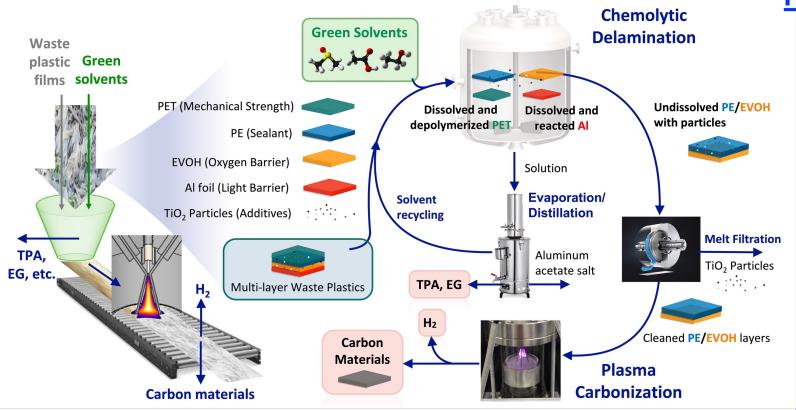
DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Integrated Chemolytic Delamination and Plasma Carbonization for the Upcycling of Single-Use Multi-layer Plastic Films

April 5th, 2023 Plastics Deconstruction and Redesign

Hsi-Wu Wong¹, Wan-Ting (Grace) Chen², Juan Pablo Trelles³, Gregg Beckham⁴, and YuanQiao Rao⁵

¹Department of Chemical Engineering, University of Massachusetts Lowell ²Department of Plastics Engineering, University of Massachusetts Lowell ³Department of Mechanical Engineering, University of Massachusetts Lowell ⁴National Renewable Energy Laboratory, ⁵Dow



This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Technology Summary: An integrated chemolytic delamination–plasma carbonization process to upcycle multilayer waste plastic films with heterogeneous compositions into high-value chemicals (TPA, EG), carbon materials (e.g., carbon black), and hydrogen

Project Team:

PI: Hsi-Wu Wong (UML Chemical Engineering) Process scalability, kinetics

Co-PI: Wan-Ting (Grace) Chen (UML Plastics Engineering) *Film delamination*

Co-PI: Juan Pablo Trelles (UML Mechanical Engineering) *Plasma carbonization*

Co-PI: Gregg Beckham (NREL) LCA/TEA

Cost share: Dow, HP Indigo

Project Overview

BETO's Single-Use Plastic Recycling (SUPR) FOA Goals (Topic Area 1):

- 1) Development of recycling and upcycling pathways for plastic films that are *economically favorable*, *lower green house gas (GHG) emissions*, and *reduce the embodied energy of plastics*
- Proposed work should demonstrate an advancement in at least one aspect of the recycling/upcycling supply chain that leads to *improved economics*, *reduced greenhouse gas* (GHG) emissions, energy savings, and retained carbon

BETO Requirements:

- 1) Techno-economic analysis (TEA) and life cycle assessment (LCA)
- 2) A relevant state of the art must be identified
- 3) A salable product with expected market size and include an estimate of economic viability
- 4) Scalability of the process
- 5) Process on a real recycling stream

Project Overview

Project Objectives:

- 1) Safe solvents and optimized reaction conditions for selective delamination and depolymerization of single-use plastic films with high product (TPA, EG) yields
- 2) Optimal plasma carbonization conditions for carbon utilization and hydrogen production
- 3) Integration, kinetics, and scalability of the process
- 4) Economic and life cycle outcomes of the process that meet the performance targets

End-of-Project Goals:

- 1) > 80% PET conversion to TPA
- 2) > 95% TiO₂ particle removal by melt filtration
- 3) > 90% carbon recovery from PE/EVOH by plasma carbonization
- 4) Carbon materials of > 97% carbon mass fraction
- 5) Meet overall economic and environmental metrics
- 6) Demonstrate a bench-top process at a rate of > 100 cm² film/hr

Overall Technical Objective: Upcycle single-use multi-layer waste plastic films with heterogeneous compositions by integrating chemolytic delamination (*more substrate specific*) and plasma carbonization (*less substrate specific*) to into high-value chemicals (TPA, EG), carbon materials (e.g., carbon black), and hydrogen

Key Technology Features: (1) Capable of treating a wide range of different compositions, (2) producing high-value products, (3) using environmentally benign solvents, and (4) scaling modularly for small-scale, distributed manufacturing

Project Technical Tasks:

- V1) Initial verification (All)
 - 2) Selective chemolytic delamination (Chen)
 - 3) Plasma carbonization (Trelles)
 - 4) Chemical kinetics and process scalability (Wong)
 - 5) Technoeconomic analysis and life cycle assessment (Beckham)
 - 6) Bench-top reactor system and process demonstration (All)

Diversity, Equity, and Inclusion Tasks

1) **Diversity**:

- Micro-aggression bystander training (50% of project personnel by Q2 and 90% by Q6)
- Summer camps for high school students from underrepresented groups (Q5 and Q9)

2) <u>Equity:</u>

- Outreach activities for greater Lowell underserved communities (Q2, Q6, Q10)
- RHSA events for first-generation college students (Q3, Q7, Q11)
- Special lectures for learning-disabled students (Q4, Q8, Q12)
- **3) Inclusion:** (50% of project PIs from underrepresented groups by Q2, 25% and 40% of project personnel from underrepresented groups by Q6 and Q10, respectively)

Potential Challenges and Mitigation Strategies

- 1) Insufficient solvent and catalyst reactivity, causing low TPA yields from PET decomposition
 - Plan 1: A less safe solvent and/or more expensive catalyst for higher reactivity
 - <u>Plan 2:</u> Separating the delamination and chemolytic steps into two operations
 - <u>Plan 3:</u> Carbonizing delaminated layers with partial chemolysis or without chemolysis
- 2) Lower than satisfactory quality of the carbon materials made by plasma carbonization
 - Plan 1: Microwave or transferred arcs plasma sources for higher energy outputs (but generally lower energy efficiency due to excessive heating)
 - <u>Plan 2:</u> Stepwise plasma processing for different surfaces and materials
- 3) Challenges in modular scaling due to volume scalability of certain operations
 - Plan 1: Process integration by combining both modular (scaled by area) and conventional (scaled by volume) operations
 - Plan 2: Splitting the reactors into several smaller reactors, with a smaller overall volume

Budget Period 1 (BP1) Go/No-Go (GNG) Milestones through Q7 (M21)

- 1) Experimental data of chemolytic delamination treating model multi-layer films showing > 80% TPA and EG mass yields and > 90% aluminum acetate mass yield
- Experimental data of plasma carbonization treating model films showing > 90% carbon mass fraction in treated solid samples
- Apparent reaction kinetics for both chemolytic delamination and plasma carbonization that can model experimental data with R² higher than 0.95
- 4) TEA and LCA estimations of the baseline scenario showing that the technology can achieve 30% of target performance
- 5) Design and engineering drawings of the bench-top reactor system
- 6) The evidence of completion of all DEI milestones

Task 1: Initial Verification

Task Objectives:

- 1) Verify the team's data, performance metrics, baseline and targets as described in the original application
- 2) Establish a framework to evaluate and track progress over
- 3) Provide data in the Technical Datasheets
- 4) Identify potential major showstoppers and discuss risk mitigation strategies
- 5) Align project goals with DOE's expectations

Major Accomplishment:

Project baseline against which future performance and cost improvements was discussed, iterated, and finally set

Milestone:

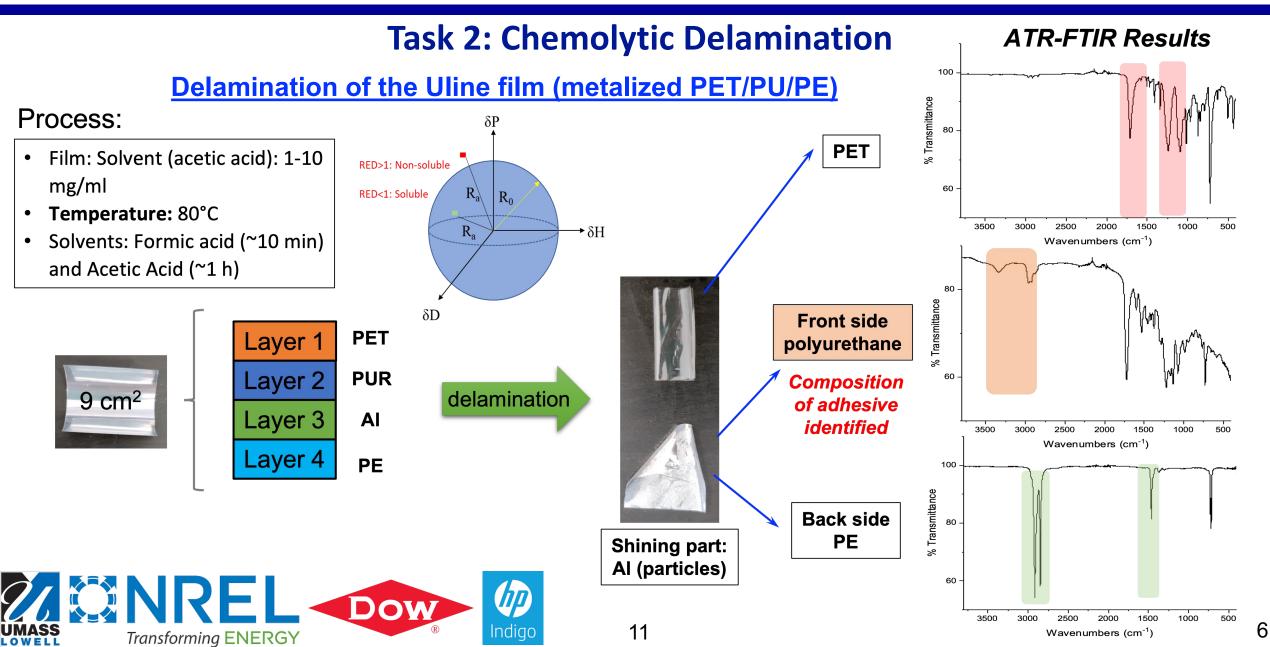
Experimental procedures demonstrated and data and assumptions confirmed (met)

Task 2: Chemolytic Delamination

Task Objectives:

- 1) Select safer solvents for model film delamination
- 2) Select proper catalysts for model film chemolysis
- 3) Process commercial-grade multi-layer plastic films

Major Accomplishment:


Two solvents (formic acid and acetic acid) that can fully delaminate a multilayer model films (metalized PET/PU/PE) at mild conditions (70–80°C and 1–2 h) were identified

Milestones:

- 1) > 3 safer solvents or blends with delamination of PET and Al of > 95% by area (*in progress*)
- 2) > 1 catalyst converting delaminated PET into TPA and EG with > 80% yield (future)
- 3) Process commercial-grade films achieving the same metrics (future)

Task 3: Plasma Carbonization

Task Objectives:

- 1) Construct plasma reactors and parameter characterization
- 2) Carbonize model polyethylene (PE) and ethylene vinyl alcohol (EVOH) films
- 3) Carbonize commercial-grade films

Major Accomplishments:

- 1) Completed design of plasma carbonization reactor (construction 80% complete)
- 2) Implemented spectroscopic diagnostics estimate parameters for chemical kinetics model
- 3) Treatment of bulk LDPE using latest set-up led to peak yield of 20 mmol/h of H₂

Milestones:

- 1) > 2 hours of continuous and a total of > 50 hours of operation of the reactors (*in progress*)
- 2) > 90% carbon mass in treated solid samples (future)
- 3) > 90% carbon recovery by mass and > 97% of carbon mass in treated solid samples (future)

Task 3: Plasma Carbonization

Reactor design and characterization

2.2

2.0

1.8

Temperature (eV) 1.6 1.7 1.7

1.0

0.8

Electron 4

Indigo

10 15 20

10 15 20

16 -^{X10¹¹}

25

25

30 35

rms Power (W)

40

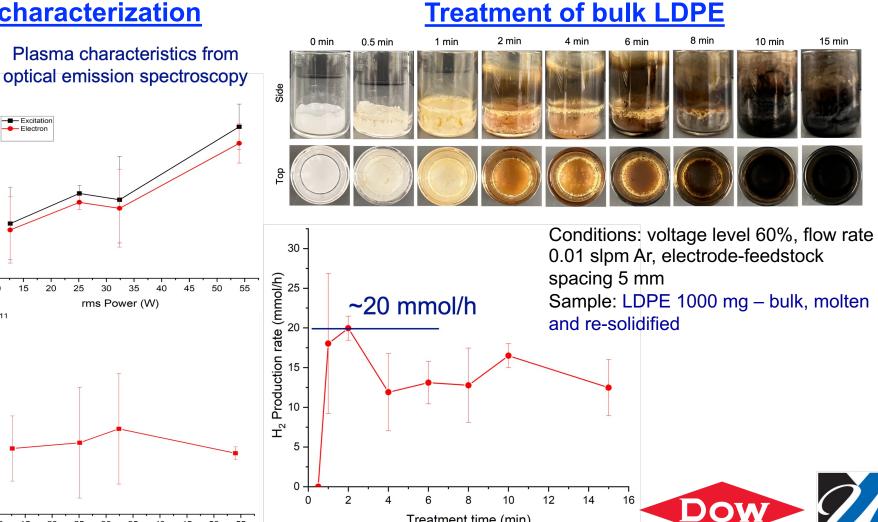
45 50 55

13

30

---- Excitation Electron

Electrode


Outflow

Transforming ENERGY

plasma

Inflow

Feedstock

Treatment time (min)

Learning with Purpose

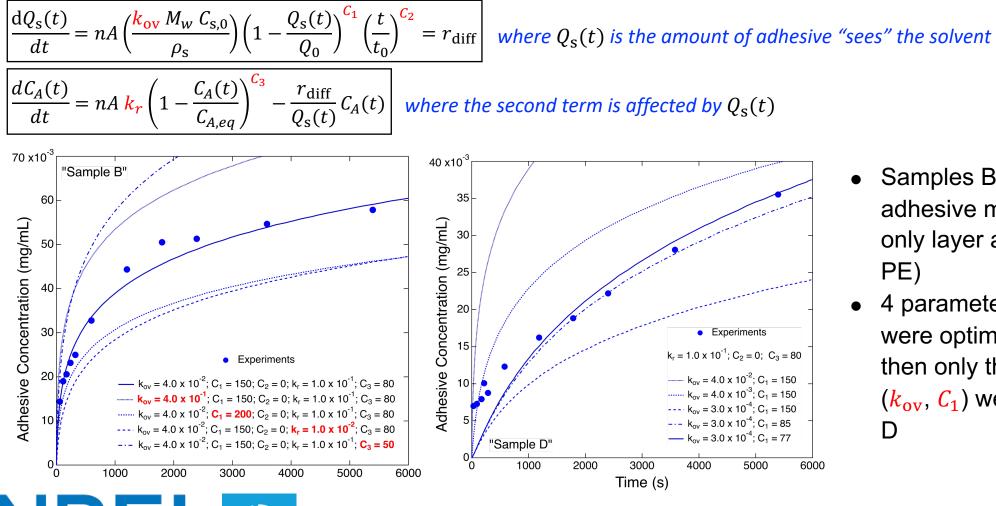
Task 4: Process Scalability

Task Objectives:

- 1) Determine kinetics of non-catalytic/chemolytic delamination and plasma carbonization
- 2) Determine the scaling law of non-catalytic/chemolytic delamination and plasma carbonization
- 3) Determine overall process scalability

Major Accomplishment:

A first apparent kinetic model for non-catalytic delamination describing relevant physical phenomena that can fit published experimental data


Milestones:

- Apparent kinetic models for non-catalytic/chemolytic delamination and plasma carbonization (<u>in</u> <u>progress</u>)
- 2) Scaling laws describing non-catalytic/chemolytic delamination and plasma carbonization (future)
- 3) Quantitative scaling law of the overall process (future)

Task 4: Process Scalability

- Samples B and D share the same adhesive material (SB-PU) the only layer attached (transparent PE)
- 4 parameters (k_{ov}, C₁, k_r, C₃) were optimized for Sample B, then only the diffusion parameters (k_{ov}, C₁) were varied for Sample D

Experimental data: Ügdüler et al., Resources Conserv. Recycl., 2022, 181, 106256

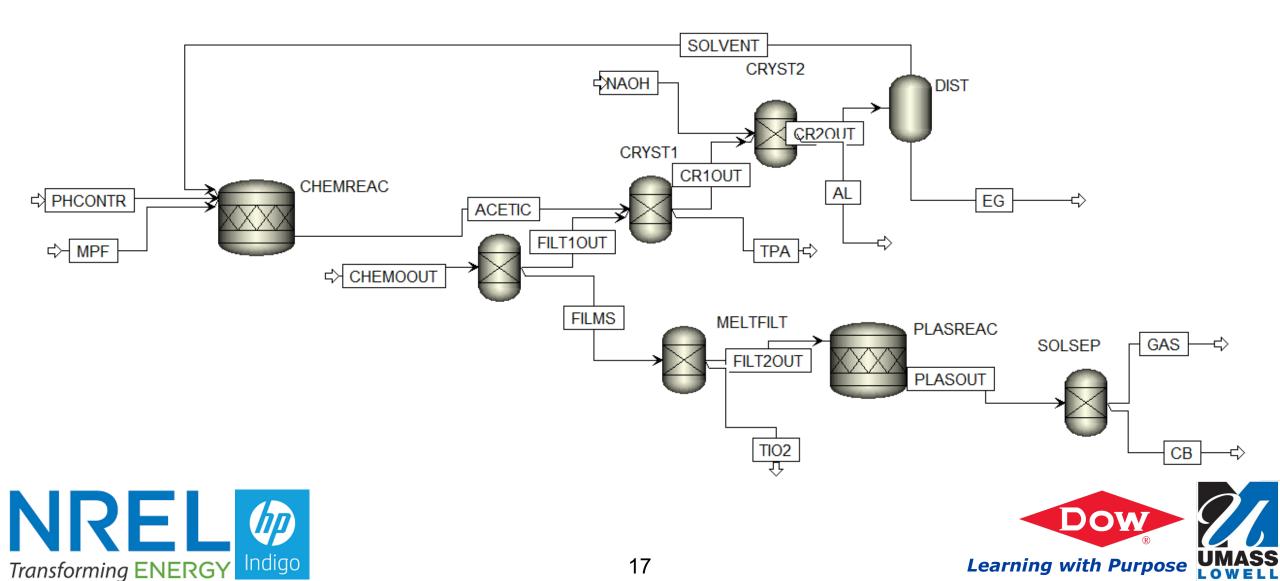
Task 5: Life Cycle Assessment (LCA)/Techno-economic Analysis (TEA)

Task Objectives:

- 1) Establish and analyze baseline process scenarios
- 2) Conduct sensitivity analysis of process parameters

Major Accomplishment:

A first draft process diagram via Aspen Plus


<u>Milestones</u>:

- 1) First TEA and LCA frameworks predicting economic and environmental impacts (*in progress*)
- 2) Quantitative descriptions of factors affecting process economic and environmental performances (future)

Task 5: Life Cycle Assessment (LCA)/Techno-economic Analysis (TEA)

Task 6: Bench-top Reactor System

Task Objectives:

- 1) Reactor system design and fabrication
- 2) Reactor system testing

Major Accomplishment:

None

Milestones:

- 1) Reactor design in CAD drawings (future)
- 2) Fabrication of the bench-top reactor system components and assembly (future)
- 3) Demonstration of the bench-top reactor system to achieve the target project metrics (future)

Diversity, Equity, Inclusion Milestones

Current Task, Timeline, and Upcoming Milestone:

<u>Milestone D.1:</u> 50% of project personnel trained by micro-aggression bystander training (<u>met</u>) <u>Milestone E.1:</u> Outreach activities for greater Lowell underserved communities (<u>met</u>)

Introduction of plastic recycling (by Co-PI Chen) to the Lowell High School students

Milestone I.1: 50% of project PIs from underrepresented groups (met)

3 – Project Impacts

Technology Impacts:

- A new paradigm to produce high-value chemicals and advanced materials
- Distributed waste upcycling for local economic growth and resiliency
- New jobs and revenue streams for the waste and materials recycling
- Decreased landfill and environmental release of single-use plastic films
- Reduced environmental exposure of hazardous materials
- Lower greenhouse gas emissions and pollutants

DEI Impacts:

 Support and engage underrepresented students in STEM and outreach to underserved communities in Massachusetts

Result Dissemination:

- Peer-reviewed publications, national and international conferences, and outreach activities

Summary

- 1) An **integrated chemolytic delamination–plasma carbonization process** is being developed to upcycle multi-layer waste plastic films, with key technical objectives to:
 - Treat a wide range of different compositions
 - Produce high-value products (e.g., plastic monomers, carbon materials)
 - Use environmentally benign solvents
 - Scale modularly for small-scale, distributed manufacturing
- 2) The diversity, equity, and inclusion (DEI) plan aims to support and engage **underrepresented** students in STEM and underserved communities in Massachusetts
- 3) Major project accomplishments to date:
 - Two safer solvents for film delamination were identified and examined
 - A plasma carbonization reactor was designed and assembled
 - An apparent kinetic model for non-catalytic delamination was developed and tested
 - DEI milestones were met

Quad Chart Overview

Timeline 7/01/2023 – 6/30/2025			Project Goal The overall technical goal of the project is to develop and demonstrate an integrated chemolytic delamination—plasma carbonization process for the robust upcycling of
	FY22 Costed	Total Award	 chemination plasma carbonization process for the robust apcycling of single-use multi-layer waste plastic packaging films with heterogeneous compositions End of Project Milestones (1) A bench-top process that is capable of upcycling real-world multilayer films consisted of at least 3 out of 5 target constituents (PE, PET, EVOH, Al, and TiO₂) at a feed rate of > 100 cm² film/hr, with > 80% PET conversion, > 95% TiO₂ particle removal, > 90% carbon recovery from PE and EVOH by mass and produced carbon materials of > 97% carbon mass fraction. (2) TEA and LCA results showing that the proposed technology satisfies the metrics (3) Quantitative expression of overall scalability of the process
DOE Funding	(7/01/2022 – 9/30/2022) \$5,546	(negotiated total federal share) \$1,600,276	
Project Cost Share	\$36,439	\$675 <i>,</i> 095	Funding Mechanism Single-Use Plastics Recycling (SUPR) FOA, DE-FOA-0002473, 2021
			Project Partners National Renewable Energy Laboratory, Dow HP Indigo Labels and Packaging (materials supplier)

Additional Slides

