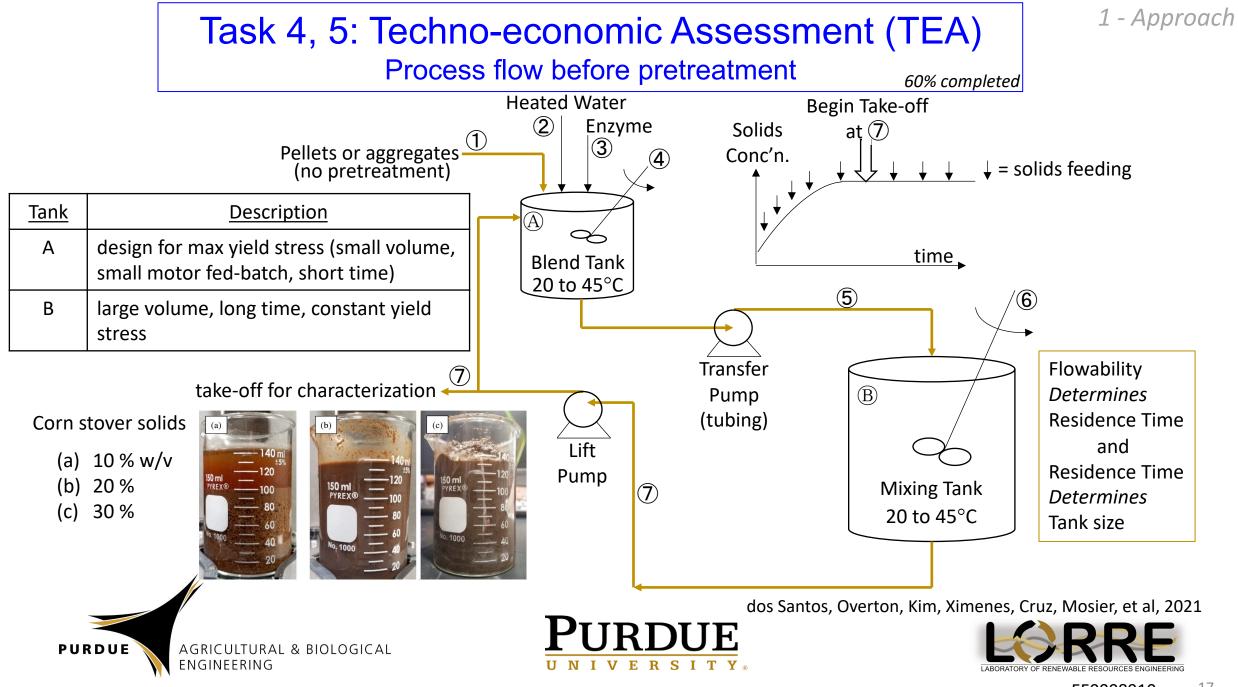
Aston, Dooley, Thompson, 2022

3 Outcomes; 4 Impacts

Task 4: Characterization of compositions of corn stover fractions

Task 4: 95% completed

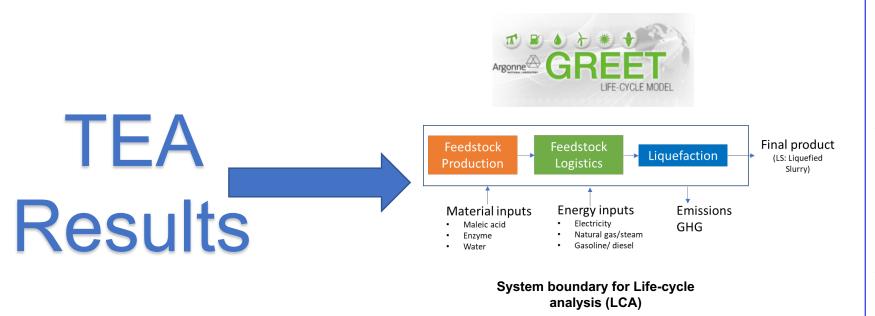



Gutierrez, Chen, Ximenes, Mosier, 2022

3 Outcomes; 4 Impact

Task 4: Characterization of rheology for different fractions

Task 4: 95% completed



2 Progress

Task 6: Life Cycle Analysis (LCA) Underway, Q9 to Q12, M25 to M36

Task 6: 60% completed

Leveraging material from GREET- LCA modeling tool

Use material and energy balance starting from corn stover, for a slurry solids loadings of 300 g/L to assess emission energy burdens, and cost prior to the slurry entering a pretreatment step. This TEA/LCA will be focused on the preprocessing steps.

Gallego, Engelberth, Monceaux 2023

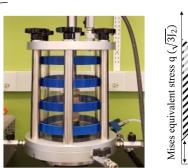
Task 6: Technical Assessment and Life Cycle Analysis

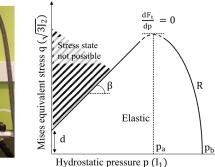
Framework from DOE 0008256 3.0 **Fossil Energy Consumption** Process flow for enzyme catalyzed slurry formation Fossil energy consumption Enzyme Liquefaction 2.0 (MJ/kg slurry) Solids from conveyo Water Output Natural Gas process 1.0 energy Electricity Holding Tank Enzyme Corn Stover (Untreated slurry \rightarrow Treated slurry) Pellets 0.0 ASPEN[™] ^process simulation and modeling software Maleic acid Combined Enzyme Liquefaction Enzyme Hydrolysis Fermentation **Corn Stover Pellets** Bioproducts Patil, Engelberth, Maulik, Ximenes, \$0.027 / lb slurry = target cost for ethanol at \$2.22 /gal. Mosier, Gallego, Monceaux, 2022 PURDU AGRICULTURAL & BIOLOGICAL ENGINEERING EE0008910 NIVERSITY_® U

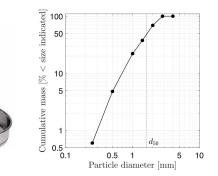
itcomes

60% completed

Task 7: Materials Properties Database


40% completed


receive pelleted material

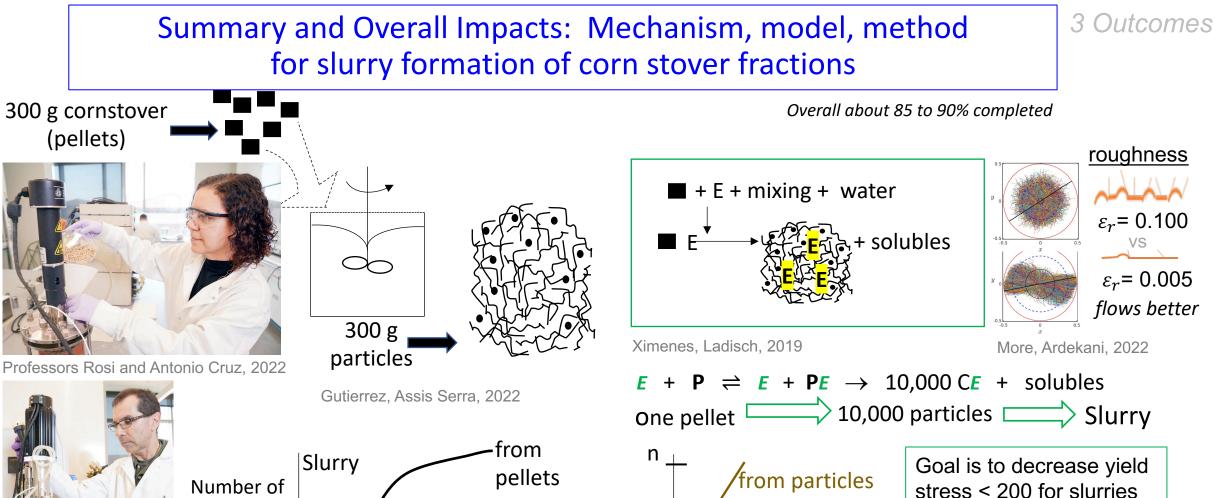


de-aggregate pellets and treat to reach desired moisture content

store data in a database

Tri-axial Tester composition by NREL LAP's

Method


<u>Correlation</u> Modified Drucker-Prager Cap (mDPC) Tabulated Datasets

Particle Level Measurements (by sieving) densities, size, shape Particle size distributions Density Correlations Tabulated Data

Rheology Fed-batch bioreactors runs to prepare slurries IBM model Rheology correlations (Ardekani, Erk, this work) Graphical Comparisons

All measurements in triplicate

Wassgren, Paul, Gonzalez, Mosier, 2022, 2023 EE0008910 20

Number of suspended particles (slurry)

ENGINEERING

AGRICULTURAL & BIOLOGICAL

PURDUE

Slurry pellets from particles

time

 $- \underbrace{\mathbf{PURDUE}}_{\mathbf{U} \ \mathbf{N} \ \mathbf{I} \ \mathbf{V} \ \mathbf{E} \ \mathbf{R} \ \mathbf{S} \ \mathbf{I} \ \mathbf{T} \ \mathbf{Y}}$

γ

at 300 g corn stover / L

from pellets

Szeto, Erk, 2021, 2022

time

EE0008910 21

Corn stover may be fractionated into readily liquefied materials.

Corn stover (unfractionated form) readily forms slurries at enzyme loadings of 1 to 3 FPU/g.

Acceptance criteria for corn stover may be based on laboratory measured water absorption

Pellets are needed and fed batch addition required to achieve high loadings

Some tissue fractions form slurries more readily than others (work in progress) Water absorption is a key indicator

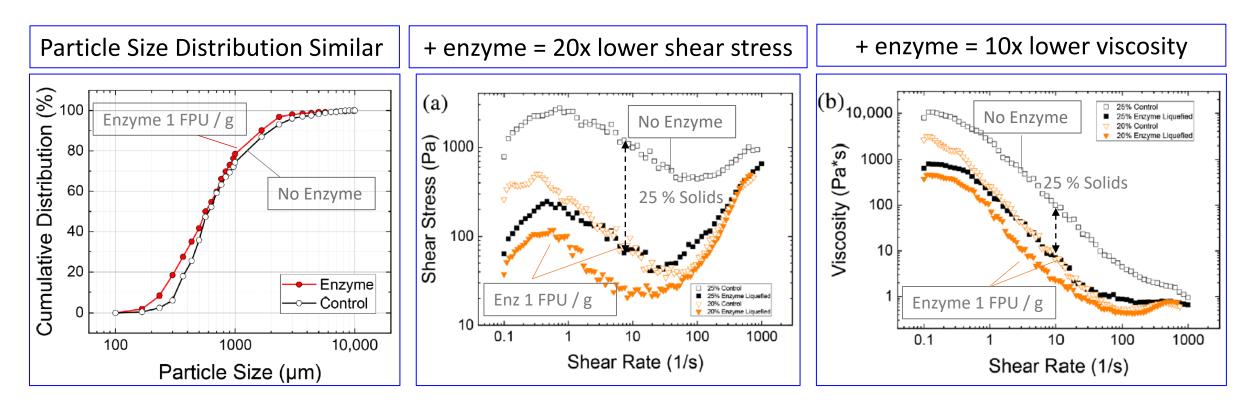
Life cycle analysis shows enzyme catalyzed liquefaction has acceptable energy requirement

Impacts:

Slurry formation with fractionated corn stover, achieved before pretreatment, has potential to avoid solids handling challenges experienced in pioneer biorefineries.

Model developed that explains how an aqueous slurry that may be pumped and processed at high solids loadings;

Model, validated with experimental measurements, addresses research gaps at feedstock conversion interface.


One-slide Overview

Quad Chart Overview

-	start date: (BP 2); (end date: Sept. 30, (approval		Project Goal Model formation of an aqueous slurry that may be pumped and processed at high solids loadings; address research gaps at feedstock conversion interface.					
	FY22 Costed	Total Award	End of Project Milestone Written report with mathematical model, bulk					
DOE Funding	450,934	1,378,384	property database, and dimensionless parameters for high loading slurries of corn stover fractions Funding Mechanism DE-FOA-0002029 AOI 2a. 109-58 Energy Policy Act (2005) cooperative agreement CEDA 81.087.					
Project Cost Share	77,324	346,366	Project PartnersPartner 1 INLPartner 3 Forest Concepts					
	Project Start: TR Project End: TR		Partner 2 ANL Partner 4 AdvanceBio					

Additional Slides

Rheology shows enzyme reduces shear stress and viscosity > 10 x

Change in particle surface roughness may be a factor

Computational modeling by immersed boundary method (IBM) shows that viscosity increases as large fiber volume to total fiber volume increases.

More, Ardekani et al, 2020; Szeto, Erk et al, 2021

Supporting Publications

1. Patil, A., A. S. Engelberth, M. R. Ladisch, "Effect of biomass liquefaction on glucose and xylose prices predicted by National Renewable Energy Laboratory biochemical sugar model," Biofuels, Bioproducts and Biorefining, 17(1), 1-290 (2023).

2. Serra, L. A., R. G. da Silva Cruz, D. M. R. Gutierrez, A. J. G. Cruz, C. A. T. Canizares, X. Chen, N. Mosier, D. Thompson, J. Aston, J. Dooley, P. Sharma, J. L. De Marco, J. R. M. de Almeida, K. Erk, E. Ximenes, M. R. Ladisch, "Screening method for Enzyme-based liquefaction of corn stover pellets at high solids, Bioresour. Technol., 363, 1-10, doi: 10.1016/j.biortech.2022.127999 (2022).

3. Bordignon, S. E., E. Ximenes, O. M. Perrone, C. da Cost Carriera Nunes, D. Kim, M. Boscolo, E. Gomes, E. X. F. Filho, R. da Silva, and M. R. Ladisch, "Combined Sugarcane Pretreatment for the Generation of Ethanol and Value-Added Products," Front. Energy Res., 10, 1-2, doi:10.3389/feng.2022.834966 (2022).

4. Ximenes, E., C.S. Farinas, A.C. Badino, M.R. Ladisch, "Moving from residual lignocellulosic biomass into high-value products: Outcomes from a long-term international cooperation," Biofuels, Bioproducts, Biorefining, DOI: 10.1002/bbb.2179, 15(2), 563-573 (2021).

5. Buffo, M. M., A. L. Z. Ferreira, R. MRG Almeida, C. S. Farinas, A. C. Badino, E. A. Ximenes, M. R. Ladisch, Cellulolytic enzymes production guided by morphology engineering, EMT, 149, 1-29 (2021).

6. Ruiz, H. A., M. Galbe, G. Garrote, D. M. R-Gutierrez, E. Ximenes, S-N. Sun, D. Lachos-Perez, R. M. Rodríguez-Jasso, R-C. Sun, B. Yang, M. R. Ladisch, "Severity factor kinetic model as a strategic parameter of hydrothermal processing (steam explosion and liquid hot water) for biomass fractionation under biorefinery concept," Bioresource Technology, 342, 1-14 (2021).

7. dos Santos, A. C. F., J. C. Overton, R. Szeto, M. H. Patel, D. M. R. Gutierrez, A. M. M. Moreno, K. A. Erk, J. E. Aston, D. N. Thompson, J. H. Dooley, P. Sharma, N. S. Mosier, E. Ximenes, M. R. Ladisch, "New strategy for liquefying corn stover pellets," Bioresource Technology, 341, 1-7 doi.org/10.1016/j.biortech.2021.125773 (2021). 8. Szeto, R., J. C. Overton, A. C. F. dos Santos, C. Eby, N. S. Mosier, E. Ximenes, M. R. Ladisch, K. A. Erk, "Rheology of enzyme liquefied corn stover slurries: The effect of solids concentration on yielding and flow behavior," Biotechnol. Prog., 37(6):e3216, doi:10.1002/btpr.3216 (2021).

9. Almeida, R. M.R.G., W. R. O. Pimentel, M. S. R. Santos-Rocha, M. M. Buffo, C. S. Farinas, E. A. Ximenes, M. R. Ladisch, "Protective effects of non-catalytic proteins on endoglucanase activity at air and lignin interfaces," Biotech. Prog., doi.org/10.1002/btpr.3134 (2021).

10. Almeida, R. MRG and M. R. Ladisch, "Enzyme Interactions on Lignocellulosic Biomass Structure," (Chapter 3) in Recent Advances in Bioconversion of Lignocellulose to Biofuels and Value-Added Chemicals within the Biorefinery Concept, Elsevier, 33-59 (2020).

11. dos Santos, A. C.F., E. Ximenes, D. Thompson, A. E. Ray, R. Szeto, K. Erk, B. S. Dien, M. R. Ladisch, "Effect of Using a Nitrogen Atmosphere on Enzyme Hydrolysis at High Corn Stover Loadings in an Agitated Reactor," Biotechol. Progress. 2020;e3059. https://doi.org/10.1002/btpr.3059 (2020).

12. Freitas dos Santos, A-C<u>.</u>, E. Ximenes, Y. Kim, and M. R. Ladisch, "Lignin-Enzyme Interactions in the Hydrolysis of Lignocellulosic Biomass," Trends in Biotechnology (doi.org/10.1016/tibtech.2018.10.010, 37(5), 518-531 (2019).

 Ázar, R. I. S., T. Morgan, M. H-P. Barbosa, V. M. Guimarães, E. Ximenes, M. Ladisch, "Impact of Protein Blocking on Enzymatic Saccharification of Bagasse from Sugarcane Clones," Biotechnology and Bioengineering (published on-line, 2019; doi: 10.1002/bit.26962), 116, 1584-1593 (2019).

14. Vasconcellos, V. M., C. S. Farinas, E. Ximenes, P. Slininger, M. R. Ladisch, "Adaptive Laboratory Evolution of Nanocellulase Producing Bacterium," Biotechnol. Bioeng., 116(8), 1923-1933 (2019).

Also, Presentations at Society of Industrial Microbiology, AIChE, Society of Rheology, ASME; Purdue organized meeting of industry, government, universities, 2022

Publications, Patents, Presentations, Awards, and Commercialization

There are none yet for EE0008910 as of Feb 20, 2023

Revised Timeline: Nov, 2020; Jan, 2021; Mar 2022

28

File (sent on Mar 28, 2022): Milestone Chart_CC-7-18-19 rev 5 Nov 19 19 AW1 rev-Final cc 2-24-22

					and Gantt							202	29-1791
		Modeling	g Feedstoc		nance and	l Convers	ion Opera	tions					
	Fiscal Year		Federa		1		-	al FY 22				al FY 23	
WBS	Quarter	1	2	3	4	5	6	7	8	9	10	11	12
	Milestones	1.1		2.1		2.2	22.3 to 2.5		4.1	5.1, 5.2	6.1	7.1 to 7.3	8.1
	Go/No-Go Decision Points		BP1/GNG				BP2/GNG						
1	Verification												
	Completion of Baseline Verification												
2	Corn Stover Preparation/Pelleting												
	Grind/Sieve/Fractionate												
	Determine Comp. of CS Fractions in 2 steps												
	Initial rheological measurements completed												
	Prepare compression plug												
2.5	Pellet (up to 4 fractions) and controls 1 & 2												
3	Computational Modeling of Rheology												
3.1	Produce data while developing protocols												
3.2	Develop test code												
3.3	Verify code												
4	Characterization (5 fractions)												
4.1	Analysis of fractionated and unfractionated CS												
5	ТЕА												
5.1	Material/Energy Balance with Xcel												
	Process Economics												
6	TEA/LCA												
6.1	Greet model calculate additional emissions												
7	Materials Data Base												
7.1	Characterization												
	Populate Materials Data Base												
	Dimensionless correlations												
	Confirm database utility with stakeholders												
8	Project Management												
	Project Review(s)												
	Reporting	1.1											
		R	P1	BP2 (ar	proved	P	SP2		<u>0:0</u>	<u> (222</u>	<u>ieie</u> P	BP3	
				Mar 17	•								
	Conditional Award Oct 1, 2019 Oct 1	, 2020	Apr 1		i i i	ct	A 4	, 2022	Oct 1	, 2022	A m/m	1, 2023	Sept 30, 2