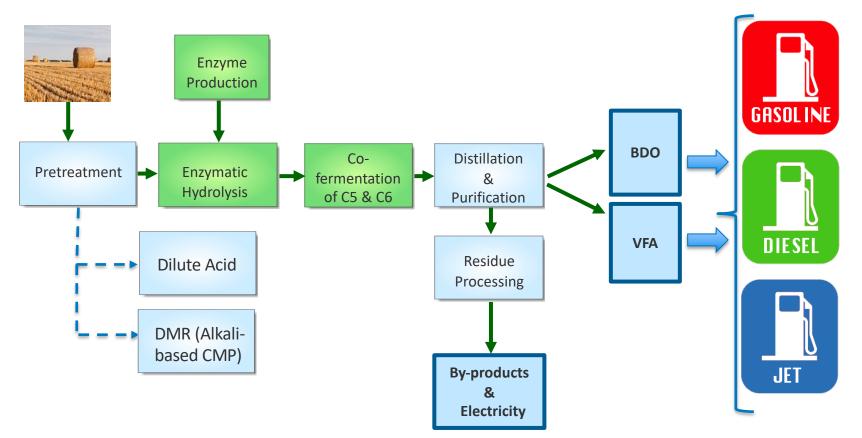
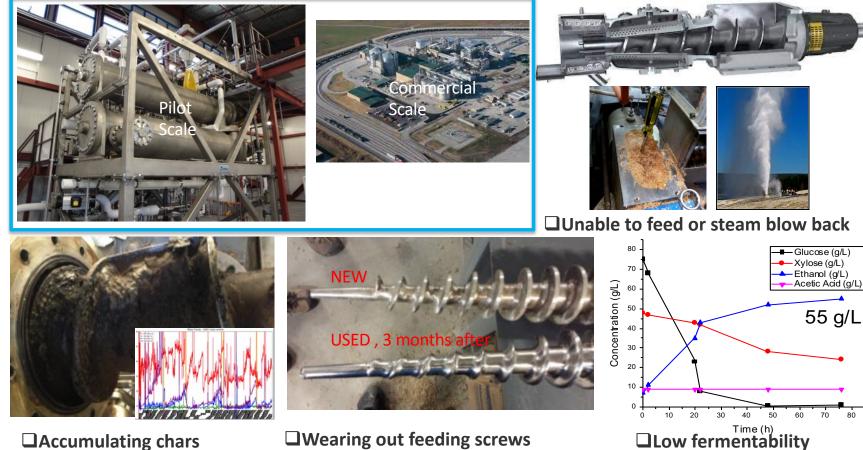
Transforming ENERGY


Production of Low-Cost and Highly Fermentable Sugar from Corn Stover via Chemical-Recovery-Free Deacetylation and Mechanical Refining (CRF-DMR) Process

4/7/2023

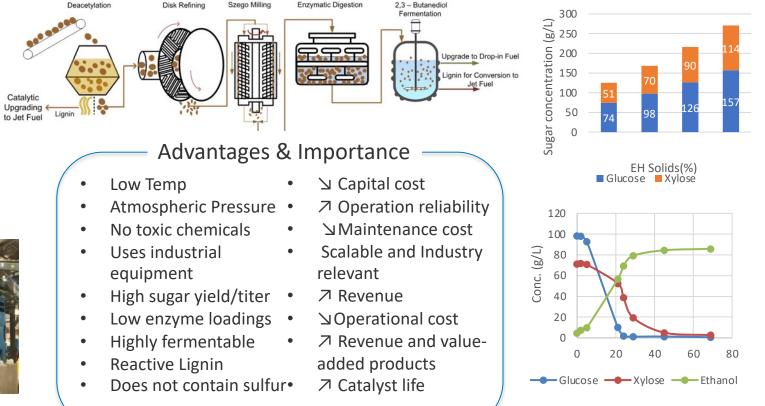

Biochemical Conversion and Lignin Valorization Technology Xiaowen Chen National Renewable Energy Laboratory

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Background

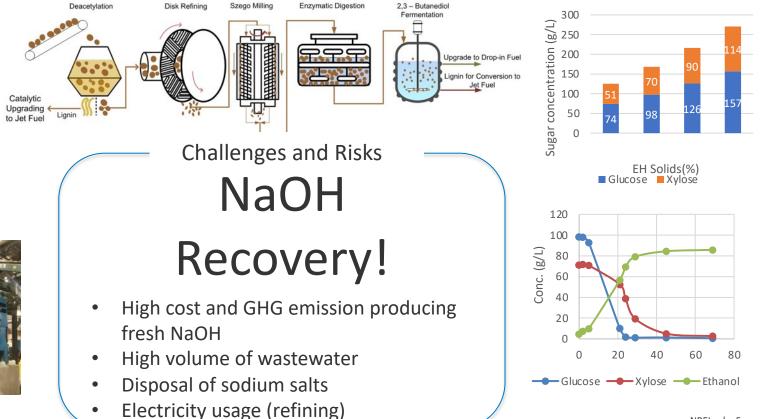
Why NOT Dilute Acid?

Accumulating chars

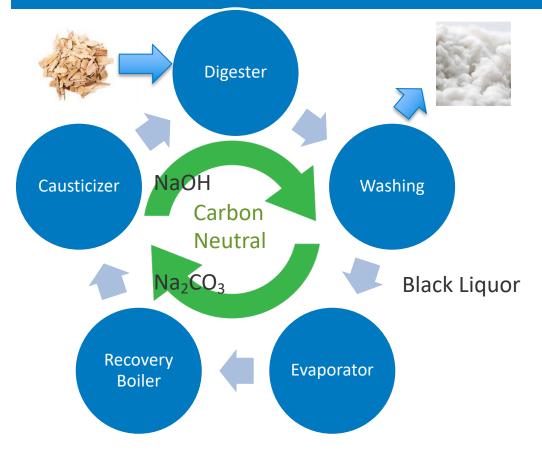

Wearing out feeding screws

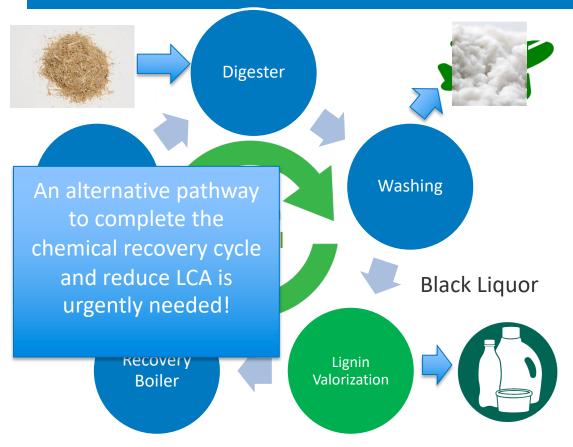
Why DMR?

The Deacetylation and Mechanical Refining process



Why DMR?


The Deacetylation and Mechanical Refining process



NaOH Recovery in a Kraft Pulp Mill

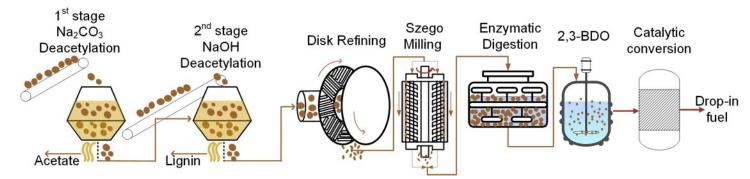
- DMR shares similarities with the Kraft pulping/ soda pulping process (much less alkali loading and lower temperature)
- NaOH are consumed by neutralizing acids produced from pulping process.
- Lignin from Kraft pulping is combusted in the recovery boiler to provide energy to recover NaOH and energy.
- Kraft pulping is generally considered as a Carbon Neutral process.

NaOH Recovery Challenges in Biorefinery

Jet fuel = \$1200/tonne

Pulp = \$750 /tonne.

During the conversion of carbohydrate to jet fuel, about 60% of the sugar weight is lost in the fermentation and hydrodeoxygenation process. So the revenue:


1 tonne cellulose to 1 tonne pulp =\$750 1 tonne cellulose to 0.4 tonne jet fuel < \$500

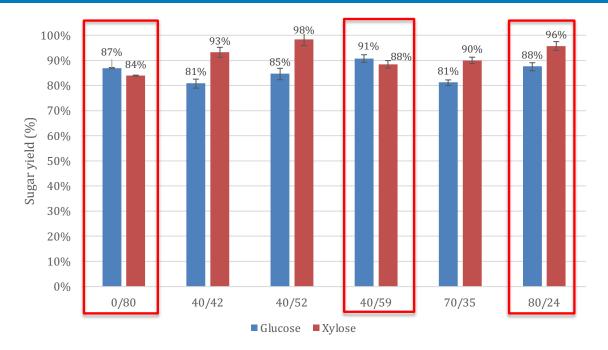
- To reduce the production cost of SAF from lignocellulosic biomass, lignin needs to be converted into high value-added products.
- However, losing the heating value from lignin results in NaOH recovery and LCA issues.

Background: 2-stage Na₂CO₃ and NaOH Deacetylation (LTAD)

Modified DMR Process to Reduce GHG Emissions While Improving Sugar Yields

2-stage Na₂CO₃ and NaOH deacetylation replacing traditional 1-stage NaOH deacetylation

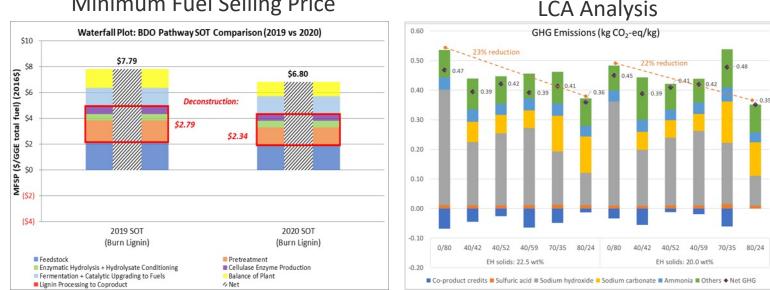
٠


	GHG* (CO ₂ e/kg of chemical)	Cost (\$/lb of chemical)
NaOH (100%)	2.1	0.24
Na ₂ CO ₃ (100%)	0.7	0.08

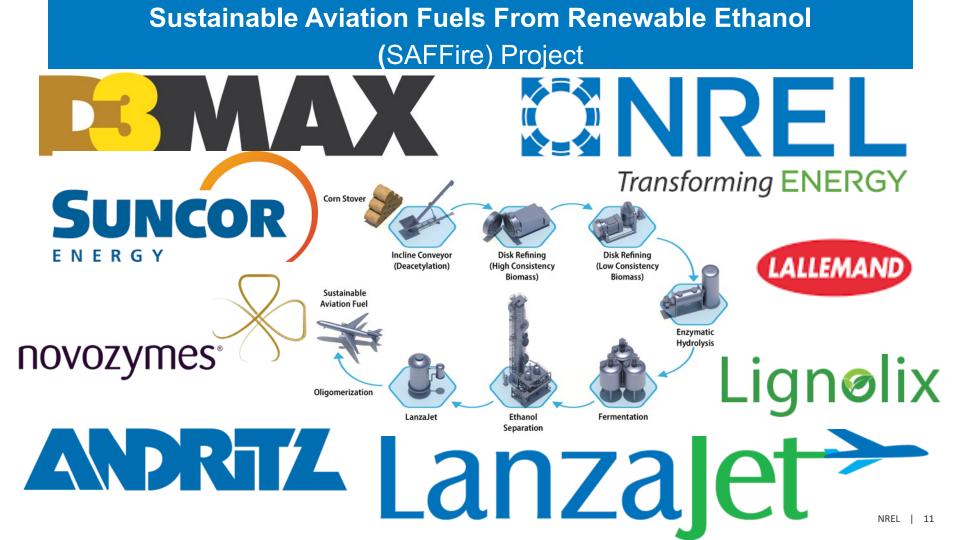
*The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET)

Hypothesis:

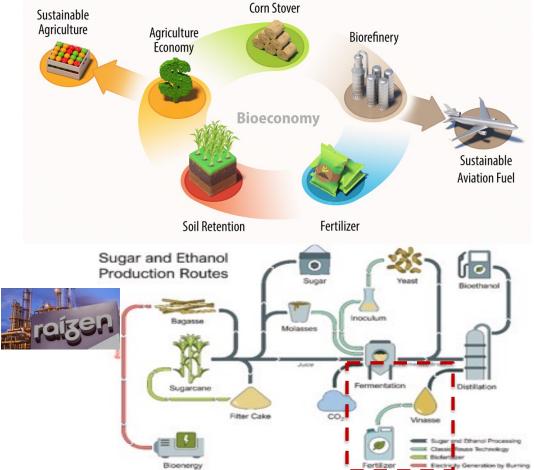
- 1st stage deacetylation uses Na₂CO₃ to neutralize acids in corn stover (acetic, formic, lactic acids and etc.)
 - 2nd stage partial delignification with a reduced amount of NaOH to reduce usage of NaOH related GHG emissions.


2-Stage Deacetylated and Mechanical Refining

xx/xx : Na₂CO₃ (kg/tonne) / NaOH (kg/tonne) (all loadings based on original biomass weight) Enzyme loading: 8 mg CTec3/g of cellulose and 2 mg HTec3/g of cellulose


Achieved target glucose yields (>90%) at 20% solids with an enzyme loading at 10 mg protein/g of cellulose.

Impact of 2-stage Deacetylation on TEA and LCA



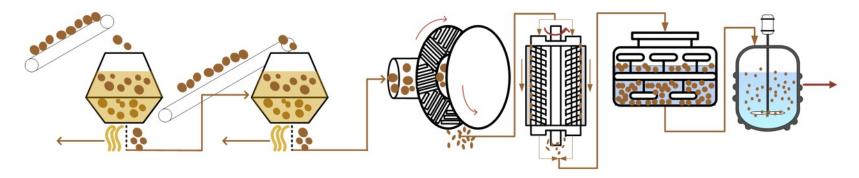
Minimum Fuel Selling Price

- The 2-stage deacetylation contributes nearly \$1/gge reduction on the Minimum ۲ Fuel Selling Price (MFSP) in the FY20 SOT.
- The 2-stage deacetylation also reduces GHG emissions of sugar production by up to 23%.

This Project: Closing the Loop

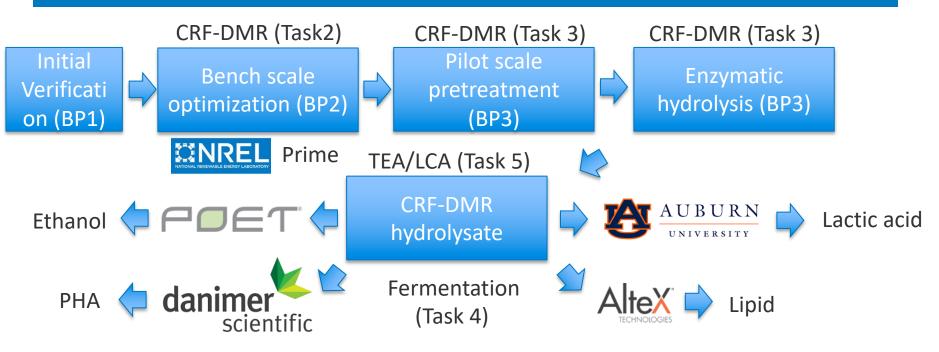
Creating a sustainable system where agricultural waste or by-products are converted into value-added products such as fuels and chemicals through biorefining processes, and these products including process wastes are then used in the agricultural sector, closing the loop of material and energy flow.

Project Goal


The goal of the proposed project is to develop a <u>chemical-recovery-free</u> <u>Deacetylation and Mechanical Refining (CRF-DMR)</u> pretreatment technology:

- Produce sugars at a Minimum Sugar Selling Price (MSSP) ≤ \$0.20/lb.
- Achieve >90% biological upgradability related to pure sugar mock solution using industrial microbial organisms.
- Valorize pretreatment waste liquor as fertilizers to reduce GHG emissions as well as DMR sugar cost by avoiding the chemical recovery step.

1. Approach

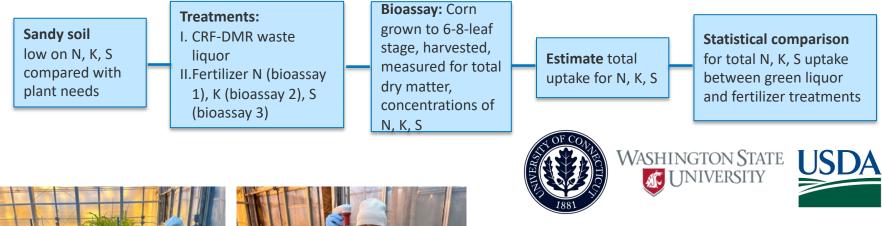

Advancing the current SOT of DMR pretreatment

- Use ammonia and potassium-based salt and alkali to soak and pretreat the biomass to remove acetate and reduce biomass recalcitrance by partial lignin removal
- Apply mechanical refining to further improve biomass digestibility
- The waste chemical from pretreatment will be utilized as fertilizer. The extracted lignin (30-50% of the total) will be returned to soil to enhance soil retention.

Potential Innovations

 Develop a novel chemical-recovery-free DMR process to reduce GHG emissions as well as CAPEX for chemical recovery system

1. Approach (cont.)



Critical Interim milestones (G/NG Q7):

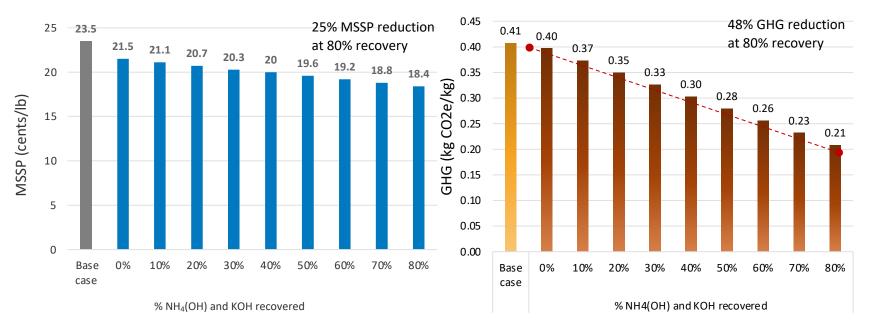
- Show MSSP at \$0.23/Ib using CRF-DMR; Reduce CI by 10%
- Achieve over 75% of sugar convertibility for CRF-DMR sugars related to pure glucose and xylose with at least 3 partners

1. Approach (cont.)

A greenhouse bioassay test will be conducted to evaluate fertilizer replacement value of nitrogen (N), potassium (K), and sulfur (S). (Task 6)

Critical Interim milestones (G/NG Q7):

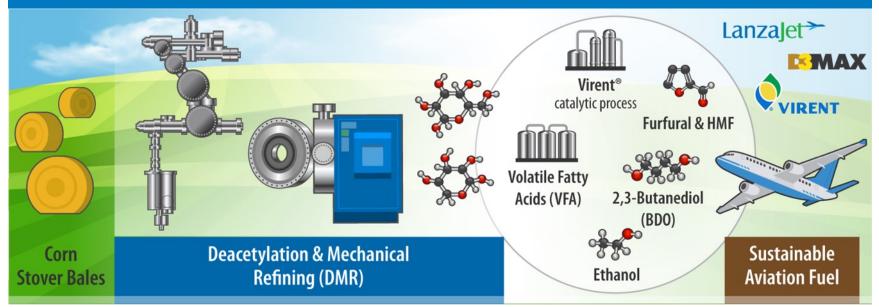
 Increase N, S, and K nutrients availability and uptake by plants by 5% comparing with control plants


2. Progress and Outcomes

DMR Hydrolysate	Concentratio n (g/L)	Yield (%)
Glucose	131.6	92%
Xylose	50.6	81%
Arabinose	4.1	61%
Acetate/furfur al/HMF	0	0%

- Currently at Initial verification
- Met the verification metrics by showing:
 - >80% glucose and xylose yields
 - >90% of PHA yield relate to pure sugar yield
- Fermentability of DMR hydrolysate will be verified using 2 more strains at industry partners

	BP1		BP2				BP3					
Task	Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12
1												
2												a ar
3												
4	_											
5												
6												
	Go/No-G	rO		SMAR	F Milest	one			Active T	ask		


Preliminary TEA and LCA

With 80% recovery of pretreatment waste chemicals as fertilizer

- 25% lower MSSP
- 48% lower GHG

3. Impact: DMR Process as a Clean Sugar Platform

- More robust and reliable compared to dilute acid pretreatment
- Produces highly fermentable cellulosic sugars at 0.20-0.25 cents/lb
- Reduces GHG emissions and increases revenue for corn EtOH plants
- DMR sugar is the platform chemical for SAF production via 2,3 BDO/ Ethanol, VFA, etc.
- By unlocking the SAF production from 150 million tons of corn stover/year, DMR process could produces > 10 billion gallons of SAF from corn stover sugars.
- The project will address the alkali recovery issues for DMR process

3. Impact

- Decarbonize the transportation sector by reducing the energy consumptions during the production of sustainable aviation fuel from terrestrial biomass. (Reduce GHG in biomass sugar production)
- Decarbonize the **industrial sector** by collaborating with industries for producing low carbon biofuels and biochemicals.
- Compared to a lower technology readiness level (TRL) recovery technology, using fertilizer as an end product offers a significant advantage because it has an existing market and would not require extensive process development.
- Develop integrated biorefinery with sustainable agriculture to close the loop of carbon sequestration while improving soil nutrients and retention by combining the processes of bioenergy production and waste stream valorization in agriculture industry.

Summary

- This project is aiming to connect the gap **between Agriculture and Biorefinery Industries**, closing the loop of material and energy flow.
- Our approach is to use ammonia and potassium-based salt and alkali in pretreatment, and valorize the waste chemicals and extracted lignin for fertilizer use and soil retention.
- We will pave the way to integrate lignocellulosic sugar production with commercial fermentation and downstream upgrading process by our industry partners
- Our project is targeted to go through initial verification in April 2023.

Quad Chart Overview

Timeline

- 4/1/2023
- 3/31/2026

	FY22 Costed	Total Award
DOE Funding	\$0	\$2.8MM
Project Cost Share*	\$0	\$700k

TRL at Project Start: 3 TRL at Project End: 4

Project Goal

The goal of the proposed project is to develop a chemical-recovery-free Deacetylation and Mechanical Refining (CRF-DMR) pretreatment technology to produce highly fermentable cellulosic sugars at a Minimum Sugar Selling Price (MSSP) ≤ \$0.20/lb.

End of Project Milestone

- Reduce MSSP to \$0.20/lb
- Achieve over 85% of sugar convertibility
- Introduce agronomic and economic value to the byproduct liquor
 Funding Mechanism

FOA

Project Partners*

- University of Washington at St. Louis USDA
- POET
 Washington State University
- Danimer Scientific Auburn University Altex

Thank you!

www.nrel.gov

This work was authored by the National Renewable Energy Laboratory, operated by Alliance for Sustainable Energy, LLC, for the U.S. Department of Energy (DOE) under Contract No. DE-AC36-08GO28308. Funding provided by U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Bioenergy Technologies Office. The views expressed in the article do not necessarily represent the views of the DOE or the U.S. Government. The U.S. Government retains and the publisher, by accepting the article for publication, acknowledges that the U.S. Government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this work, or allow others to do so, for U.S. Government purposes.

Additional Slides