

#### DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

#### Near-critical Fluids Treatment for Liquefaction and Extraction of Bio-Fuels

April 4, 2023 Systems Development and Integration – Emerging and Supporting Technologies A. JAMES CLARK SCHOOL OF ENGINEERING

> Dr. Ashwani K. Gupta University of Maryland

This presentation does not contain any proprietary, confidential, or otherwise restricted information

# **Project Overview**

 Goal: Develop near-critical integrated liquefaction extraction (NILE) pathway to convert and fractionate various biomass, and waste components into deployable biofuels for significant GHG emission reduction



#### **Heilmeier Catechism:**

- Aim: Utilize supercritical CO<sub>2</sub> to achieve high-quality biocrude from diverse feedstocks for efficient hydrotreating
- Today: Processed solvent in solvothermal techniques → solvent handling, recovery issues and higher costs (ex: water→ process water)
- **Important:** Easier solvent recovery, biocrude fractionation for deployable fuels
- Risks: High-pressure biomass feeding, integration, and hydrotreating heavyfractionates

#### **Near-critical-Integrated-Liquefaction-Extraction (NILE)**

# **Project Overview**



3 key steps in feedstock conversion

- Utilize supercritical CO<sub>2</sub>
- GHG reduction via:
  - Efficient feedstock moisture handling
  - ✓ Improved liquefaction yields
  - ✓ Clean by-product separation
  - ✓ CO<sub>2</sub>-led quality improvement in bio-crude
- Fuel cost reduction via:
  - ✓ Energy reduction
  - ✓ GHG reduction
  - ✓ Feed flexibility
  - ✓ Efficient hydrotreating
  - ✓ Process optimization

# **Technical Approach**

- 3 key processes to improve bio-crude production:
  - sCO2 dewatering process:
    - High throughput;
    - Low water cleaning requirement.
  - Near-critical liquefaction with sCO<sub>2</sub>:
    - Low energy needs;
    - High bio-crude yield;
    - High solvent tunability.
  - sCO2 extraction:
    - Low Oxygen/Carbon content of bio-crude produced;
    - Less hydrotreatment requirement.



#### 3 key steps in feedstock conversion

# **Technical Approach**



#### Key features:

- Feedstock
  characterization
- Compositional analysis and quality-assessment for bio-crude
- Thermal stability
- Kinetics and calorific analysis
- Carbon conversion

#### Challenges:

- Waste stream (chars) handling
- Complex chemistry and co-solvent behavior

## Management Approach



# Cost and LCA Modeling Approach

- Create a model based on the cost of ownership of equipment/facilities.
  - The model proposed will be stochastic.
  - Inputs:
    - Process/equipment/facilities procurement and operation costs
    - > Optimization for GHG reduction (Go/No-go decision point)
    - Weighted average cost of capital (WACC)
    - Material and labor costs
    - Equipment/facilities operational life
    - ➤ Yield
    - Reliability (and maintenance costs)
    - Cost of disposal of unusable byproducts

# **Risks Analysis and Mitigation Strategies**



## **DEI and Outreach Approach**

- Mentoring UMD Center for Minorities in Science & Engineering undergraduate students' research; Univ. Texas, El Paso underrepresented Hispanic minorities student research internship at UMD & faculty seminars at UTEP;
- Community impact from direct to Prince George's public school, high school student research interns (during years 1-4), and The Maryland Day - community outreach (annual event).
- Diversity training: ADVANCE TERP Allies bias training (in year 1) and diversity awareness training (during years 2-4 held annually);

| Table 1. Diversity objective and milestones          |  | FY1 |    |      | FY2 |    |      | FY3 |    | FY4  |    |    |
|------------------------------------------------------|--|-----|----|------|-----|----|------|-----|----|------|----|----|
|                                                      |  | Sp  | Su | Fall | Sp  | Su | Fall | Sp  | Su | Fall | Sp | Su |
| Objective 1. Diversity training                      |  |     |    |      |     |    |      |     |    |      |    |    |
| Milestone 1.1 ADVANCE TERP Allies bias training      |  |     |    |      |     |    |      |     |    |      |    |    |
| Milestone 1.2 Diversity awareness training           |  |     |    |      |     |    |      |     |    |      |    |    |
| Milestone 1.3 Participant climate questionnaires     |  |     |    |      |     |    |      |     |    |      |    |    |
| Objective 2. Fostering diversity in future workforce |  |     |    | -    |     |    |      |     |    |      |    |    |
| Milestone 2.1 CMSE undergraduate student research    |  |     |    |      |     |    |      |     |    |      |    |    |
| Milestone 2.2 McNair Scholars research projects      |  |     |    |      |     |    |      |     |    |      |    |    |
| Milestone 2.3 UTEP UMR graduate students research    |  |     |    |      |     |    |      |     |    |      |    |    |
| Milestone 2.4 Participant climate questionnaires     |  |     |    |      |     |    |      |     |    |      |    |    |
| Objective 3. Community impact                        |  |     | -  |      |     |    |      |     |    |      |    |    |
| Milestone 3.1 PGCPS high school research projects    |  |     |    |      |     |    |      |     |    |      |    |    |
| Milestone 3.2 Maryland Day-Renewable energy booth    |  |     |    |      |     |    |      |     |    |      |    |    |
| Milestone 3.3 Participant feedback via PGCPS teacher |  |     |    |      |     |    |      |     |    |      |    |    |



## **Progress and Outcomes**

- Project Schedule:
- Task 1.0: Initial Verification
- Task 2.0: Test-rig design, parts acquisition and building scaled test components (M4-M6)
- Task 3.0: Development of sCO<sub>2</sub>-based dewatering of bio-feedstocks (M4-M30)
- Task 4.0: Development of near-critical liquefaction of bio-feedstocks (M4-M36)
- **Task 5.0:** Development of sCO<sub>2</sub> fractionation of biocrude (M13-M36)
- **Task 6.0:** Continuous demonstration of process components (M31-M48)
- **Task 7.0:** Process modeling and optimization for lifecycle and cost-analysis (M7-M48)

- Go/No-Go Decisions:
  - **GNG#1:** Initial verification
- **GNG#2:** Moisture control, yield improvement, heating value>30 MJ/kg, water content<1% [M18]
- GNG#3: GHG reduction>70%,
  biocrude compatibility with crude
  [M36]
- End goal: 100/500 hrs operation, cost reduction [M48]

### **Progress and Outcomes**



\*Wang Y, Wang H, Lin H, Zheng Y, Zhao J, Pelletier A, et al. Biomass and Bioenergy 2013;59:158–67.

## Impact

- Improve bio-carbon penetration (higher biocarbon in refining) in aviation and long-haul fuel needs compared to conventional technologies.
- NILE processes utility and their incorporation into existing petroleum refining, and emerging sCO<sub>2</sub>-power-cycle technologies.

| Features       | NILE                         | Fast-pyrolysis       | HTL                 |  |  |
|----------------|------------------------------|----------------------|---------------------|--|--|
| Temperature    | 150-350 °C                   | 500-600 °C           | 250-450 °C          |  |  |
| Pressure       | 100-275 bar                  | Atmospheric          | 100-350 bar         |  |  |
| Water residue  | Fresh and                    | ~20-30% in oil as    | 4-15% in oil & rest |  |  |
|                | separated                    | azeotrope            | contaminated        |  |  |
| Metal content  | Separated in                 | In char              | Contaminated HTL    |  |  |
|                | residue                      | III CITAI            | oil from catalysts  |  |  |
| Acidity        | Lowered phenolic<br>acids    | pH=2-3 (oil can      | pH=8-9 (oil can     |  |  |
|                |                              | precipitate when     | precipitate when    |  |  |
|                |                              | adjusted)            | adjusted)           |  |  |
| Viscosity      | Only by 4 cSt from           | 22 cSt increase over | Increase by >5      |  |  |
| increase while | sCO <sub>2</sub> extracts of | 60 days              | times over 60 days  |  |  |
| ageing         | bio-oil over 60 days         |                      |                     |  |  |

### Impact

- sCO<sub>2</sub>-led quality improvement in bio-crude:
  - reduction in the metal, water and oxygenate content
    - These reductions help to improve biocrude ageing stability, heating value and lower viscosity
  - Improvement in hydrotreatment process:
    - No coke formation;
    - Low oxygen content (down to 1.6 wt.% compared to 3.1 wt.% from conventional hydrotreated bio-crude).
    - Better boiling point distribution, with no fractions above the diesel fuel range and larger amount of the low boiling fractions (gasoline and jet fuel).



Improved crude properties via sCO<sub>2</sub>-extraction\*

\*Nikolaos Montesantos, Rudi P. Nielsen, and Marco Maschietti Industrial & Engineering Chemistry Research **2020** 59 (13), 6141-6153

### Summary

- Near-critical-integrated-liquefaction-extraction (NILE) route to convert different biomass, sorted wastes and wet-wastes into high-quality bio-crude with capabilities to replace petroleum crude.
- Development of the 3 key NILE components for an equivalent throughput of 0.5 dry tons/day
- Key components:
  - sCO2-dewatering;
  - near-critical liquefaction;
  - sCO<sub>2</sub>-extraction of bio-crude.
- About to complete Task 1.0: Initial verification:
  - ✓ Process information and data supporting the technology readiness level of the overall process.
- Project target: Achieve GHG emission reduction beyond 70% and for fuel costs to reach the \$2.5/GGE mark.
- Process modeling, lifecycle assessment (LCA) and technoeconomic analysis (TEA)

### **Quad Chart Overview**

#### Timeline

- 10/1/2021
- 10/31/2026 ٠

|                            | FY22<br>Costed              | Total Award | appli<br>(sCC<br>Enc                            |
|----------------------------|-----------------------------|-------------|-------------------------------------------------|
| DOE<br>Funding             | (10/01/2021 –<br>9/30/2022) | \$3,101,362 | cond<br>crude<br>while<br>than<br>capa<br>proje |
| Project<br>Cost<br>Share * | \$775,340                   |             | Scale<br>and b                                  |
| TRL a                      | t Project Start:            | TRL of 3    | Pro                                             |

#### **Project Goal**

Develop a near-critical-integrated-liquefactionextraction (NILE) pathway to convert various biomass, and waste components into deployable biofuels for aviation and long-haul transportation cations using supercritical carbon dioxide D2) as solvent.

#### d of Project Milestone

end of project goal is to achieve optimized litions for the tested feedstocks where the bioe extract can replace the petroleum crude achieving GHG emission reduction greater 70% and fuel costs of \$2.5/GGE. Integration bility of the components developed in this ect.

#### iding Mechanism

e-up of biotechnologies – pre-pilot for biofuels pioproducts.

### TRL at Project End: TRL of 5

#### iect Partners

Electronic Systems Cost Modeling Laboratory.

### **Additional Slides**

### **Dewatering**

- Removing moisture content of biomass leads to a reduction of the processing costs, as well as of the costs for storage and transport.
- Biomass drying is a critical parameter when using biomass for energy purposes since moisture content has a marked effect on the conversion efficiency and heating value.
- sCO<sub>2</sub> dewatering reduces capillary-induced tensile stresses, observed during air-drying, allowing CO2 to penetrate into the pores of biomass, preserving its structure while removing water levels.
- CO2 low critical temperature (31.1°C) allows drying process to occur at relatively low temperatures, lower than in a conventional drying.



Dewatering of wet-organic wastes using sCO<sub>2</sub> via water displacement.

### Hydrotreating sCO<sub>2</sub> Extracted Biocrude

- Absence of coke in hydrotreating sCO<sub>2</sub> extract
  - Reduce the H<sub>2</sub> consumption (milder hydrotreatment)
  - Maintained catalyst performance
- Large reduction of the molecular weight
  - limiting less desirable cracking reactions
- Low viscosity and low metal content



Supercritical carbon dioxide hydrotreatment extraction utilizing commercial CoMo and NiMo

catalysts\*. \*Montesantos N, Kohli K, Brajendra K, Maschietti M. Ind. Eng. Chem. Res. 2022, 61, 15114–15124. \*Montesantos N, Nielsen R.P, and Maschietti M. Ind. Eng. Chem. Res. 2020 *59* (13), 6141-6153





# Approach

