Project Team:

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Advanced Low-Emission Residential Fluid-Bed Biomass Combustor

Project Sponsor:

Energy Efficiency & Renewable Energy

Technology Area Session: Systems Development and Integration Session A

Independent Engineer:

Principal Investigator: Bartev B. Sakadjian Organization: NTRE TECH LLC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Date: 04-03-2023

Project Overview - Objectives

- Design, construct and test a low-emission and efficient residential wood-fired central heater based on the novel application of bubbling fluidized-bed (BFB) technology.
- 25% to 50% reduction in emissions relative to the 2020 residential wood heater emission EPA limits
- 5% to 15% improvement in the weighted average delivered efficiency to current baseline heater designs.

Fuel: Biomass Pellets or Wood Chips **Technology:** Bubbling Fluidized Bed

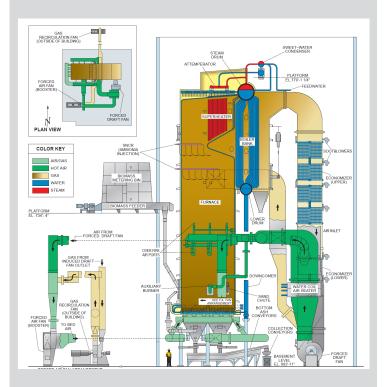
Project Overview – Project Team

Expertise in designing and scaling up reactor systems process simulations, developing and testing products

A premier supplier of industrial and utility boiler and environmental systems →large installed base of biomass-based boilers globally.

NTRE TECH LLC Advancing the Next Generation of Innovative Technologies Renowned expertise in the fluidization. Capabilities: Laboratories, analytical tools and prototype and pilot-scale testing.

Development of advanced energy conversion and environmental control technologies


Project Overview - Project Alignment with BETO Goals

- BETO objective: to support the development and testing of low-emission, high efficiency residential wood heaters.
- Fluid-bed technology has the potential to meet the lower overall emission targets set in the FOA.
- The project would focus on innovations on Fluid Bed technology to enable its use at the residential-scale (in central heater applications) and allow its near-term commercialization in the residential market.
- Project promotes the clean use of biomass fuels making new heaters significantly cleaner and improving the air quality in communities where people burn wood for heat.
- The proposed research project objectives align well with the FOA's objectives and is responsive to the requirements.

1 – Approach - Technical Scope Summary

To achieve the stated objectives:

- 1. Develop, design, and engineer a novel system incorporating innovative features of a fluidized bed configuration that allows frequent changes in load, features that promote optimal operation under transient conditions and smart controls.
- 2. Perform simulations of the furnace hydrodynamics, characterize bed material performance, and assess individual component performance through lab testing.
- 3. Develop and implement an instrumentation scheme, smart sensors, and automated controls.
- 4. Construct and test a prototype and validate performance against a baseline.
- 5. Assess market potential and techno-economic feasibility of the new product.

Leveraging Industrial Experience In Fluid Bed Technology & Biomass Energy Conversion

1 – Approach - Tasks

Budget Period (BP) 1

• Task 1.0: Initial Verification

BP 2 : Prototype Design, Installation, Initial Testing and Supporting R&D

- Task 2.0: Preliminary Design and Lab Testing
- Task 3.0: Controls, Automation and Dynamic Operation
- Task 4.0: Test Facility Detailed Design & Fabrication
- Task 5.0: Prototype Fabrication, Installation and Initial Testing

Budget Period 3: Parametric Testing, Design Improvements, Final Validation

- Task 6.0: Parametric Testing
- Task 7.0: Prototype Final Testing
- Task 8.0: Commercialization, Manufacturing Plan, & Final Reporting

1 – Approach – Key Challenges

- The residential market poses particular challenges vs. industrial or utility markets:
- Frequency of load • Ease of startup and shutdown • variation. • Cost accessible removal
- Unattended operation.
- Reliability

- Ability to accept fuel variations

- Easy to handle ash
- Maintenance
- Service program
- Top Challenges of implementing fluid-bed technology in woodfired heaters:
 - 1. Scaling down the process
 - 2. Simplifying / automating its operation in order to adapt it for the residential market
 - 3. Frequent load variations

1 – Approach – Go/No Go Decision **Points**

- **Budget Period 1 Go/No Go Decision Point Initial Verification**
- Verification to confirm benchmark data and assumptions provided in application, which will establish the project baseline against which future performance and cost improvements are evaluated.
- Verification team (including independent engineer) will work closely with project team to discuss project details, review application data, metrics, and procedures provided in original application.
- Verification of experimental procedures and data records. •
- **Budget Period 2 Go/No-Go Decision Point. Intermediate Validation**
- Verification team to assess progress towards the targets established in the application. Demonstrate that a working prototype / evaluations methods are in place. Prototype has been constructed, installed, and ready to continue further testing.
- Verify experimental procedures and initial determination of efficiency/ emissions using EPA Methods.
- Design, simulation and initial results indicate that the prototype design has the potential to meet PM emissions of 0.08 lb/MMBTU or lower and efficiencies improvements of 5-15%. 8
- **Final Verification Test END OF PROJECT GOAL**

1 – Approach – Risk Analysis

Description of Risk

Unable to fully characterize Low the fluid-bed operation

Uncontrolled emissions are Medium higher than anticipated

Projected cost of the retail High unit is higher than target value

Complex and intensive operation

Risk Level Mitigation Strategies

Leverage experience from similar/larger scale testing. B&W has identified fluid bed controlling variables to control larger industrial boilers.

Multiple emission control strategies could be implemented to reduce emissions.

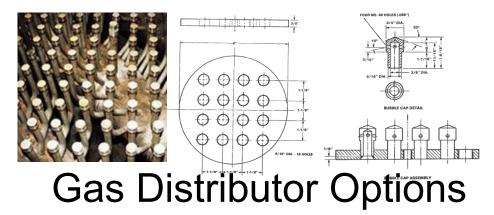
- Emissions could be further reduced by changes in the design of • the PM collecting device, recirculation, staging, cat converter.
- Assess options available for Industrial /Utility Markets

• Novel approaches e.g. catalytic bed material Develop strategies to reduce costs: material of construction, integrating sensors and removal of non-essential systems. Leverage technologies from the automotive/consumer industry. FOAK to Nth unit Cost Reduction.

labor- Medium Use modern proven sensor technology and automation protocols to reduce operational complexities

2 – Progress and Outcomes

Tasks Completed: Task 1, 2 and 3


BP3 Tasks Not Displayed

ACTIVITY	PERIODS
	1 2 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
Budget Period 1 Initial Verification	
Task 1.0 Verification	
Subtask 1.1: Initial Application Verification	
Budget Period 2 Prototype Design, Installation, Initial Testing and Supporting R&D	
Task 2.0: Preliminary Design and Lab Testing	
Subtask 2.1: Design Basis & Initial Market Assessment	
Subtask 2.2: Simulations & Cold Flow Model Study	
Subtask 2.3: Fluidized Bed Furnace Mechanical Design	
Subtask 2.4: Bubbling Bed Material Lab Testing and Analysis	
Task 3.0: Controls, Automation and Dynamic Operation	
Subtask 3.1: Electrical, Instrumentation and Controls Philosophy and Requirements	
Subtask 3.2: Dynamic Operation, System Analysis & Data Handling	
Task 4.0: Test Facility Detailed Design & Fabrication	
Subtask 4.1: Mechanical & Electrical Specifications Documents & P&IDs	
Subtask 4.2: HAZOP and Risk Analysis	
Subtask 4.3: Detailed Mechanical, Control and Instrumentation & Fabrication Drawings	
Subtask 4.4: Prototype Cost for Fabrication & Installation	
Subtask 4.5: Prototype Fabrication, Installation and Testing Schedule	
Task 5.0: Prototype Fabrication, Installation and Initial Testing	
Subtask 5.1: Prototype Fabrication and Installation	
Subtask 5.2: Startup / Shakedown Testing	
Subtask 5.3: Intermediate Validation	
Budget Period 2 Go/No-Go Decision Point	G

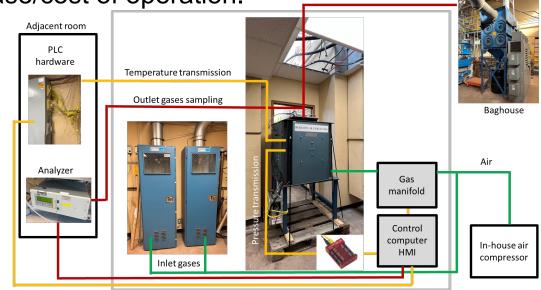
2 – Progress and Outcomes

- Preliminary Design of System & Mechanical Components

- Preliminary design: Evaluating alternate approaches and designs for the different sections
 - Fluidization Calculations and Hydrodynamics
 - Design Bed Material and alternate materials at hot and cold conditions
 - Sizing of the Combustor
 - Gas Distributor Design Options
 - Air Staging: Overfire Air Design Options
 - Air Control and Flue Gas Recycle
 - Turndown
 - Emissions Control: Particulate
 - Heat exchange: Fluid-Bed / Walls / Convection Pass

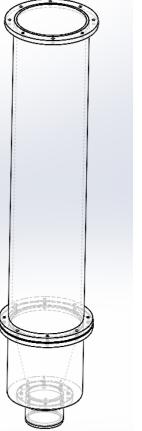
Size: 12 - 48 in	Type: AEL	Vertical	Connected in	i: 1 parallel	2 series
Surf/unit(eff.) 54.2	ft ² Shells/u			shell(eff.)	27.1 ft ²
	PERFC	DRMANCE OF ONE	UNIT		
Fluid allocation		Shel	I Side	Tul	be Side
Fluid name					
Fluid quantity, Total	lb/h	24	462	2	292.2
Vapor (In/Out)	lb/h	0	0	292.2	292.2
Liquid	lb/h	2462	2462	0	0
Noncondensable	lb/h	0	0	0	0
Temperature (In/Out)	۴F	100	152.83	1832	150
Bubble / Dew point	۴F	174.26 / 174.26	173.64 / 173.64	/	1
Density Vapor/Liquid	lb/ft ³	/ 61.282	/ 59.445	0.001 /	0.004 /
Viscosity	cp	/ 0.7005	/ 0.4359	0.0502 /	0.019 /
Molecular wt, Vap				29.13	29.13
Molecular wt, NC					
Specific heat	BTU/(lb-F)	/ 1.0804	/ 1.0863	0.3154 /	0.2548 /
Thermal conductivity	BTU/(ft-h-F)	/ 0.36	/ 0.377	0.05 /	0.015 /
Latent heat	BTU/lb				
Pressure (abs)	psi	6	5.91	1.08	0.9
Velocity (Mean/Max)	ft/s	0.05	/ 0.07	111.16	/ 228.86
Pressure drop, allow./calc.	psi	1.2	0.09	0.22	0.18
Fouling resistance (min)	ft²-h-F/BTU	0,0	001	0.0102	0.0107 Ao based
Heat exchanged 140891	BTU/h		MTD (co	rrected) 492.7	2°
Transfer rate, Service 5,27		Dirty 7.8	Cl	ean 8.59	BTU/(h-ft2-

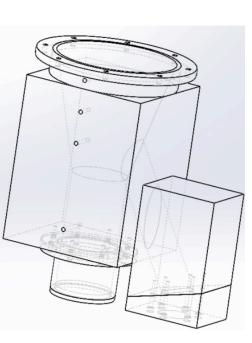
Heat Exchanger Sizing


COMBUSTION SYSTEM CAN MEET DESIRED DIMENSIONS FOR A RESIDENTIAL SYSTEM.

COMPACT AND MODULAR APPROACH.

SCALING OF SYSTEM IS FEASIBLE.


2 – Progress and Outcomes - Installation of Laboratory Hot Bench Scale Test Unit


- To perform screening and characterization testing
- Bed material in the fluidized bed.
 - Low-cost readily available bed materials
 - Engineered formulations that show potential of enhancing the combustion process (lowering emissions), reliability, and ease/cost of operation.
- System Modifications Design -Completed;
- Auxiliary System Built and connected;
 - Control System;
 - Gas Outlet to Baghouse;
 - Gas supply and Analysis;
 - Biomass Feeding System.
- Includes 2" Fluid Bed Reactor;

2 – Progress and Outcomes Fluid Bed Cold Flow Model

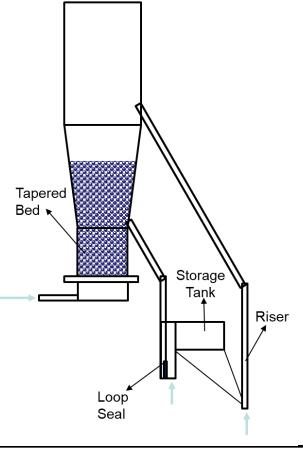
Assembly of Cold Flow Model Test Systems

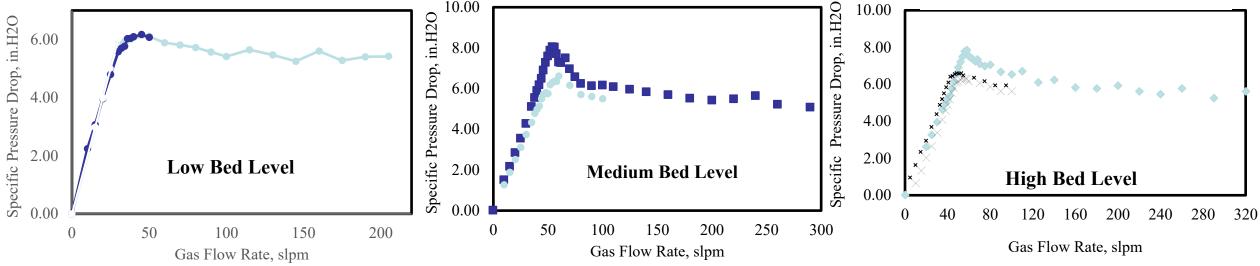
Turndown testing

• Testing to get design information on how we would operate the bed for desired turndown

Distributor Design

• Low cost, lower DP, reliable operation with required turndown, ash /material removal


ID Fan vs. FD Fan test

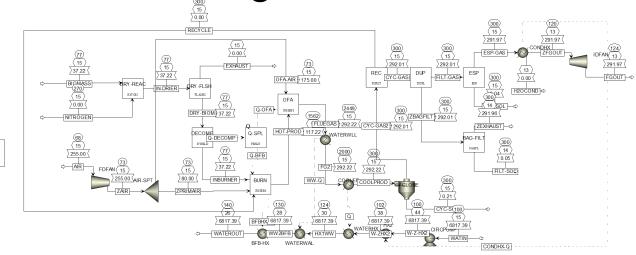

- Pressure Balance impact on fluidized bed medium and fuel.
- Implications on number of fans, infiltration, safety systems, operation

Demonstrated through analysis and cold flow model testing, the ability to control the combustions zone under transient conditions. Low-load operation to allow us to meet efficiency and emissions targets.

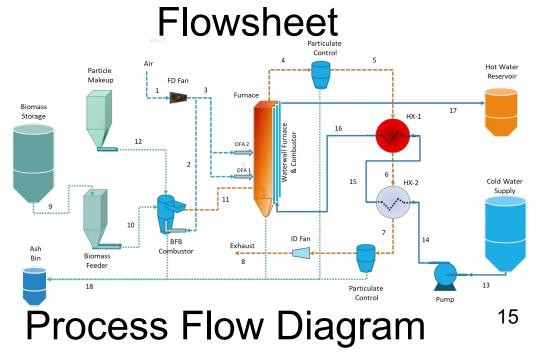
2 – Progress and Outcomes -Fluidized Bed Hydrodynamics

- Operational range of the fluidized bed reactor tested;
 - Bed Levels vs bed section adjustment
 - Different particles (sizes, densities);
 - Various gas flow rates;
- Suitable operational conditions obtained for two feasible design options;
- Pressure drop, bed volume fraction and pressure fluctuation measured.

2 – Progress and Outcomes - Process Design and Simulations


Passar (pai)

STEADY STATE MODELING


- •Developing and Detailing Process
- •Aspen Plus Simulation Heat and Mass Balance
- •B&W commercial proprietary tools
- TRANSIENT OPERATION
- Initial development of start-up, minimum-load, fullload operation, turndown, shutdown, and emergency process
- Milestone Dynamic Operation, Systems Analysis
 & Data Handling Report

PROCESS CAN BE DESIGNED TO MEET HIGH EFFICIENCIES >90%.

ANALYSIS USED TO SET DESIGN TO ACHIEVE HIGH TURNDOWN WHILE MEETING LOW EMISSIONS

Aspen Process Simulation

Baseline Performance Comparison and Target Emissions

Metric	Units	EPA Target	Stoker	BFB	Features to meet Target	Target Improvement
NOx	lb/MMBtu	Not regulated	0.18 - 0.28	0.15 - 0.24	Efficient combustion, O ₂ control, Air staging	14% to 16% Reduction
СО	lb/MMBtu	Not regulated	0.10 - 0.30	0.05 - 0.15	Efficient combustion, O2 control	50% Reduction
РМ	lb/MMBtu	0.10 to 0.15	0.10	NA	U-Beam / high-efficiency multiclone, efficient combustion	40% Reduction (0.06 lb/MMBtu)
Efficiency	% fuel basis		65 - 70	70 – 75	Operation, flue gas temp / O ₂ control, heat exchanger design	5% to 15%

Design, Modeling Outcome

Prototype Rating and Range of Operation

MASS BALANCE	Max	Nominal	Mid	Min
Thermal Input, Btu/hr	300000	250000	150000	75000
Thermal Input, kWth	87.92	73.27	43.96	21.98
Biomass Pellet heating Value (dry), BTU/lb	8730.00	8730.00	8730.00	8730.00
Pellet % Moisture	7.75	7.75	7.75	7.75
Biomass Pellet heating Value (as received), BTU/lb	8053.43	8053.43	8053.43	8053.43
Biomass Pellet Heating Value, kJ/kg	18732.27	18732.27	18732.27	18732.27
Biomass Input, g/s	4.69	3.91	2.35	1.17
Biomass Input, lb/hr	37.22	31.01	18.61	9.30
Ash Content, (wt%)	0.77	0.77	0.77	0.77
Atomic Carbon, (wt%)	51.26	51.26	51.26	51.26
Atomic Hydrogen, (wt%)	6.18	6.18	6.18	6.18
Atomic Nitrogen (wt%)	0.06	0.06	0.06	0.06
Atomic Sulfur (wt%)	0.01	0.01	0.01	0.01
Atomic Oxygen, (wt%)	41.72	41.72	41.72	41.72

Thermal Efficiency vs. Flue Gas Outlet Temperature

	Flue Gas Exit		Heat Output			
Scenario	Temperature				Efficiency	Notes
	٥F	°C	Btu/hr	kW	%	
А	140	60.0	271207	79.5	90.4	No Condensation
В	120	48.9	275832	80.8	91.9	Condensing Mode
С	110	43.3	282279	82.7	94.1	Condensing Mode
D	100	37.8	287285	84.2	95.8	Condensing Mode
E	90	32.2	291228	85.4	97.1	Condensing Mode

Electricals Instrumentation and Controls

Process & Instrumentation Diagrams

Note: In case of condensing water in the lass HX AREA 300° BIOMASS COMBUSTOR AND stage, we can locate the ID fan before the HX to HEATER push the gas to the last stage and to push hot gas for FGR. (PM) \$622 (62) 602 (60 Watchdog GPS OUTLET We May need to install a water spray to clear Hardware the condensing HX from particulates WATER SPRAY Vent Card (M)= E-Stop Heartbeat: 5V ID EAN Critical database Feedback Data (USB) Cloud OVERFIRE AIR Setpoint Amplifier Server Flame milivolt On/off FROM Т FUEL FEED 200 0,00) (P) pico 4-20 mA Client T-402 Data (USB) / 0-10 Analog Blower WiFi Signal Volts to Digital FIREBOX T-401 Reliable \bigcirc Self bootable PWM Relav Fast 0-5 Volt FROM AREA 700 Serial Display Acquire Data PUMP OUTLET to Send Data /Touch AC To Ash To Ash To Ash PWM Screen/Remote Handling 500 Handling 500 PARTICI F Handling 500 Display DRAIN Control FROM AIR SUPPLY 300: ZONE 1 /Touch DRAIN FROM AIR SUPPLY 300: ZONE 3 Screen/Loca **Provider Server: Pellets** FROM AIR SUPPLY 300: ZONE Control FROM AIR SUPPLY 300: ZONE FROM AIR SUPPLY 300: OFA-1 Residencial Biomass Heate FROM AIR SUPPLY 300: OFA-2

BUILT IN SENSORS, INSTRUMENTATION & CONTROLS WILL ALLOW NEEDED AUTOMATION NEEDED TO BRING FLUIDIZED BED INTO THE RESIDENTIAL MARKET.

Controls System Architecture

2 – Progress and Outcomes - Milestones

Number of Task, Milestone, Go No/Go Decision Points	Title - Tasks, Subtasks, Milestones, Deliverables, Go No/Go Decision Pts	
1	BP1 Verification Milestone	\checkmark
Go/No-Go	Go/No-Go Decision Point	\mathbf{Y}
2	Design & Market Basis Milestone	\checkmark
2	Preliminary Design and Lab Testing Milestone	\checkmark
3	Electrical and Controls Philosophy and Requirements Milestone	\checkmark
3	Dynamic Operation & System Analysis Milestone	\checkmark
4	Mechanical and Electrical Specifications Milestone	
4	HAZOP and Risk Analysis Milestone	
4	Comprehensive Project Review: Detail Design, Cost and Fabrication Schedule Milestone	
5	Prototype Installation Summary Milestone	
Go/No-Go	Go/No-Go Decision Point -Intermediate Validation Point	

 Budget Period 1 & 2 Milestone
 Deliverables Shown in Table

BP3 – Not Shown

3 – Impact

- Introducing a novel approach to Residential Wood Heating using Fluidized Bed Technology
- Meet future PM and Efficiency targets and Reduce other emissions such as NOx / CO:
 - Fluid-bed operation improves air/fuel mixing, increases heat transfer which results in more complete fuel combustion.
 - Transients lead to the greatest emissions in current state of the art systems Thermal Inertia of the fluid-bed helps maintain lower emissions during transient operation
 - Fluid bed uncontrolled NOx, CO and VOC emissions are typically 10% to 25% less for a given biomass fuel than for a stoker
- Fuel flexibility: An added benefit is the ability to use a wider selection of renewable fuels.
- Overcome challenges associated with operational complexity of fluidized bed systems via automation.

3 – Impact

- The team includes a commercial/industrial partner and supplier of biomass combustion systems
 - Commercialization path includes potential to supply products directly
 - License IP to third party suppliers of Biomass heaters
- The team has put in place an IP Management Plan.
- Graduate students and post-doc researchers of diverse backgrounds are gaining experience in design, operation and prototype testing
- Team will continue to disseminate information via presentations including poster sessions and future publications
- An Industrial Review Committee to provide further input and guidance on the development approach and commercialization plan

Summary

- Project promotes the clean use of biomass fuels making new heaters significantly cleaner and improving the air quality in communities where people burn wood for heat.
- Allow the introduction of a technology that has proven superior performance and flexibility from competing system at industrial and utility scale
- Imbedded modern low-cost sensors and microprocessors to achieve automation objectives
- Design and Simulation efforts demonstrate that the design can meet desired performance and achieve aggressive targets for emissions control and efficiency
- A prototype will be built to demonstrate the benefits and allow introduction of a renewable fuel-based heating solution for residential applications
- The development of the technology has other potential marketable applications
- Automation, Advanced Control and Data Monitoring Features,
- Emissions Control
- Alternate Fuels
- Drying, heating and energy transfer applications

Quad Chart Overview

Timeline 10/01/2020 12/31/2024 			Project Goal Design, construct and test a low-emission and efficient residential wood-fired central heater based on the novel application of bubbling fluidized-bed (BFB) technology.	
	FY22 Costed	Total Award	End of Project Milestone Perform final verification test and assess whether project targets were achieved	
DOE Funding	(10/01/2021 – 9/30/2022) \$271,160	(negotiated total federal share) \$2,431,050	Project target reducing particulate emissions by at least 25% from the EPA 2020 target of 0.1 lb/MMBTU heat output and increasing efficiency by 5-15% above the baseline.	
Project Cost Share *	\$84,608	\$607,773	FOA: DE-FOA-0002203, Topic Area 5, 2020	
TRL at Project Start: 4 TRL at Project End: 6			 Project Partners The Babcock & Wilcox Company The Ohio State University 	