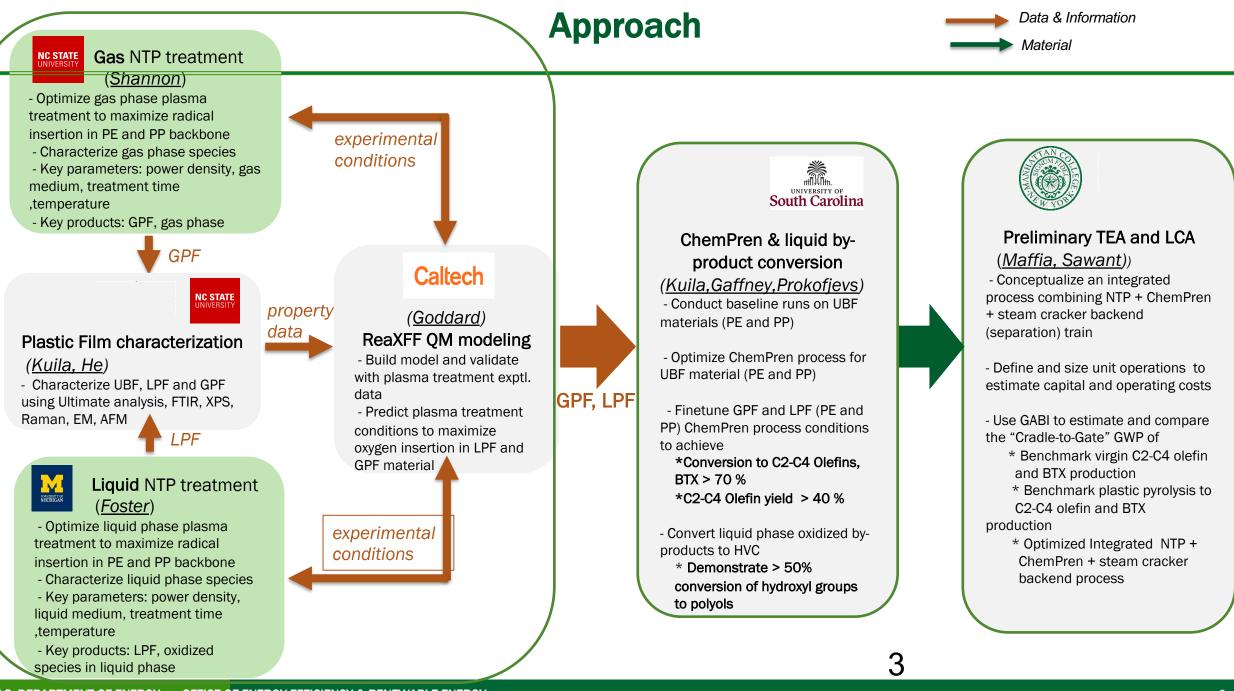
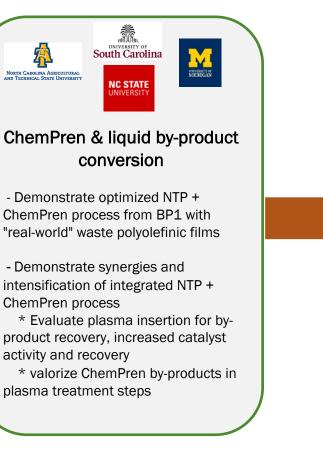
Catalytic Deconstruction of Plasmatreated Single-Use Plastics to Valueadded Chemicals and Novel Materials

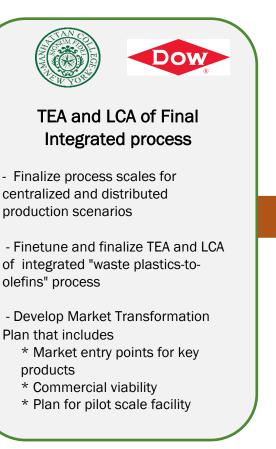
Principal Investigator: North Carolina Agricultural & Technical State University (NCAT)

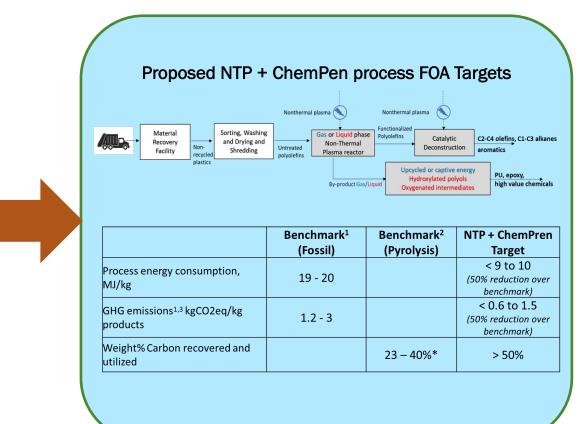

Key Partners: North Carolina State University (NCSU), University of Michigan (UM), Caltech, Dow Chemical

Consultants: U of South Carolina (USC), Manhattan College (MC)

PI: Debasish Kuila, PhD


Proposed Total Project Cost: \$3,124,993.00 Proposed Project Duration: 3 years


 Application of non-thermal plasma (NTP) to functionalize polymer backbone by oxidation/hydroxylation and thereby activate subsequent low temperature selective chemical deconstruction of waste polyolefins to monomers, high value chemicals and polymers.



U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

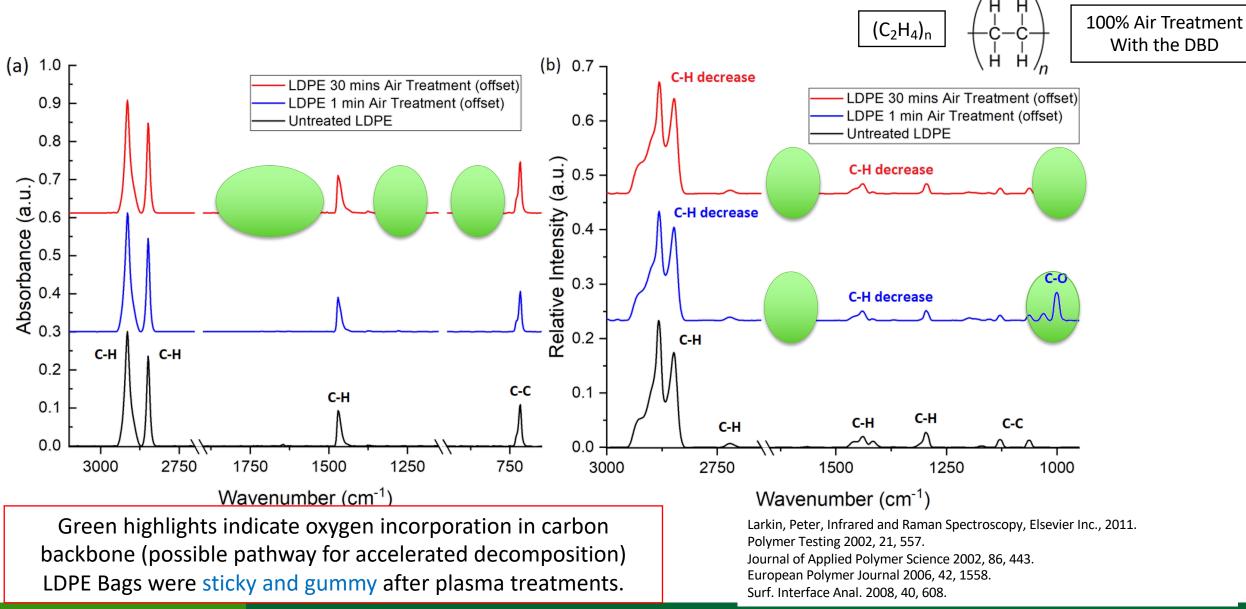
Approach contd..

Challenges

- Degree of oxygenation of plastics using plasma both in the gas and liquid phases through experiments and modeling.
- Catalytic Deconstruction (ChemPren) of modified plastics to yield higher % of C2-C4 olefins.
- TEA- Techno economic analysis to make this process more competitive over other processes

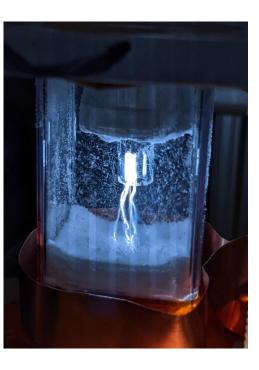
Communication and Collaboration

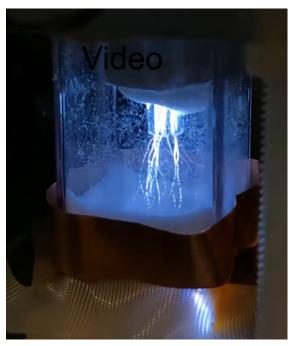
- Weekly, monthly, and annual meetings with the full team including Advisory Board will be scheduled to review priorities, cross-discipline issues, and shortversus long-term needs.
- Periodic reports of technical and financial progress are sent to DOE Technology Manager and Technical Project Officer.
- Internal verifications and discussions will be continued.
- The entire team will meet in person at least once per year or in a virtual conference to allow graduate students and postdocs to participate in the discussions and present their work.


Diversity, equity, and inclusion

- Improve transparency and clarify procedures to grow diversity by promoting unconscious biases in staffing and research
- Research team members will attend/acquire equity and inclusion training to develop strategies and approaches to alleviate communication barriers and unconscious biases.
- Grow pipeline of students, postdocs, and faculty from underrepresented minorities (URMs) and women
- Support and mentor at least 3 undergraduate students, 5 graduate students, and 1 postdoc fellow in year 2 and year 3 (URMs)

2 – Progress and Outcomes – key milestones

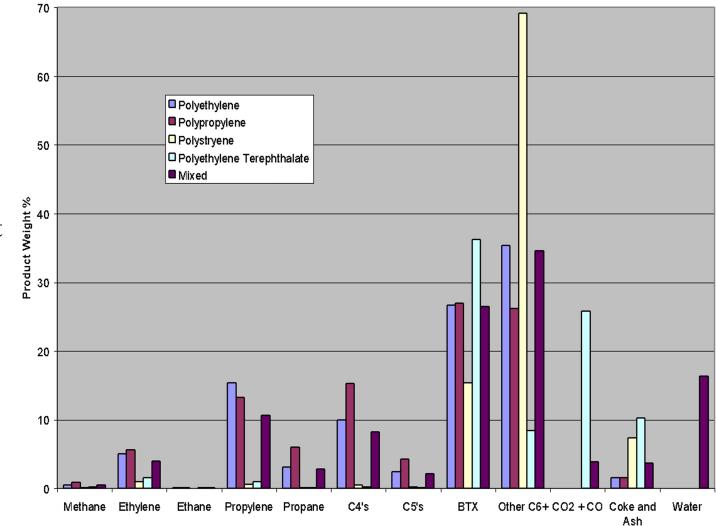

- Status of the project -1st year; 2nd quarter
- Initial verification by NREL completed in February, 2023
- Demonstrate >10% polymer structure modification using liquid phase plasma treatment (M6) to increase selectivity and yield to target products using ChemPren.
- Use ReaxFF reactive force field to predict non-thermal plasma induced bond breaking reactions for PE and PP and following reaction intermediates to target products. (examine the role of O₃ and OH radicals)


Low-density Polyethylene (LDPE) Treated with DBD Plasma (Shannon, NCSU)

Liquid Phase Plasma-PP, ~300 um (UMich)-Fluidized Bed Reactor

PP sticks to walls more than the other polymers (shown before experiment)

PP 100 ns, 1 kHz, 18 kV, 5 scfh fluidizer, 10 scfh jet PP 100 ns, 1 kHz, 14 kV, 5 scfh fluidizer, 10 scfh jet Note discharge under fluidizer


Current Status at NC A&T

- A ChemPren Reactor for plastic deconstruction- To be assembled(4/23)
- To ensure no delay from plasma treatment of plastics to catalytic deconstruction setup, a Non-thermal DBD plasma reactor is to be setup at NCA&T (using parameters developed at NCSU) 3/23
- Contact angle measurement setup (to determine change of surface properties) is being procured.
- 2 PhD students working on this project (NC A&T)
- Catalysts-ZSM-5 with Si/Al ratio of 250 and 25,impregnated with 10% Co and 10% Cr have been prepared.

Fluid Bed Results- PP, PE, PS, PET- mixed Plastics

- 1 mm pieces of plastic either mixed with catalyst before heating or dropped into fluidized catalyst at reaction temperature

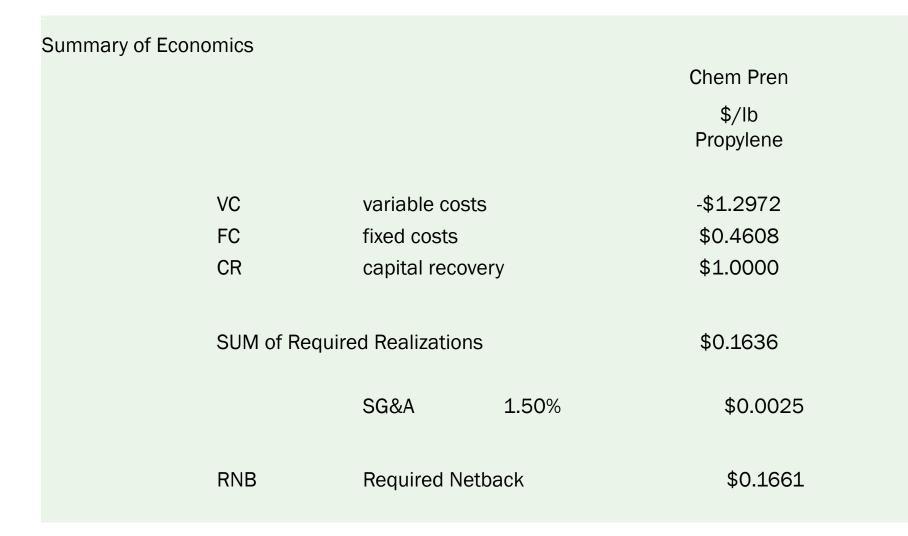
- -15 % ZSM-5 fluid catalyst
- 1" diameter reactor
- Turbulent flow
- Residence time 1 s
- Cracking step takes 1 minute

The mixed plastic feed was comprised of 50 wt% polyethylene, 20 wt% polypropylene, 15 wt% polystyrene, and 15 wt% polyethylene terephthalate, representative of typical post-consumer plastic waste.

12

Improvements to the ChemPren TEA via the processing improvements

Specific key performance parameters to be tracked through the lifetime of the project that will show progress toward your targets


Yield slate, especially relative to ethene, propene and butenes; for example yields from the TCD of polypropylene currently at 36%

		yields	WT%	NORMALIZE	
16	CH4	C1	1	0.96339114	
28	C2H4	C2=	6	5.78034682	
30	C2H6	C2	0.2	0.19267823	
42	C3H6	C3=	13.5	13.0057803	
44	C3H8	C3	6.5	6.26204239	
56	C4H8	C4	16	15.4142582	
70	C5H10	C5	4	3.85356455	
78	C6H6	B	6.825	6.57514451	
92	C7H8	Т	13.65	13.150289	
106	C8H10	Х	6.825	6.57514451	
98	C7H14	C7	27.3	26.300578	
12	С	C SUM	2 103.8	1.92678227 100	

Noteworthy:

- 1. Carbon at 2%; used in the heat balance
- 2. Less acetylenes and diolefins
- 3. Significant BTX (27%)
- 4. Significant C6-C8 non-aromatics
- 5. C2-C4 mono-olefins, including ethene and propene at 20%
- 6. This stream can be interfaced with the reactor effluent from liquids cracking plant.

COP: Summary Cost of Production

3-Impact (advantages-Why Important?)

- Pyrolysis and gasification are the current state-of-the-art feedstock technologies to convert waste plastics to olefin feed stocks.
- This project aims to specifically address the current problems with low carbon efficiency and low energy efficiency.
- Direct application of electrons to functionalize polymer backbone with tolerance to hybrid mixtures of plastics; minimizes separation
- Breakdown of organic contaminants and additives by plasma
- Use of renewable power as compared to thermal cracking with cogeneration of high value products

Near Future Plans

- Build the ChemPren and Plasma set-ups at NC A&T
- Complete initial characterization of oxygenated PP and PE from Gas (NCSU) and Liquid Phase (UMich) Plasma treatment with input on modeling using ReaxFF MD.
- Do QM on model systems to resolve discrepancies (Caltech).
- Compare ReaxFF to QM for PE, PP, etc. and adjust if necessary (Caltech).
- Start Catalytic Deconstruction experiments with NTP-treated plastics and initiate TEA.

Final Verification: GNG (Go/No-Go decision)

NTP= Non-thermal Plasma

• Energy consumption of the NTP + upcycling process is more than 50% less compared to fossil olefins.

• Carbon utilization is > 70%; much higher than traditional plastic decomposition routes (58% for pyrolysis).

• The yield to C2-C4 olefins is > 40% (higher than 27% reported for pyrolysis).

Quad Chart Overview

*Only fill o 8-01-2	ut if applicable.		Project Goal		
	1-2025		Cost-effective production of olefins and value added materials from single-use plastics		
	FY22 Costed	Total Award	End of Project Milestone Develop a Technology-to-Market Plan		
DOE Funding	(08/01/2022 - 07/31/2025)	(negotiated total federal share) \$3,124, 993	Funding Mechanism DOE-FOA -2473.		
Project Cost Share *	\$624,999		Project Partners*		
TRL at Project Start:2 TRL at Project End: : 3			 Partner 1 UMich Partner 2 – NCSU Partner 3 : Caltech Partner 4: Dow Chemical 		

- DOE-EERE- for support
- Thank you
- Any questions??