

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Enabling Lignin Valorization with Liquid Liquid Chromatography

Performance-Advantaged Bioproducts and Bioprocessing Separations

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

Goal:

Scalable separations for complex lignin-derived product mixtures

Current limitations:

Distillation is challenging/energy intensive for lignin deconstruction. Liquid liquid chromatography is not proven for high-volume commercial use

Approach:

Scale Counter Current Chromatography (CCC) and develop continuous CCC for lignin deconstruction product streams

Relevance:

Enable renewable chemical co-products to achieve low-carbon drop-in biofuels at \$2.50 per GGE with >70% reduction in greenhouse gas emissions vs petroleum

Risks:

Complexity of controls to enable continuous operation; upfront capital cost; unproven at scale

Project Overview

Approach

Reactive Distillation Reductive Catalytic Deconstruction (RD-RCD)

Benefits of RD-RCF

- Easier/less expensive to scale
- Improved process economics
- Reduced energy requirements
- Effective separations are critical to commercial feasibility with reduced environmental footprint

Approach for this project

- Use commercially available sources as feedstock
- Optimize reaction conditions
- Develop continuous process

Risks/Mitigation Strategies:

- Scale-up hindered by mass transfer limitations reactor design with better mixing and/or improve catalyst contact
- Catalyst lifetime explore catalyst regeneration strategies and/or switching to less expensive catalysts

Approach

Counter Current Chromatography (CCC)

- Uses an immobilized liquid phase for separations
 - More efficient than other condensed phase separations
 - Not subject to fouling
 - Does not need upfront filtration
 - Enable full product recovery (no irreversible adsorption)
- Uniquely well-suited to challenges of lignin coproducts

Approach

Continuous CCC

- Conceptually analogous to True/Simulated Moving Bed
- Periodic valve switching for continuous separation
- Extend NREL predictive CCC model for continuous

Risks/Mitigation Strategies:

- Solubility of monomers in solvent system limits productivity at scale – investigate solvent systems other than HEMWAT solvent systems
- Complexity of switching sequence use valve block system from a traditional Simulated Moving Bed (SMB) for switching

Setup Continuous CCC system

Develop Mathematical Model for Continuous CCC Process Design

Demonstrate Model-based Design at Lab Scale

Perform Scale up at Pilot Scale Process

Project Management - Team

Eric Gottlieb CEO, Pl

Project Organization

- Monthly team meetings
- Quarterly team meetings with DOE project managers
- Shared Dropbox for file management

Gregg Beckham
Senior Research Fellow
Co-Pl

Hoon Choi

Colin Bright
Senior Applications
Scientist

Project Management

- Project start date: 10/1/2021
- BP2 conditions lifted: 12/15/2022
- Project end date: 4/30/2025

Task	Activity	Status
1	Verification	Complete
2	TEA/LCA	
2.1	Batch mode TEA/LCA	In progress
2.2	Continuous mode TEA/LCA	BP3
3	Lignin processing	
3.1	50 g scale lignin processing	Complete
3.2	500 g scale lignin processing	BP3
4	Batch chromatography	
4.1	Solvent screening	In progress
4.2	Parameter optimization	
5	Intermediate verification	
6	Continuous chromatography	BP3

Go/No-Go and End Goals

Go/No-Go

- Demonstrate that > 30% energy saving compared to batch CCC is achievable
- Demonstrate feasibility to produce:
 - > 500 g of raw distillate
 - > 1 kg of reaction bottoms
 - > 1 kg of isolated products
 - > 1 kg of isolated oligomers
- Deliver > 25 g of isolated monomer mixtures and oligomer mixtures (> 90% purity) from raw RCD products

End Goals

- 100 continuous hours of stable operation for CCC
- Recover > 1kg of isolated products above duration
- Scale up RD-RCD for continuous operation to match CCC

Progress and Outcomes: Task 4.1 (in progress)

Solvent screening for batch CCC

- (A) Partition coefficient measurements for HEMWAT solvent systems
- (B) Chromatogram of biooil after CCC. Good fit with predictive model
- <u>Demonstrates >90% yield and >97% purity are achievable for individual compounds</u>

Progress and Outcomes: Task 2.1(in progress)

CCC Exp & Simulations for PG & PS Separation Flash (Batch LC) Exp for PG & PS Separation

- Comparison between batch CCC, flash chromatography, and SMB assessing:
 - Solvent volume
 - Productivity
 - Energy consumption

SMB Simulation for PG & PS Separation

Progress and Outcomes: Task 2.1 (in progress)

- Preliminary comparative TEA/LCA for batch CCC
 - Energy consumption reduced by ~95% vs SMB
 - > 100% increase in productivity vs SMB
 - Further improvements expected in moving to continuous CCC

Impact

Impact for Biorefineries

- Creation of co-product streams could reduce fuel selling prices by up to ~ \$3/GGE MFSP
- Focus on product development/commercialization of adhesives with industry partners

Improvements vs SMB

- Energy consumption reduced by ~95%
- > 100% increase in productivity
- Ability to handle solids can increase yields by 50%

Impact for Separations Consortium

- Develop public continuous CCC model tool
- Extend predictive tools for continuous CCC
- Scale CCC towards pilot

Summary

- CCC is a uniquely suited for downstream separations of lignin-derived products
- Batch CCC vs SMB:
 - Energy consumption reduced by ~95%
 - > 100% increase in productivity
- Continuous CCC is anticipated to improve the above metrics
- Goal of integrating a continuous lignin deconstruction process with continuous CCC

Completed tasks 1 and 3.1:

- Initial verification
- Lignin deconstruction scale up and optimization for processing for 50 g
- Tasks 2.1 and 4.1 in progress:
 - TEA/LCA for optimized batch CCC
 - Shake flask experiments for solvent system selection

Future work

- Develop and scale up continuous RD-RCD
- Develop continuous CCC columns, switching and predictive models

Quad Chart Overview

Timeline

10/1/2021 - 3/21/25

	FY22 Costed	Total Award
DOE Funding	\$79,194	\$2,499,196
Project Cost Share	\$44,517	\$627,500

TRL at Project Start: 3
TRL at Project End: 5

Project Goal

Design and develop scalable liquid liquid chromatography for commercial-scale lignin valorization

End of Project Milestone

Produce >1 kg of products from raw distillate and oligomers using the continuous CCC operation. Target > 80% yield at > 90% purity and an energy savings > 50% over the incumbent SMB technology.

Funding Mechanism

FY21 BETO Scale-up and Conversion FOA DE-FOA-0002396

Project Partners

NREL – Gregg Beckham Dynamic Extractions – Colin Bright