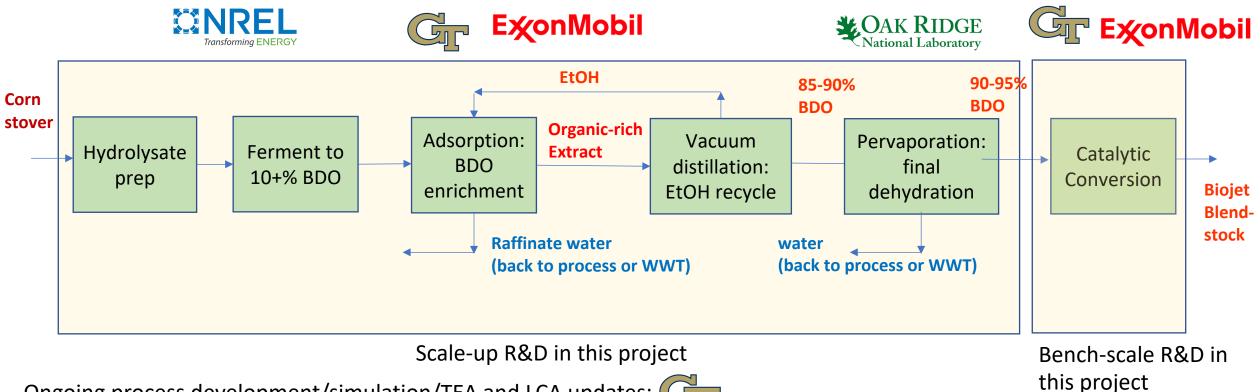
DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Conversion of 2,3-Butanediol to Biojet Fuel: Scale-up and Technoeconomic Analysis of Energy-Efficient Separations and Fermentative Diol Production

> April 5, 2023 Technology Area Session: Scale-Up

PI: Sankar Nair Georgia Institute of Technology

This presentation does not contain any proprietary, confidential, or otherwise restricted information


Project Overview

Background

- Large and attractive market for jet fuel (aviation fuel/kerosene), and large CO₂ reductions that would be enabled by a shift to biojet fuel
- Reducing the cost of biofuel production is an important goal: driving the biofuel minimum fuel selling price (MFSP) below \$2.5/GGE (GGE = gallon gasoline equivalent)
- 2,3-butanediol ("BDO") is an attractive intermediate for catalytic conversion to biojet fuel
- A key technology challenge we identified: reduce the cost and increase the quality of BDO feedstock to the catalytic conversion process
- Technology and scale-up barriers addressed in this work:
 - Fermentation of corn stover hydrolysate to BDO with increased titer (100+ g/L)
 - Adsorptive separation and enrichment of BDO from product broth by continuous processes with zeolitic adsorbents
 - Improved zeolitic catalysts that use enriched BDO feedstocks (instead of aqueous)
 - New overall process cases and TEA estimates

Project Overview

Overall Scope and Vision

Ongoing process development/simulation/TEA and LCA updates:

Current/Former Researchers and Senior Personnel

GT: Marco Avendano, Jianpei Lao, Qiang Fu, Thomas Wang, Jason Bentley, Matthew Realff, Carsten Sievers, Sankar Nair NREL: Ryan Spiller, Hoon Choi, Nolan Wilson, Eric Karp, Richard Elander, Gregg Beckham ORNL: Shailesh Dangwal, Syed Islam, Ramesh Bhave, Oindrila Gupta, Aimee Lu, Michael Hu ExxonMobil: Jayashree Kalyanaraman, Christine Elia, Benjamin McCool

3

1 – Approach

Collaborative advancement of five project elements (2020-2024):

(NREL lead) Demonstrate scale-up of fermentative BDO production at 1000 L scale, to obtain at least 100 kg BDO with at least 100 g/L concentration

(GT lead) Demonstrate scale-up of BDO enrichment to 85+wt% from clarified fermentation broths by a continuous adsorption pilot plant to produce 100 kg BDO at > 1 kg/day

(ORNL lead) Demonstrate construction and operation of pervaporation membrane modules for further dehydration of BDO

Scaled-up separation systems will be operated for 500 h cumulative and 100 h continuous on-stream time.

(GT/EM lead) Laboratory-scale catalytic conversion with enriched BDO feeds: optimize catalyst properties and conditions, and produce biojet fuel samples that can meet ASTM biojet blendstock standards by project-end

(GT lead) Process engineering framework:

- accurate, well-parametrized models (fermentation/separation/conversion)
- integrated with an overall process TEA and LCA
- Continuous improvements in (modeled) minimum fuel selling price (MFSP) and CO₂ emissions reductions

Top Technical Challenges

- Continuous simulated moving bed (SMB) adsorption, while extensively used to produce sugars and aromatics, has not been developed for organics recovery from complex broths (contaminants/foulants/selectivity issues)
- SMB is not "plug-and-play" technology: requires detailed process simulation and optimization in conjunction with detailed operational experience and data
- First time a 1000 L fermentation of corn stover hydrolysate → BDO is being carried out, i.e. large-scale feedstock
 prep, control of the process, contamination mitigation, and other scale-up challenges
- Very little known about catalytic conversion of highly enriched BDO streams into olefins and then to C₇-C₁₆ oligomers: we are developing this knowledge in detail to enable more accurate process/TEA predictions

Project Layout/Schedule

BP1 and BP2 (Oct 2020 – Mar 2023)

• Task 1: Initial verification (bench scale fermentation and adsorption technologies, baseline process model and TEA)

BP1 Go/No-Go decision: Completed

- Task 2: 1000 L scaled up fermentation to produce 100+ g/L BDO *Nearing completion*
- Task 3: Development of detailed separation process simulations (validated by experiment) and process/TEA update Completed
- Task 4: Initial evaluation and downselection of catalysts for BDO → C₄ olefins (*Completed*) and olefins → C₇-C₁₆ mixtures (*Nearing completion*)
- Task 5: Adsorption scale-up from single-column process to multi-column SMB (*Completed*), and further scale-up to continuously
 produce 1 kg enriched BDO at 0.3-0.5 kg/day (*Completed*)

BP2 Go/No decision (*nearing completion*):

- Successful fermentative production of at least 100 kg of BDO with at least 100 g/L concentration
- Successful real-feed SMB adsorption runs to produce total 1 kg BDO, at average rate of 0.3-0.5 kg/day, 85+% purity (after ethanol recycle) and 95+% recovery

BP3 and BP4 (Apr 2023 – Oct 2024)

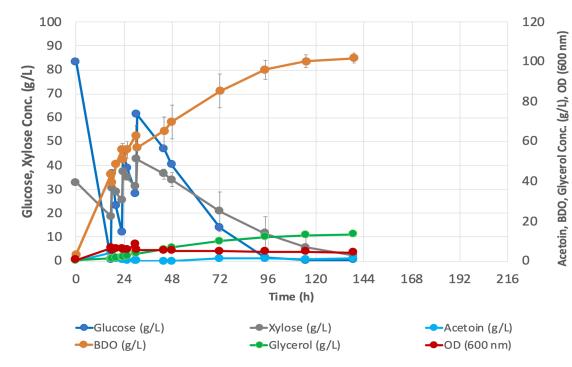
- Task 6: Pervaporation membrane (last mile dehydration of BDO) scale-up and operation for 500 h (at least 100 h continuous)
- Task 7: Next process and TEA update maintaining positive △NPV relative to 2018 NREL SOT
- Task 8: Optimal catalytic route with 90% carbon yield and 85% C₇-C₁₆ paraffins, and meeting ASTM D7566 blendstock standard
- Task 9: Next-level SMB scaleup: 10 kg BDO production at 2 kg/day

BP3 Go/No-Go decision

- Task 10: Final process predictions for commercial scale (450 tons/day BDO processing)
- Task 11: Next-level SMB scaleup: 100 kg BDO production at 2 kg/day for 500 h (at least 100 h continuous)
- Task 12: Final integrated process flowsheet meeting the FOA metrics

End of Project Goal

- Based on our 2024 TEA and LCA, this technology would meet a MFSP target of <\$3.00/GGE and preferably <\$2.5/GGE, and 60% greenhouse emissions reduction from petrofuels
- Fermentation and separation technologies would be scaled-up by 100-1000X bench scale, and experimentally demonstrated for 500 h cumulative and 100 h continuous
- Reliable separation process models meet the throughput equivalent metric at any scale including full commercial scale 7


Project Management and Risk Mitigation – a few highlights

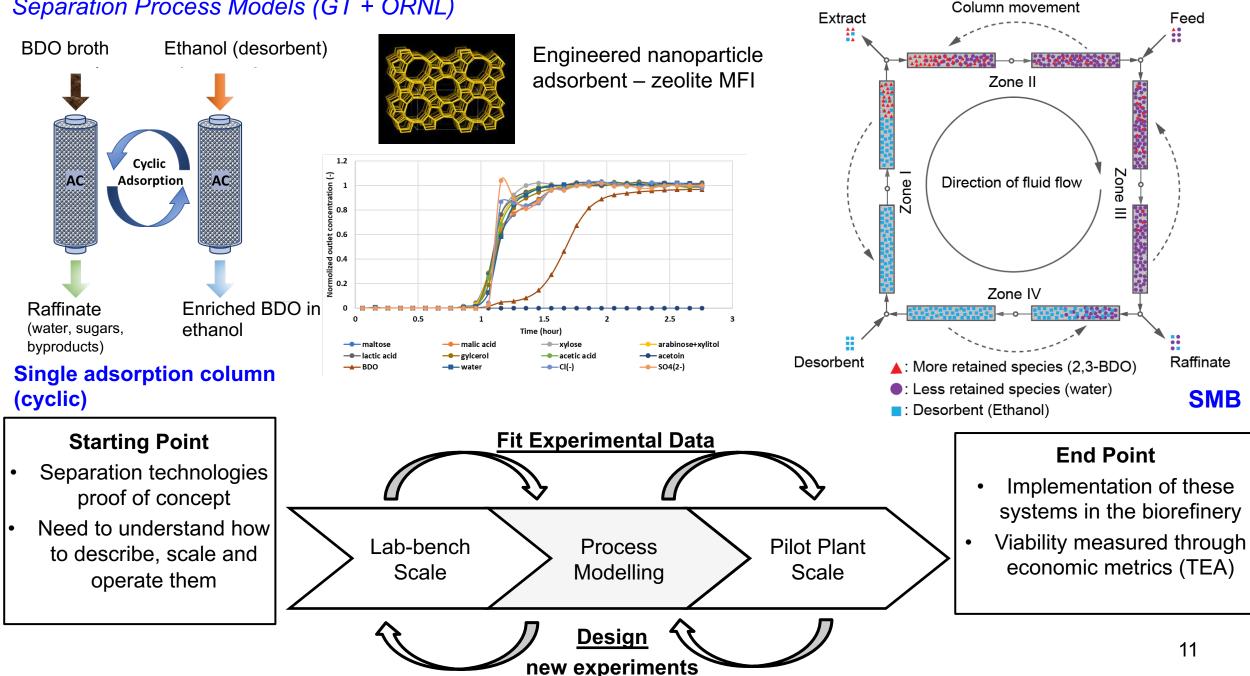
- Each task lead monitors the progress of their tasks by weekly meetings
- Overall progress (tasks & milestones, risks & mitigation) monitored in biweekly GT videoconferences, entire team meets monthly
- Frequent ad hoc meetings/discussions occur between team members across the 4 organizations
- Seamless hand-offs of materials (e.g., NREL broth \rightarrow GT) and data (ORNL membrane data \rightarrow GT) are occurring
- Effective risk mitigation examples:
- SMB scale-up efforts were hampered by poor mechanical stability of MFI adsorbent pellets in larger columns
- We had developed an approach at lab scale for increasing mechanical stability with sodium silicate binders
- This was quickly scaled up and the resulting treated adsorbents showed excellent stability while retaining performance
- Fermentation progress was accelerated by combining feedstock pre-treatment efforts with other BETO projects

2 – Progress and Outcomes

Fermentation (NREL)

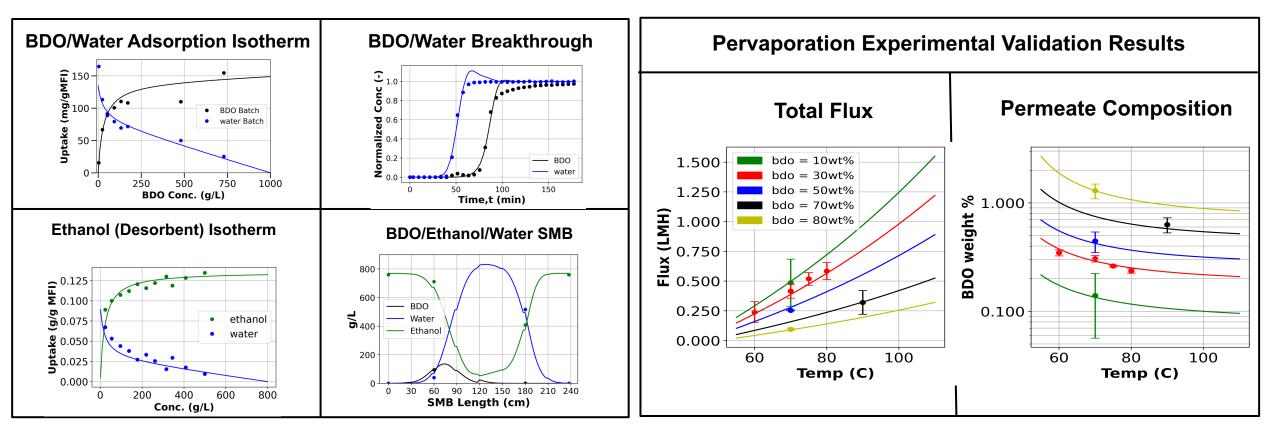
- Previously verified lab-scale fermentation of 100 g/L BDO (see figure)
- Feedstock preparation steps completed for 1000 L scale-up over the Sep 2021-Nov 2022 period
- 10 tons of corn stover was deacetylated at NREL in collaboration with the U. North Dakota SCUBA project (3.4.3.501)
- Disk refining at Andritz to produce DDR
- Enzymatic hydrolysis produced ~ 6000 L of whole slurry using CTech3 and HTech3 enzymes
- Clarification produced ~4000 L of material using the pall cross flow filter
- A forced circulation evaporator was used to concentrate the pretreated corn stover at a 4-5X concentration
- We used the concentrated material as feeds with a total sugar of 500 g/L

Fermentation (NREL)

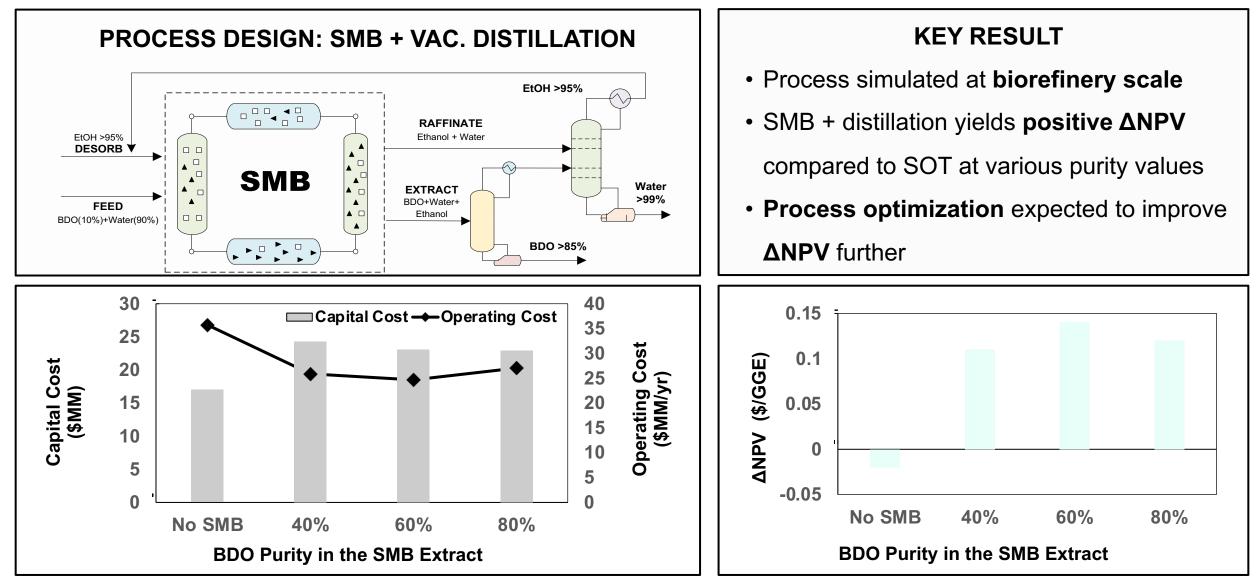

- Scale-up at 1000 L currently occurring at NREL
- Monitor dissolved oxygen levels and off-gas through a mass spectrometer
- Measuring concentrations of chemicals using high-pressure liquid chromatography and near-IR to help characterize what stage the fermentation is at in real time
- Clarification (cell removal, sterile filtration) and concentration of clarified broth

Culture Revive	50 mL - flask (16 mL volume)		
Seed 1	300 mL - fermentor		
Seed 2	9 L - fermentor		
Seed 3	90 L (V445)		
Pilot Fermentation - start	850 L (V450) – 760 L hydrolysate/media + 90 L seed		
Pilot Fermentation - end	1000 L (V450) – two 75 L feeds		

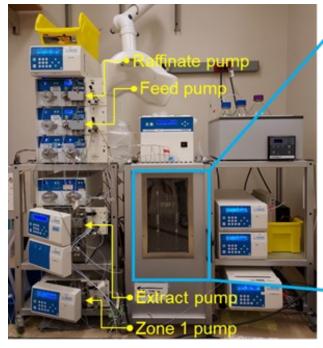
۰.

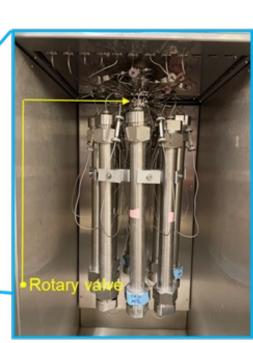

Separation Process Models (GT + ORNL)

KEY RESULTS


Detailed adsorption and pervaporation process simulation models incorporating multicomponent adsorption, mass transfer/diffusion, and transient mass balances

• The experiments closely match the predictions of the refined models for both systems


Separation Process Models (GT + ORNL)


Use of the detailed models for updating the process TEA (detailed costing has been done)

Cyclic \rightarrow SMB First Scale-Up (up to 50X from bench scale) (GT)

- 8 column SMB
- BDO/water feed

9.4 X 200 mm

100% 80% Extract purity 60% -BDO 40% ---water 20% 0% 2 8 10 0 6 4 Cycle 120% Extract recovery 100% 80% 60% --BDO 40% ---H2O 20% 0% 10 2 0 6 8 Cycle

• KEY RESULT

Extract BDO recovery: **100%** Extract BDO purity: **70%** Raffinate water rejection: **96%** Raffinate water purity: **100%** Total run time: 12 h System T and P: 50 C, 10 bar

SMB Optimization for Complex Feed (simulated broth)

	Model broth
	concentration [g/L]
Maltose	7.4
Malic acid	2.4
Xylose	2.7
Arabinose	4.5
Xylitol	2.8
Lactic acid	2.4
Glycerol	6.7
Acetic acid	2.0
Acetoin	0.2
2,3-BDO	98.3
Water	888.3

BDO

Water

Ethanol

Acetoin

Goal: Predict SMB performance in complex feed with accuracy using robust modelling.Challenge: Computation/optimization time, large number of components in broth.

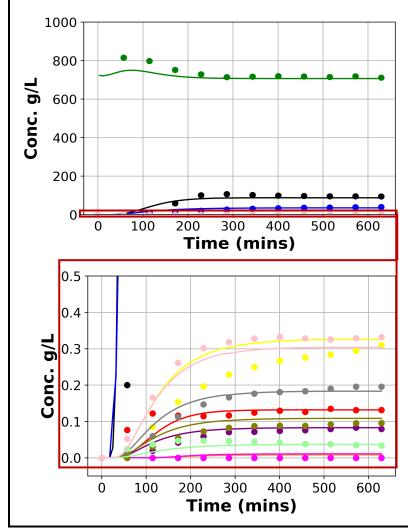
RESULT: Excellent agreement of predictions with SMB pilot runs using a simulated broth.

Predictions at Cyclic Steady-state (model broth) 700 600 (J/6) 500 400 000 300 200 100 120 150 180 210 120 150 180 30 60 90 240 210 SMB Length (cm)

Glycerol

Lactic Acid

— Xylitol

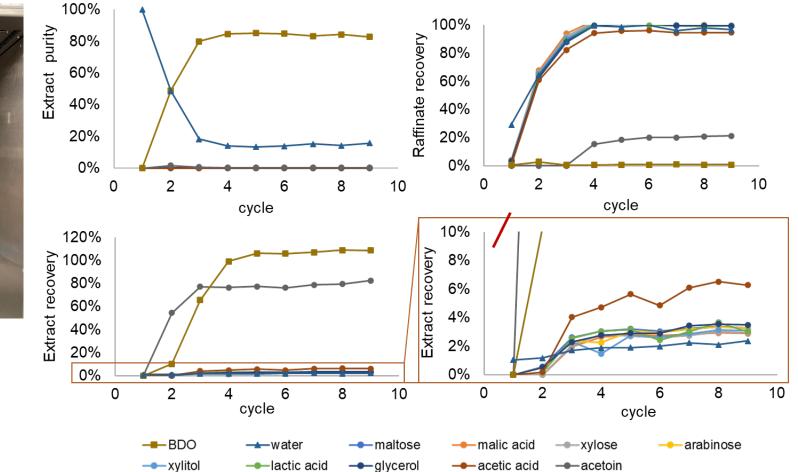

Arabinose

Xylose

Malic Acid

Acetic Acid

Transient concentration of the extract (model broth) <u>Pilot run and prediction</u>


Maltose

Next SMB Scale-Up (up to 200X from bench scale) with Real BDO Product Broth

Real broth concentration [g/L] Maltose 8.2 2.5 Malic acid **Xylose** 2.7 Arabinose 4.9 2.8 **Xylitol** 2.5 Lactic acid 7.3 Glycerol Acetic acid 2.0 0.7 Acetoin 2,3-BDO 101.1 889.0 Water

<u>°</u>_

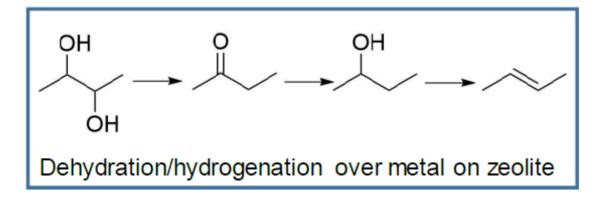
EXAMPLE RESULT

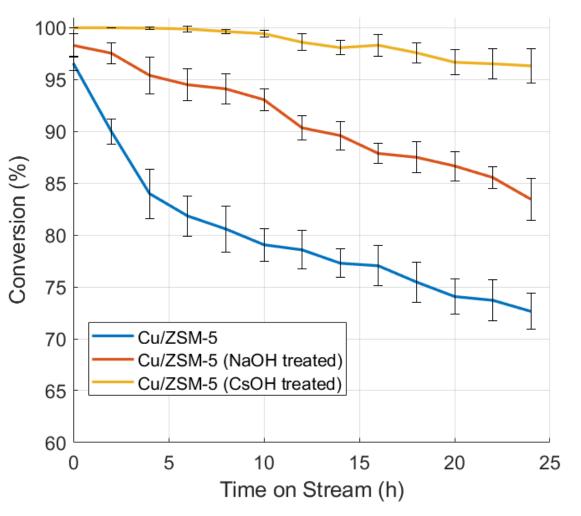
Extract BDO recovery: ~100% Extract BDO purity: 83% BDO productivity: 0.36 kg/day Raffinate water recovery: 97% Raffinate water purity: 96% Desorbent/Feed ratio: 1.7 Total run time: 10 h System T and P: 50 C, 10 bar

21 X 300 mm

Next SMB Scale-Up (up to 200X from bench scale) with Real BDO Product Broth

	Average Collected	Average Collected			
	BDO purity	BDO recovery	Total Run Time /		
Run	[%]	[%]	Total Number of cycles		
Run 1	84%	~100%	9 hr / 9 cycles		
Run 2	79%	~100% 26 hr / 27 cycles			
			66 hr / 69 cycles + (diagnostic) 5 hr / 5		
Run 3	70%	~100%	cycles		
BDO product To		Total 1.31 kg BD	O collected as product in extract		
BDO production rate		0.46 kg/day average			
Total Run Time		106 hours			

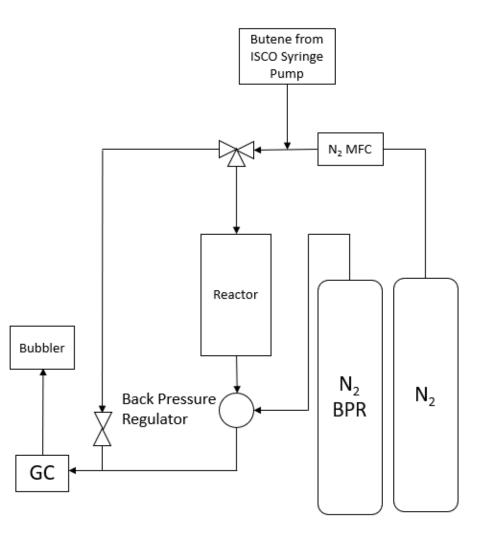



product concentration [g/L]	
2.67	
0.74	
0.82	
1.62	
0.90	
0.83	
2.68	
1.45	
2.24	
816.58	
9.80	
96.97	

- The SMB system showed exceptional BDO recovery from the product broth (~100%) and excellent (70-85%) purity
- In addition, the SMB separates the BDO+acetoin from other organics originally present in the broth
- The final product contains only 12 g/L of these organics as compared to 33 g/L in the feed
- BDO product collection rate averaged 0.46 kg/day
- An 87 wt% purity product containing 1.04 kg of BDO component was produced after ethanol distillation
- SMB operations were conducted for ~106 hours, with the longest run being ~71 hours
- For BP-3 work: oligomeric components in broth tend to accumulate on surfaces, plan in place to manage this carefully₁₇

Catalysts – Initial Evaluation (GT + ExxonMobil)

- Four types of metal-impregnated zeolite MFI (ZSM-5) catalysts for BDO dehydration were evaluated using pure BDO feeds
- Conventional zeolite catalysts are highly active but also deactivate due to coke formation in the pores
- Mesopores (2-50 nm in diameter) created through treatment with alkali solutions
- Much slower deactivation with larger mesopores as accessibility of copper active sites is less impeded by carbonaceous deposits
- Extensive characterization was performed
- Mesoporous Cu-ZSM-5 was selected as the top candidate for BDO dehydration to C₄ olefins
- ~100% selectivity towards olefins



18

Catalysts – Initial Evaluation

- We have spent significant time building and troubleshooting
 Olefin oligomerization reactor
- Initial operation with trans-2-butene feed, the most abundant butene isomer from BDO conversion
- Several catalysts have been synthesized and characterized
- Currently down-selecting catalysts and reaction conditions
- HZSM-5 catalyst (Si/Al = 15) appears to be currently best performing
- ~70% selectivity for C₇₋₁₆ products (jet range) at 200°C and 350 psig
- Remaining products are mostly C₃ and C₅
- Once downselection is complete, will hydrogenate samples and perform ASTM tests to establish the initial sample quality

3 – Impacts / Summary

- We have an emerging route towards a significant and continuing improvement in economics of corn stover-tobiofuel processes beyond the 2018-2020 NREL SOT and predictions
- Advanced separations, fermentation, and process engineering can have several impacts/benefits:
 - Lower energy use and CO₂e
 - Better quality of intermediates (much less impurities such as carbohydrates and byproducts)
 - Catalytic reactors can be downsized by 5-10X since the enriched streams have much smaller volumes and also lead to faster reaction kinetics
 - Fewer byproducts/impurities and less water will likely have dramatic effects on catalyst longevity
- Successful separation and fermentation scale-up will also allow consideration of many other similar routes for process improvements/savings
- We are getting ready to disseminate key products of this work so far:
 - Invention disclosure and provisional patent application on the adsorptive separation process and overall process design (Feb/Mar 2023)
 - Three manuscripts have been drafted or in preparation for journal submissions (Mar-Apr 2023)

Quad Chart Overview

Timeline

- 10/1/2020
- 9/30/2024

FY22 - Costed		Total Award	End - Pro <\$3. gre
DOE Funding	(10/01/2021 – 9/30/2022)	(negotiated total federal share)	- Fe be so expe and - Re
	\$351,992	\$3,000,740	throu full c Fur
Project Cost Share *	\$142,988	\$754,466	DE-F
	t Project Start t Project End:		Pro

Project Goal

Scale-up of separation and fermentation processes for 2,3-BDO, and a new process for corn stover \rightarrow BDO \rightarrow biojet fuel

End of Project Milestone

Process would meet a MFSP target of <\$3.00/GGE and preferably <\$2.5/GGE, and 60% greenhouse emissions reduction from petrofuels
Fermentation and separation technologies would be scaled-up by 100-1000X bench scale, and experimentally demonstrated for 500 h cumulative and 100 h continuous
Reliable separation process models meet the throughput equivalent metric at any scale including full commercial scale

Funding Mechanism

DE-FOA-0002203, Topic Area 1 (SCUBA), 2020

Project Partners*

- NREL
- ORNL
- ExxonMobil

*Only fill out if applicable.

Additional Slides

(Not a template slide – for information purposes only)

- The following slides are to be included in your submission for evaluation purposes, but <u>will **not**</u> <u>be part of your oral presentation</u> –
- You may refer to them during the Q&A period if they are helpful to you in explaining certain points.

Responses to Previous Reviewers' Comments

- If your project has been peer reviewed previously, address 1-3 significant questions/criticisms from the previous reviewers' comments which you have since addressed
- Also provide highlights from any Go/No-Go Reviews

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.

Publications, Patents, Presentations, Awards, and Commercialization

- List any publications, patents, awards, and presentations that have resulted from work on this project
- Use at least 12 point font
- Describe the status of any technology transfer or commercialization efforts

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.