DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

FERMENTATIVE PRODUCTION OF TULIPALIN A: A NEXT-GENERATION, SUSTAINABLE MONOMER THAT DRASTICALLY IMPROVES THE PERFORMANCE OF pMMA

April 7th 2023 Biochemical Conversion and Lignin

> Aaron Korkegian, PhD ARZEDA

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

THE ENVIRONMENTAL IMPACT OF CHEMICALS AND PLASTICS IS A MAJOR CHALLENGE

The Solution is the Development of Sustainable Green Alternatives That Improve Performance

SUSTAINABILITY & HIGHER VALUE PRODUCTS FOR BIOREFINING **Biological Production of Acrylate from Lignocellulosics**

Carbon

Release

Petroleum: non-sustainable non-renewable resource

 CO_2 Captured Carbon Lignocellulosics: sustainable, renewable

Fermentation

Acrylate Plastics

TULIPALIN A A Plant-Based Sustainable Acrylate

Unknown metabolic pathway

Biosynthesi zed

Tulipalin A (a-Methylene Butyrolactone, MBL)

TULIPALIN A: A PERFORMANCE IMPROVING SUSTAINABLE ACRYLATE FOR MATERIALS Replacement for Petro-derived methyl-methacrylate (MMA)

As a monomer at scale, Tulipalin A is:

- Performance advantaged to MMA
- Price competitive to MMA
- Process compatible for polymerization with MMA

HOW IS TULIPALIN MADE TODAY?

Current Issues and limits

Current commercial production routes are limited...

- Extracted from tulips (Economically infeasible)
- Chemical process (Economically not viable and carbon intense)

...and suffer from cost-of-manufacturing and volume issues

- Price: >**\$1000/kg**
- Volume: >1kg unavailable commercially

No commercially viable biological production process

- The way that tulips make Tulipalin A is unknown
- No known microorganism produce Tulipalin A naturally

ARZEDA PLATFORM FULLY SUPPORT DEVELOPMENT CYCLE

Pathway and Protein Design, Protein Expression, Strain Engineering, Bioprocess Development

* proven engagement at 1000L scale production of Arzeda products

PROJECT OBJECTIVE

Use Synthetic Biology To Create A Microbial Strain Fermenting Lignocellulosics to Tulipalin A

ENABLING TULIPALIN FERMENTATION

RISKS

Enumeration of Project Challenges

Project Approach, Progress and Outcomes

PROJECT STRUCTURE - PROTEIN DESIGN & SYNBIO FOR ORGANISM ENGINEERING

Integrating Computational Pathway Design, Protein Design, Strain Construction & Process Development

APPROACH: VALIDATING AND IMPROVING ENZYME ACTIVITY/SPECIFICITY

Design, Build, Test for de novo Enzymatic Pathway and Desired Enzyme Properties

Pathway Design (Scylax™)

Produce and test enzymes in vitro

Milestone: Produce Product from Pathway in vitro for at least 2 Distinct Pathways Milestone: Enzymes in pathway reach sufficient specificity/productivity defined by production goals **OUTCOME: VALIDATING AND IMPROVING ENZYME ACTIVITY/SPECIFICITY Design, Build, Test for de novo Enzymatic Pathway and Desired Enzyme Properties**

Pathways Ranked by Feasibility Assessment

10 Potential valid pathways identified

Demonstrated full conversion of starting metabolite to product using purified enzymes *in vitro* for 2 pathways

Produce and test enzymes in vitro

Milestone: Produce Product from Pathway in vitro for at least 2 Distinct Pathways: Achieved Milestone: Enzymes in pathway reach sufficient specificity/productivity defined by production goals: Achieved

DEVELOP PROOF OF CONCEPT STRAIN

Design, Build, Test for de novo Enzymatic Pathway and Desired Enzyme Properties

Strain Produces Detectable Amount of Product

Milestone: Strain Produces Sufficient Quantities of Intermediate Metabolite Milestone: Strain Produces Detectable Product from 2 Distinct Pathways Milestone: Strain Produces Detectable Product from Lignocellulosic Hydrolysate

Arzeda

16 //

OUTCOME: DEVELOP PROOF OF CONCEPT STRAIN

Design, Build, Test for de novo Enzymatic Pathway and Desired Enzyme Properties

Engineered strain able to produce up to **80 g/L** of Intermediate metabolite in fermentation

Initial strains developed based on two pathways both showed low level but significant production of product over the base strain.

After some refinement Pathway 5 produced **150 mg/L** of product

Strain Produces Detectable Amount of Product

Milestone: Strain Produces Sufficient Quantities of Intermediate Metabolite: Achieved Milestone: Strain Produces Detectable Product from 2 Distinct Pathways: Achieved

OUTCOME: DEVELOP PROOF OF CONCEPT STRAIN

Strain Produces Product Utilizing Lignocellulosic Hydrolysate as Feedstock

Strain Produces Detectable Amount of Product

Milestone: Strain Produces Detectable Product from Lignocellulosic Hydrolysate: Achieved

Arzeda.

APPROACH: STRAIN/ENZYME OPTIMIZATION

Improve Titers and Reach Production Titers Sufficient for Scaling to Kg Production

Strain Produces Detectable Amount of Product

Milestone: Strain Demonstrates Improved titers reaching Intermediate Production Goal Go/No-Go Decision: Strain Reaches Titer sufficient for Kg scale production

Arzeda

PROGRESS: STRAIN/ENZYME OPTIMIZATION

Improvement to Titers through Enzyme Design

Strain Produces Detectable Amount of Product

Milestone: Strain Demonstrates Improved titers reaching Intermediate Production Goal Go/No-Go Decision: Strain Reaches Titer sufficient for Kg scale production

Arzed

PROGRESS: STRAIN/ENZYME OPTIMIZATION

Reaching Titers of 5 g/L

- Introduction of pathway into host organism
- Current strain capable of production titers of 5 g/L
 - Working on iterative refinement of enzyme properties and expression to improve yield and increase ratio of product to intermediate metabolite

1 g/L intermediate production milestone

8 g/L Kg production possible 20 g/L Initial Market Viability

Arzeda

Achieved intermediate production target milestone for BP2 > BP3 Go Decision Have not encountered insurmountable issue with production Titers and Ratios Required for Economic Kg Production: In Progress

APPROACH: DOWNSTREAM PROCESSING AND PROPERTIES TESTING

Demonstrate Ability to Produce High Grade MBL and Polymer from Mock Fermentation Broth

Crude Broth

Arzeda

Produce MBL at gram and then Kg scale from Mock Fermentation Broth Milestone: Produce at least 100g of polymer grade (>99% pure) MBL from mock fermentation broth Milestone: Demonstrate Desirable Properties

OUTCOME: DOWNSTREAM PROCESSING AND PROPERTIES TESTING Demonstrate DSP and Polymerization

Produce MBL at gram and then Kg scale from Mock Fermentation Broth Milestone: Produce at least 100g of polymer grade (>99% pure) MBL from mock fermentation broth: Achieved

Arzeda

OUTCOME: DOWNSTREAM PROCESSING AND PROPERTIES TESTING

Value Proposition as A Performance Improving Monomer/Additive for Polymers

Property	Measure	Literature PMBL	Arzeda PMBL	PMMA
Thermal	Glass Transition Point <i>T</i> _g (°C)	194°C/195°C	195°C	105 ° C
Mechanical	Modulus of Elasticity (MPa)	1999/3439	5972	2855
	Tensile Strength (MPa)	36.7/62.7	72.7	70
	Elongation at Break	1.3%/6.5%	1.3%	2.5%
Optical	Light Transmission	N/A	> 88%	92%
Solvent Resistance	Toluene, 30 Day Immersion at 20°C	N/A	Pass	Fail

PMMA

Arzed

Produce MBL at gram and then Kg scale from Mock Fermentation Broth

Milestone: Demonstrate Desirable Properties: Achieved

END OF PROJECT GOAL Bio-Based MBL Produced From Lignocellulosics

End of Project Goal Bio-based MBL Produced by Strain, Processed and Polymerized into at least 1 KG of Acrylate Polymer with Confirmed Desirable Properties: **In Process**

Impact

CONFERENCES PRESENTATIONS:

GRC Enzymes & Metabolic Pathways 2019 American Chemical Society, Spring Meeting 2019 and 2021 SIM Fuels & Chemicals Symposium 2019 University Stuttgart, Germany 2020 American Society of Biochemistry and Molecular Biology, Discover BMB 2023

PATENTS

Patent Applications Filing in Process

PUBLIC OUTREACH

Professor Dave Explains Public Science Outreach Channel (Youtube - 2.4M subscribers): 30-minute Two Part Video on Our Work – Synthetic Biology and Materials Science Part 1 and 2

COMMERCIALIZATION

Over 2Kg of Tulipalin was shipped to 15 chemicals and materials companies for testing LOI for manufacturing and market development partnerships in negotiation

TULIPALIN A: PERFORMANCE IMPROVEMENT TO DISPLACE PMMA AND POLYCARBONATES Business Development Efforts Have Uncovered 5 Different Areas for MBL Applications for Materials

TRANSPARENT PLASTIC CASTS (Application $\frac{3}{3}$ /3)

- Improved weathering and decreased discoloration
- Decreased scratch and marring
- Higher solvent resistance
- Automotive "lightweighting" by replacing glass or polycarbonate

DISPLAYS (Application 2 / 3) Excellent light

- transmission
- Thinner light guides, diffusers, etc. due to higher refractive index
- Far greater heat resistance

ENSES (Application 2/3)

28

lighter lenses due to higher refractive index

- Less discoloration
- Higher scratch resistance

Cosmetics (Application 2)

- Biobased Acrylate
- Acrylate rheology modified

Increased Etch

Resistance

PHOTORESIST (Application 1)

Arzeda.

Summary

SUMMARY

Enzymatic Pathways Designed and Validated Capable of Producing Product in vitro

Strain Implementing Designed Pathways Capable of Producing Product

Strain Improvements have Increased Titer to 5 g/L

Scalable Downstream Process Can Achieve Polymer Grade >99.9% MBL

MBL Polymer Demonstrate Significant Improvement Over Petro-derived MMA

Potential Industrial Partners Have Tested and Expressed Interest In Product Properties

End of Deck

.

Quad Chart Overview (Competitive Project)

 Timeline Start Oct 1st 2018 End Sept 30th 2023 			Project Goal The goal of this project is to develop a strain capable of fermentative production of Tulipalin A from lignocellulosics at titers that are viable for kilogram production	
	Total Award	Total Spent	End of Project Milestone bio-based MBL produced by Escherichia coli	
DOE Funding	\$1.7 million	\$1.2 million	fermentation of lignocellulosics and processed with DSP 2.0 is incorporated into at least 1KG of acrylate polymer material and improves Tg by at least 50%	
Project Cost Share	\$502k	\$1.6 million		
Project PartnersARZEDAPNNL			Funding Mechanism FOA-001916 DOE BEEPS Performance Advantaged Bioproducts 2018	