DOE Bioenergy Technologies Office (BETO) 2021 Project Peer Review

Design and Development of Bio-Advantaged Vitrimers as Closed-Loop Bioproducts

Apr 7, 2023 Technology Area Session

UC Berkeley: Jay Keasling & Kristin Persson

Lawrence Berkeley National Lab: Brett Helms, Tom Russell, Corinne Scown

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Vision

Advancing Beyond State-of-the-Art

Triketone Monomers

Limited Functionality

Future

Bio-Advantaged Functionality

Project Overview

Potential Impacts

Potential Risks

Poor scalability of either bio- or chemical synthesis processes

Bio-Monomers fail to deliver market-differentiating performance advantages

Minimum selling price too high for widespread adoption in the market

Keasling Group Biology UCB

Persson Group Computational **UCB**

Helms Group Chemistry **LBNL**

Scown Group Energy/ **Environmental LBNL**

Risk
Scalability of chemically recyclable polymer bio-products.
Market adoption as a performance-advantaged and sustainable bio-product.

Mitigation

Techno-economic analysis and life-cycle assessment of key processes.

Work with industry to tailor performance for specific uses. Demonstrate biosynthetic route to key feedstocks and minimize losses in recycling.

Aliphatic BKDL

R₁ and R₂ BKDL Dictate PDK Resin Properties

Aromatic BKDL

Double-bond BKDL Provide new Thermal Properties

Bio-Synthesis

Targets

Diketoenamine Hydrolysis in Acid Unlocks Chemical Recycling

HT Screens Predict Variants with Most Favorable Recycling Rates

Compute Energetics for Hydrolysis

Reaction Coordinate

Validate with Experiment

Recommend Specific BKDLs for Bio

TE: thioesterase

Bio production of TAL

Source: Demarteau et al. 2023.

Milestone 6.1.1:Explore which alternative BKDL structures are accessible using SNACs

LBNL supplies UCB with >3 SNACs. Produce >3 add. BKDL structures

SNACS

In vitro Alternative BKDL Structures Synthesis

in vitro Aiternative DNDL Structures Synthesis

Milestone 7.2.1: Demonstrate a 50-g vitrimer batch size with >75% biomass content and <1% VOC content

Polymerize bio-derived DKLs with amine monomers at LBNL; show <1% mass loss upon heating to 150 °C

Biorenewable Circularity in Polydiketoenamine Plastics

Bio-Content (C10 diacid) = 26% Bio-Content (C10 diacid + BKDL) = 80%

Nature Sustainability 2023, Manuscript Accepted

Milestone 7.4.1: Demonstrate chemical depolymerization of molded vitrimers ≥1 g

Chemically recycle >10 PDK vitrimers with 0–30% w/w filler; recover DKL in >95% yield, >95% purity

Triphenyl Phosphate

(Fire-retardant)

Synthesis of Bio-Vitrimer Composites

Depolymerization in Acid Monomers + Fillers

1%

Carbon Black

(Color)

1%

10%

Dioctyl Phthalate

(Plasticizer)

	1	Carbon Black		Triphenyl Phosphate			Dioctyl Phthalate			
	0%	1%	5%	10%	1%	5%	10%	1%	5%	10%
Isolated Yield (%)	90	58	78	80	62	77	75	55	63	83
Purity (%)	95	1	95	97	1	96	98	1	93	96

Sub-Task Progress

Budget Period 2: Screen >100 γ , δ substituted BKDLs for hydrolysis energy barrier

Outcome

- Screened 108 BKDLs varying in R₁ and R₂
- Predicted a **strong** effect on the solvation free energy, up to 35 kJ mol⁻¹
- Predicted a weak effect on the hydrolysis free energy barrier, less than 5 kJ mol⁻¹
- Significance: Recycling rates can be controlled by choice of R₁ and R₂

Screens for Post-Consumer Chemical Recycling to Monomer

$$\begin{array}{c} & & & \\ & &$$

Sub-Task	Progress
----------	-----------------

Budget Period 2: Screen >100 γ , δ substituted BKDLs for hydrolysis energy barrier

Budget Period 3: Screen >100 γ , δ substituted BKDLs for amine-bond exchange energy barrier

Outcome

- Screened 108 BKDLs varying in R₁ and R₂
- Predicted a **strong** effect on the solvation free energy, up to 35 kJ mol⁻¹
- Predicted a weak effect on the hydrolysis free energy barrier, less than 5 kJ mol⁻¹
- Significance: Recycling rates can be controlled by choice of R₁ and R₂
- Screened 16 BKDLs varying in R₁ and R₂
- Predicted a negligible effect on the aminebond exchange energy barrier, < 5 kJ mol⁻¹
- Significance: Energetics of re-processing PDKs is low and not strongly dictated by R₁ and R₂

Screens for Post-Consumer Chemical Recycling to Monomer

$$\begin{array}{c} & & & \\ & &$$

Screens for Post-Industrial Recycling via Scrap Recovery

$$R_2$$
 R_1
 R_2
 R_1
 R_2
 R_1
 R_2
 R_1

Q8

M6.2.1

UCB reports to LBNL alternate BKDLs that are accessible, to direct LBNL's experimental validation efforts for circularity.

Q10	M6.3.1	UCB measures TRY of C6 diacid production in three hosts. Must confirm production of >10 mg/L in 50 mL shake flasks.			
BP3	End of Project Goal	UCB will measure the TRY of the C6 diacid at >1 L scale, which must exceed 1g/L and 0.1 g/g based on cellulosic sugars.	$\sqrt{}$		

E. coli

Task 6.1: Diversification of BKDL ■ More BKDLs were synthesized with substrate analogue SNACs in vitro					
Task 6.2: Alternate BKDL synthase construction ● Seven different BKDLs produced		2.7 g/L	178 mg/L	78 mg/L	4.7 g/L
		aromatic	aliphatic	aliphatic	aromatic
		OH R ₂	R ₂ O O	R_2 R_1 O O	R ₂ OH
Task 6.3: <i>In vivo</i> production of C6 diacid ■ Successfully produced in <i>E. coli</i>	но	1.0 g/L			
Task 6.4: Pathway discovery for C8 diacid ● A novel pathway designed and developed in <i>E. coli</i> and <i>S. albus</i>		Not tested		Not tested	

■ Feedstock Supply & Handling

 Technoeconomic analysis & life-cycle GHG emissions of bio production of aliphatic/aromatic BKDL

 TEA/LCA-informed potential of BKDL as a replacement of dimedone, with moderate improvement in yield and utilizing a co-fermenting host.

Source: Wang et al. manuscript under preparation

Milestone 8.2.1: Report life-cycle cost results based on at least 2 end-use functional units, incorporating EOL differences from base case.

Automotive seat cushions and bed mattresses chosen as end-use functional units.

Source: Demarteau et al. (2022) ACS Sust Chem. & Engg Based on the incorporation of PDK as a replacement for polyurethane foam in passenger vehicles.

Source: Bose et al. Manuscript under compilation Based on the incorporation of PDK as a replacement for polyurethane foam in bed mattresses.

3 – Impact

Removal of fillers from composites with circular PDK towards a more sustainable manufacturing

Feasibility of Bio-PDK Resins production that is cost-competitive in the market

Reduction in GHG emissions through introduction of circular PDK

Applications of PDK in durable goods that currently lack plastic recycling initiatives

Summary

1. Approach:

- Identify BKDL targets via screens of hydrolysis activation barrier for using DFT and MD
- Close the loop in Design–Build–Test–Learn for BKDL production with high-throughput platform.
- Integrate BDKLs into Bio-Based PDK resins and validate predictions for performance and recyclability.
- Model of process chemistry and assess impact of bio-products on sustainability targets for circularity

2. Progress and Outcomes:

- Demonstrated PDK vitrimer production with >80 % bio-content and >95% resource recovery.
- Diversify the BKDLs with 7 different structures and produce adipic acid > 0.15g/L.
- Built model for bio production of BKDL.
- Built model for prediction of replacement of PUF with circular PDK in application-specific case studies.

3. Impact:

Vitrimers can be synthesized from sustainable resources with a reduced environmental impact. Vitrimers can be predicted and designed to be recyclable and non-toxic. Techno-economic analysis and life-cycle assessment informs best path to commercialization.

Quad Chart Overview

Timeline

- 07/01/2019
- 03/31/2023

	FY22 Costed	Total Award
DOE Funding	(10/01/2021 – 9/30/2022) \$524,001	(negotiated total federal share) \$1,017,861
Project Cost Share *	\$140,687.89	\$499,466

Project Goal

Design and develop infinitely recyclable and therefore closed-loop polymeric bio-based materials, specifically focusing on a new class of polymers called vitrimers that combine the processing and recycling ease of thermoplastics with the performance advantages of thermosets.

End of Project Milestone

Demonstrate 1g/L of C6 diacid in fed-batch fermenter. Demonstrate PDK vitrimer platform technology readiness wrt formulation and circularity: both chemical recyclability and scrap recovery for 10-g vitrimer samples with >75% biomass content, <1% VOC content, 0–30% w/w filler.

Funding Mechanism

DE-FOA-0001916, Topic 3a. Performance Advantaged Bioproduct Identification

TRL at Project Start: 3. Proof-of-Concept Research

TRL at Project End:

8. Final Testing and Evaluation

Project Partners*

Lawrence Berkeley National Laboratory

^{*}Only fill out if applicable.

Additional Slides

Responses to Previous Reviewers' Comments

- 1. No connections to industry advisors and yet this will be required to deliver an impact with clear commercialization potential. Response: We have deeply developed a network of industry advisors, including C-level executives of major chemical companies (Jean Sentenac, CEO, Axens; Hartwig Michels, President of Petrochemicals, BASF; etc.). We also have NDAs and MTAs with BASF, Arkema, Proctor and Gamble, Clorox, Ford, and others. We were not asked to provide this information in the 15-minute talk. Nevertheless, we have done this. We are also pursuing funded collaborations with these partners to scale-up the research products from this BETO project.
- 2. Without significant improvements in material properties, the potential market penetration of circular PDK polymers likely will be limited vs. low-cost and well-known properties of HDPE and PET in major markets.

Response: The reviewer misunderstood our directions; we are not expecting to displace PET or HDPE. We are expecting to displace non-recyclable polyamides and polyurethanes. We have substantially demonstrated performance improvements over those materials in bio-based formulations and have maintained lossless circularity in recycling outcomes. We have further carried out detailed analysis of the economics and pricing to assess potential roadblocks to commercialization.

• 3. Can they clarify whether they will narrow the number of candidates for microbial host strain development?

Response: Regarding the host development, we will focus on one or two hosts which are good for the BKDL production. The hosts working well with PKS genes and supplying a rich amount of necessary CoA esters will be preferred. The future strain engineering will focus on these aspects.

Publications, Patents, Presentations, Awards, and Commercialization

Publications

Leveling the cost and carbon footprint of circular polymers that are chemically recycled to monomer. *Sci. Adv.* **7**, eabf0187 (2022). Lower-Cost, Lower-Carbon Production of Circular Polydiketoenamine Plastics. *ACS Sustain. Chem. Eng.* **10**, 2740–2749 (2022). Circularity in mixed-plastic chemical recycling enabled by variable rates of polydiketoenamine hydrolysis. *Sci. Adv.* **8**, eabp8823 (2022). Helms, B. A. Polydiketoenamines for a Circular Plastics Economy. *Acc. Chem. Res.* **55**, 2753–2765 (2022). Biorenewable circularity in triacetic acid lactone polydiketoenamine plastics. *Nat. Sust.* Manuscript under review (2023).

Patents

Bio-Renewable Polymers and Uses Thereof
Microbial Production Of Monomers For Recycling Of Plastic Polymers LBNL 2022-001-01
Triacetic Acid Lactone Production by Thiolase BktB from Burkholderia B23-032; LBNL 2022-151-01