

Transforming ENERGY

BETO 2023 Peer Review

Biochemical Pilot Scale Support and Process Integrations WBS#: 3.4.2.201

April 5, 2023 Systems Development and Integration

Dan Schell NREL

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Biochemical Pilot Plant (38-year-old facility)

- Biomass conversion to biofuels/biochemicals
- Multiple expansions have occurred over the years

High Level Project Goal: Provide a **well-maintained and process-relevant, engineering-scale pilot plant** for process development and technology verification.

- What: Maintain pilot plant meeting data/quality needs and generate process-relevant material for bench-scale R&D
- **How:** Effectively use available resources to maintain functionality and safety
- Why: Provide a facility for pilot-scale process development and scale up for BETO and industry
- **Risk:** Inopportune equipment failures; maintaining effective resource use when executing multiple projects

This is not a research project, nor do we perform business development activities with project funds.

1985: First pilot plant, cellulose hydrolysis

1994: First integrated pretreatment/SSF fermentation process and added labs

2010: Multiple integrated process trains, high-solids enzymatic hydrolysis

Biochemical Pilot Plant

North High Bay (NHB, 1994)

- Integrated 1 t/d process train
- Feed handling through product separation
- Utilities and emission control systems

South High Bay (SHB, 2010)

- Integrated 0.5–1.0 t/d process trains
- Feed handling through high-solids enzymatic hydrolysis
- Some separations equipment
- Room for expansion

IBRF Facility

Approach-Plant Maintenance and Upkeep (M&U)

[†]Generally, this work are project milestones defined yearly

*Supervisory Control and Data Acquisition System NREL | 5

Documentation Examples

	IBRF Biochemical Pilot Plant Operating Procedure	
Procedure Title	Effective Date	Supersedes
90-L Paddle Reactor	11/6/2019	1/1/2013
	Author: J. Shekiro	Reviewer: M. Fowler

Significant Hazards or Safety Considerations

Specific hazards unique to this operation <u>include</u>: chemicals, electrical, rotating parts, and high pressures and temperatures. Operation of this equipment is covered under the pilot plant's SOP (0480).

Unique hazards-None

Emergency shutdown: Turn the agitator switch to the OFF position. Close HV-1250-1 to block the low-pressure steam supply to the paddle reactor jacket.

Prerequisites

- · Ensure that the area and reactor are safe for operation.
- Confirm that the reactor has not been modified from the configuration the operators have been trained on.

Operating Procedure

1. Loading the reactor

- 1.1. Ensure the paddle reactor (PR) is upright.
- 1.2. Open the reactor vent (HV-1250-3)
- 1.3. Verify that there is zero pressure in the reactor (PI-1250-2)

Equipment Specific Operating Procedures

Documentation Examples

	IBRF Biochemical Pilot Plant Operating Procedure		
Procedure Title	Effective Date	Supersedes	
90-L Paddle Reactor	11/6/2019	1/1/2013	
	Author: J. Shekiro	Reviewer: M. Fowler	

Significant Hazards or Si

Specific hazards unique pressures and temperat SOP (0480).

Unique hazards-None

Emergency shutdown: T the low-pressure steam

Prerequisites

- Ensure that the a
- Confirm that the have been traine

Operating Procedure

1. Loading the reactor

- 1.1. Ensure the par
- 1.2. Open the read
- 1.3. Verify that the

	IBRF Biochemical Pilot Plant Lockout/Tagout Procedure		
NATIONAL RENEWABLE ENERGY LABORATORY			
Procedure Title	Effective Date	Next Review Date	
LHR Plug Screw Feeder	10/7/2019 10/7/2020		
	Author: C. Gunther		

Procedure Purpose

To securely isolate steam and electrical from the plug screw feeder (PSF-2221) prior to its removal. This procedure isolates steam from all components of the Large Horizontal Reactor (LHR) system.

Prerequisites

- The reactor system is in standard shutdown condition.
- All requirements of the NREL LO/TO Program must be followed.
- Notification of this LO/TO must be given to affected workers.
- The P&ID for this equipment has been reviewed for any additional energy sources not covered in this procedure. This procedure must be updated if necessary.
- This equipment has been inspected for any <u>additional</u> energy sources not covered in this
 procedure. This procedure must <u>be updated</u> if necessary.

Procedure

- Close and LO/TO the <u>high pressure</u> steam manual isolation valve (HV-2200-35) to R-2200 Verify Zero Energy: Set pressure <u>set-point</u> on Green Fisher valve to 50 <u>psig</u> or greater and verify that line pressure is equal to 0.
- Position to OFF and LO/TO the following disconnects:

Equipment Specific Lockout/Tagout Procedures

Documentation Examples

	IBRF Bioche Operatii	mical Pi ng Proce
Procedure Title	Effective Date	Supers
90-L Paddle Reactor	11/6/2019	1/1/20
	Author: J. Shekiro	Review

Significant Hazards or Si

Specific hazards unique pressures and temperate SOP (0480).

Unique hazards-None

Emergency shutdown: T the low-pressure steam

Prerequisites

- Ensure that the a
- Confirm that the have been traine

Operating Procedure

1. Loading the reactor

- 1.1. Ensure the pa
- 1.2. Open the read
- 1.3. Verify that the

213	NDEL	
NATIONAL	RENEWABLE ENERGY LABORATORY	
Proce	dure Title	
LHR P	lug Screw Feeder	

Procedure Purpose

To securely isolate steam and electrical from the plug s removal. This procedure isolates steam from all compo (LHR) system.

Prerequisites

- The reactor system is in standard shutdown corr
- All requirements of the NREL LO/TO Program mean
- Notification of this LO/TO must be given to affe
- The P&ID for this equipment has been reviewe covered in this procedure. This procedure must be updated if necessary.
- This equipment has been inspected for any <u>additional</u> energy sources not covered in this
 procedure. This procedure must <u>be updated</u> if necessary.

Procedure

 Close and LO/TO the high pressure steam manual isolation valve (HV-2200-35) to R-2200 Verify Zero Energy: Set pressure set-point on Green Fisher valve to 50 psig or greater and verify that line pressure is equal to 0.

Process and Instrumentation Drawings (96 drawings)

Pilot Plant Process Control and Sample Tracking

Supervisory Control and Data Acquisition (SCADA) System

- Opto® 22 Programmable Logic Controllers and Input/Output modules
- Ignition® SCADA software from Automation Engineering

Data Storage and Analytical Sample Tracking

Instrument Calibration Management

BEAMEX CMX CALIBRATION MANAGEMENT SOFTWARE

Automated multi-function field calibrator and communicator

	IBRF Biochemi Specific P	cal Pilot Plant rocedure
Procedure Title	Effective Date	Supersedes
Instrument Calibration Management Program	12/28/2017	07/01/1997

1.0 Introduction

The biochemical pilot plant located in the North and South High Bays of the Integrated Biorefinery Research Facility (IBRF) is used to perform research and testing of integrated lignocellulosic biomass to

fuel and chemical production processes. The platonne/d) as well as stand-alone equipment. Var steam; instrument and house air; and cold, chill

ΩΝ	IR	EL	~	Position 8	er IBRATIZCAL D. LIT-SHE I			Anna III Annais I Oliviani	to the second
feellien Die No Die Hunder Auton Ten	Buo n	toop Tolk Lee playthere be	TUURA gelan		Bevice Owice O Sela hunter Wandstore Konputsity Opening Tempers	LY-BB-T 15/1748 Fallers G	reareer (pr	ting humidity	
function Cris Torone Function Torone	Percent Unit 0.100	100000 + 10 +00.0	1.101		Calibration Eve Calibration Eve Net Calibration Environment Temp	104205 104205	145 Pu 614		
Salaration Pro- tar Sala Idan Tortor I Salar Tortor I Salaration Second	UCS USS Sinto	a na an arthra Ca	eu Chei ekain	Fi	Calibrations Input Calibrator Input Media Originations Originations	MCK KB	21 983	Due Sale Due Sale Due Sale Due Sale	9122216 9182216
Interface of the second								•	
	4.10		36.0	ingut (in	, #20]	91.47		02.08	
1. As Found				PASSED	2. As Left				PASSE
Name and	Adus rep.	Norma Colpul	Alter Julger	Paniline	Aurona repai	Adus rept	Norma Culpul	Alus Jupa	Panilm
prole	perio.	N	N	(% of sport)	9403	period	N	N	1.000
0.00	6.012	4.0	- 42	42	1.00	610	0.0	41	4
64.00	66.101	8.0	44.5	4,8		66.101	8.0		
102.00	102,083	10.0	106.2	4.0		152 584	10.0	100.7	4
44.50			49.5	-0.54	44.50				

Workflow and Safety Processes*

*May not capture all possible processes or flow paths.

Approach-Managing Plant Scheduling and Use

Work Management Process/Risk Mitigation Elements

- Outlook scheduling/tracking system (9 years of data)
- Operations staff plan-of-the-day meeting
- Weekly operations staff and PI coordination meeting
- SharePoint-based system for task assignment/tracking for operations staff
- SharePoint-based system for routine/non-routine maintenance tracking
- Out of Service program

Outlook Calendar Scheduling/Tracking

Toda	y <> December 11 - 1	17, 2022			Golden, Colorado	, △┿ Today 70morrow 6°F/-2°F 29°F/12°F	₩ednesday 41°F/28°F] Week ∨
	Sunday	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	
	11	12	13	14	15	16	17	
	← From Dec 5		BDOJ: FT (450s)			PSI: EH (170-P	۲) T	Fo Dec 23 $ ightarrow$
			PSI: PT	(170-L)		FCIC59: FP (PFI)		
		ACC: DP (1900-L PR)		BUS: FT			
		AAC: FP (Milling, 12" DR)		FCIC59: (PT, 60-L)				
		AAC: FP (milling, PFI)			CRF-DMR: FP (milling, Szego)			
7 AM								

Nomenclature: Project code: Unit operation identifier (equipment or other information)

Linkages/Users By Project/Program Areas (FY21/22)

Recently Completed Activities/Milestones

Knockback condensers installed on the two 160-L bioreactors

	Effec	tive Date:	1/11/2021	Supersedes Date: n/a
Equipment/System Information	on htrifuge			
Location: IBRF 278 NHB				
RTS Checklist (number items i	n this list and Checked	d refer to th Date Revie	em in the co wed Act	mmissioning list)
Check system against current P&ID(s)	Ryan Spiller	6/14/2022		 8"-CPVC solids outlet and flex hose from FF-610 not attached. From P-601 the SS was modified to fley hose for a recirculation pump to V- 4558. SS pipe added after PI 601-2 with two valves and one pipe going to neutralization tank. Another SS <u>pipe</u>. added before FIT 601-2 with a valve to decanter exit. Remove valves: 601-2, 601-3, 601-19 Missing tags need replaced.
	Ryan	6/29/2022	Out Cor	tlets from FF-610 not attached. nnector between V-601 and FF-610.

Water System Improvements

- Process water
 - Variable frequency drive installed on pump motor
- Cooling Water Systems
 - Cooling tower fan motors replaced
 - External cooling loop pumps replaced
 - Improved system automation in progress

All Plant Utility Systems: Improve remote sensing and monitoring of the plant's various utility systems by end of FY23.

Large Facility Improvement Projects

Boiler Replacement

Replacing existing old 100 hp highpressure boiler with two 60 hp units.

Air Compressor Replacement

Replacing old, large volume air compressor.

> \$3 MM of upgrades funded out of NREL general purpose funds.

22" Refiner Installation Project

The new 22" disk refiner allows on-demand production of Deacetylated and Mechanically Refined (DMR, see slide in additional materials) biomass.

- Most system components delivered
- Andritz completing control system
- Installation subcontract placed February 9

Multiple SAF development pathways are being explored at NREL and several industry partnerships are using DMRtreated biomass as the preferred starting material.

Feeder

Material Production

- Types of process materials produced as needed include:
- Dilute-acid-pretreated corn stover
- Deacetylated and disk (or mechanically) refined (DDR/DMR*) stover
- Deacetylation black liquor
- Enzymatic hydrolysates
- Concentrated enzymatic hydrolysate liquor
- Solid lignin (from enzymatic hydrolysis)

*Deacetylated corn stover shipped to Andritz for off-site disk refining at their Springfield, OH facility.

Twine used to bale stover pugged the membrane separation modules during clarification of an enzymatic hydrolysate.

Impact

The pilot plant supports DOE/BETO's mission to scale up and commercialize biofuel/bioproduct production technology.

- Test technical feasibility of single or multiple unit operations
- Produce integrated, engineering-scale data
- Generate process relevant materials and bioproducts

Pilot Plant Used by Many Projects

	BETO (AOP)	Partnerships
# of Projects (FY13-FY22)	19	37
Estimate Worth to NREL	~\$2 to \$3 MM annually*	Several \$10,000s to several \$MM/project

*Excludes funding for this project

New Pilot Plant Projects in FY23:

- Three new FOA projects
- Work for one industry client currently
- One new SBIR project

Addressing SDI strategic goals (old MYP):

- Decrease commercialization risk
- Identity and solve scale-up issues
- Create added-value co-products
- Demonstrate innovative deconstruction approaches
- Enable high performance separations technology
- Develop technologies for utilizing waste streams
- Evaluate technology options

Impact - Pilot Plant Use Tracking (2013-2022)

"Contact Day" – On a given day, a BETO (AOP or Lab Call) or industry (any industry partner work including FOAs) project used at least one piece of equipment or unit operation in the pilot plant. (Does not include routine repair and maintenance activities performed by this project. The scale and cost of the work is not represented.)

IBRF Pilot Plant Revitalization

NREL's IBRF pilot plant is not currently equipped to meet all future piloting demands.

We are investing in revitalization of the IBRF pilot plant (NHB) to allow NREL to:

- Play a critical role in deploying bioeconomy, electrons-to-molecules (E2M), and circular economy (CEM) technologies and processes
- Address a critical shortcoming of the bioeconomy inadequate piloting
- Meet industry requirements for rigorous scale-up and piloting by upgrading to a plug-and-play technology readiness level (TRL) 5/6 facility
- Increase the success of taking SAF and bioeconomy technologies to commercialization

Funding:

- \$19 MM Inflation Reduction Act
- \$10 MM BETO (equipment)
- \$6 MM NREL General Purpose

IBRF Pilot Plant Revitalization

Create a new highly flexible facility for scale up and integration of biomass to finished fuels and other new technologies supporting BETO and industry needs.

- Convert existing NHB into areas rated for highly hazardous (e.g., flammable gases and solvents) and biosafety level 2 pilot scale operations
- Preserve ability to generate biologically-derived intermediate molecules from biomass sugars using equipment in the SHB (biomass deconstruction and microbial conversion)

Existing NHB

- Utilize play and play to extent possible and target for ability to rapidly reconfigure unit operations to minimize turnaround and downtime
- Include sufficient instrumentation to accurately close mass balances and support computational modeling

Market Trends

Anticipated decrease in gasoline/ethanol demand; diesel demand steady

Increasing demand for aviation and marine fuel

Demand for higher-performance products

Sustained low oil prices

Decreasing cost of renewable electricity

Sustainable waste management

Expanding availability of green H₂

Closing the carbon cycle

Risk of greenfield investments

Challenges and costs of biorefinery start-up

Carbon intensity reduction

Access to clean air and water

Environmental equity

DOE's/NREL's Biochemical Pilot Plant Is Enabling a Sustainable Energy Future by Responding to Key Market Needs

Value Proposition

 This readily available pilot plant supported by BETO is made available to all users (BETO projects and industry) helping BETO to achieve its biofuel goals.

Key Differentiators (U.S.)

- Unique one-of-its-kind U.S based facility for flexible and integrated biomass processing
- 1 ton/d continuous pretreatment and multiple large bioreactors ranging from 160-L to 9,000-L
- Soon will be equipped with raw biomass to finished fuel processing capability

Feedsto

Capital

Summary

Approach:

- Use plant personnel effectively for maintenance and upkeep activities
- Follow structured management process for plant scheduling and use

Impact:

- Support BETO/industry scale up/commercialization efforts
- Use plant for process development, evaluation, and verification
- De-risk technologies and identify/solve scale-up issues

Accomplishments:

- Completed control system upgrades and finished a new data management system
- Completed utility water system repairs
- Received funding for major utility (steam, air) systems upgrades and work is in progress
- Installing new DMR material production capability
- Design of new NHB capabilities for finished fuels is in progress

Acknowledgments

FY21/22 Team Members

- Mike Baker
- John Bombard
- Matt Fowler
- Ryan Ferguson
- Casey Gunther
- Wes Hjelm
- Luke Klin
- Frank LaForge
- Bob Lyons
- Ryan Spiller

Funding

- US Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office
- Josh Messner BETO Technology Manager
- Jim Spaeth SDI Program Manager

Questions

www.nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Quad Chart Overview

Timeline

- Project start date: 10/1/2022
- Project end date: 9/30/2024

	FY22	Total Award
DOE Funding	\$1,631,000	\$5,200,000
Project Cost Share		

Project Goal

Maintain a functional and safe biochemical pilot plant, upgrade or add new capabilities to support BETO funded R&D or support industry projects as needed, produce process materials to enable R&D at bench/pilot scale.

End of Project Milestones

None

Funding Mechanism: BETO Direct

TRL at Project Start: 4-6 TRL at Project End: 4-6

Project Partners

• None

Additional Slides

Responses to Previous Reviewers' Comments

Reviewer Comment: Process improvements appear to be based upon internal discussion and do not include much (if any) industry guidance; the move to the DMR process, while it has potential, looks to be driven from internal research and not an external industry need. More clear industrial guidance and input should be collected.

 A nearly identical comment was also provided to the project that helped develop DMR technology; the project resides under the Conversion Platform. However, in the two years since these comments, two collaborative NREL/industry projects have been awarded that continue to develop this technology demonstrating industries interest in the DMR process.

Reviewer Comment: No support for gas fermentation, not designed to handle hazmats, not clear if it can handle flammable or combustible materials.

 NREL began work in FY20 to upgrade our biochemical pilot plant to be able handle the type of technologies (more specific upgrading of biologically-produced intermediate molecules to fuels. The NHB is currently in the process of being re-configured and upgraded to handle flammable gases and hazardous liquid to support these current technologies and new concepts in the future.

Publications, Patents, Presentations, Awards, and Commercialization

• This project doesn't produce these types of products.

Pretreatment

IBRF Pilot Plant Revitalization Floor Plan

- Building interior/exterior improvements
- Open design with new ventilation capabilities and supporting utilities/gases/electricity