

# 2023 PROJECT

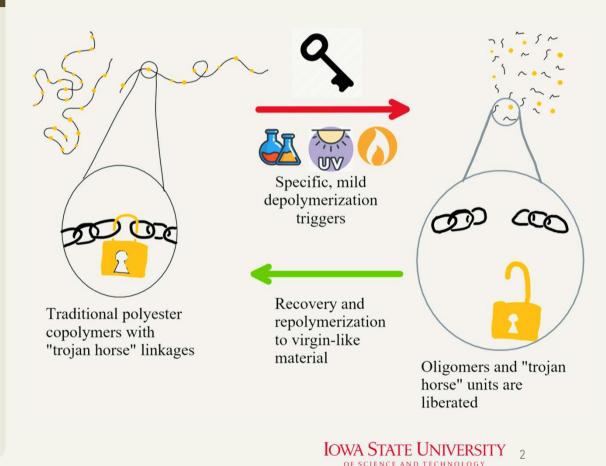
U.S. DEPARTMENT OF ENERGY BIOENERGY TECHNOLOGIES OFFICE

### Trojan Horse Repeat Sequences for Triggered Chemical Recycling of Polyesters for Films and Bottles

April 4, 2023

**Plastics Deconstruction and Redesign** 

Chemical and Biological Engineering


AND TECHNOLOGY

DIAGEO

## **Project Overview**

#### Can plastics be designed with end-of-life in mind?

- Mechanical recycling is limited in scope, cumbersome, and yields low quality product
- Biodegradables are only part of the solution to Plastic Solid Waste
  - Nobody wants a biodegradable truck bumper
  - New materials require new infrastructure and design
- Can we modify plastics we already use to fall apart when exposed to specific stumuli?
  - Salt water for marine-safe packaging
  - Dilute metal cations at elevated temperature for durable goods
  - Dilute bases at moderate temperature for general single use packaging



## 1 - Approach

#### **Project Team – Main Participants**



Student



Val Camelo CBE Senior



Aadhi Subbiah **CBE Freshman** 

Shiva Karimadekordi

**CBE Phd Student** 



Demetrius Finley Chemistry PhD

Sharan Raman **CBE Phd Student** 

Ana McCaslin **CBE** Junior



Dhananjay Dileep CBE Phd Student



**IOWA STATE UNIVERSITY** 

OF SCIENCE AND TECHNOLOGY

Michael Forrester CBE Phd Scientist



Alexsei Ananin **Chemistry PhD Student** 



Patrick Wang CBE Postdoc



**Eric Cochran** CBE Professor



Nacu Hernandez

**CBE Phd Scientist** 

Madhura Joglekar

CBE Phd Scientist

George Kraus Chemistry Professor



Mark Mba-Wright M. Eng. Professor



DIAGEO

**Rich Hoch** 

Senior Manager

Packaging Technology

Kevin

Lewandowski

Staff Scientist

Erik Hagberg Manager

ZADM Karl Albrecht Manager Catalysis R&D



**Chicheng Ma** Process Chemist







## 1 - Approach

#### **Project Team – Roles and Responsibilities**

IOWA STATE UNIVERSITY



- Small molecules
- Polymers
- Life Cycle Assessment





- Manufacturing feasibility
- Polymer Scale-Up
- Polymer
   Processing
- End-User of Films

#### 





Erik Hagberg Karl Albrecht Manager Manager Industrial Chemicals R&D Catalysis R&D

arl Albrecht Chicheng Ma Manager Process Chemist

- Biobased feedstocks
- Manufacturing Feasibility
- Technoeconomic data





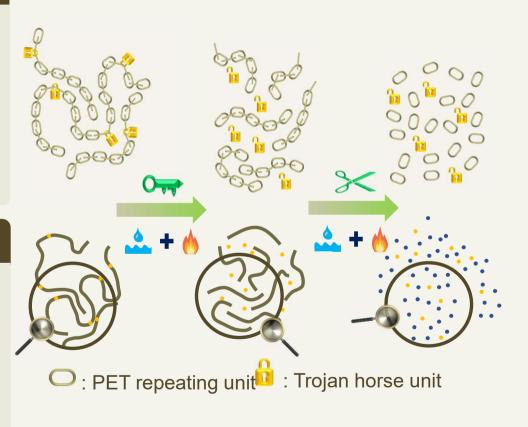
Rich Hoch Senior Manager Packaging Technology

- Packaging Design
- Bottle Manufacturing
- PET recycling ecosystem
- End-User of Bottles

## 1 – Approach

#### **Team Communication**

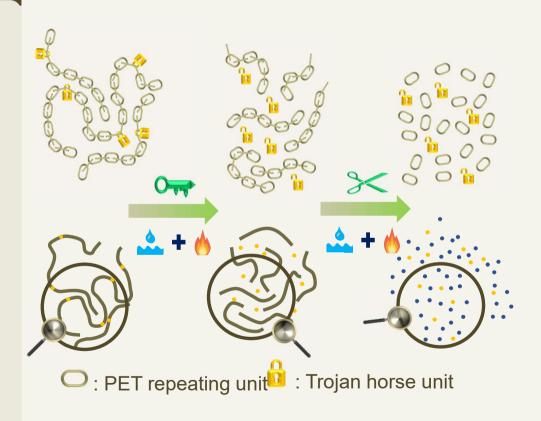
- Research teams communicate regularly in person, via Slack, and email.
- Each site has regular biweekly project meetings.
- All-hands meetings (ISU, ADM, 3M, Diageo) are held via video-conference every 4-6 weeks.


#### **Related Project Interaction**

 Ph. D. graduate Dr. Ting-Han Lee now a postdoc at IBM, working on a BOTTLE project in collaboration with NREL



Ph. D. student Dhananjay Dileep, Cochran, and Nic Rorrer planning application for Office of Science Graduate Student Research Award funded internship at NREL



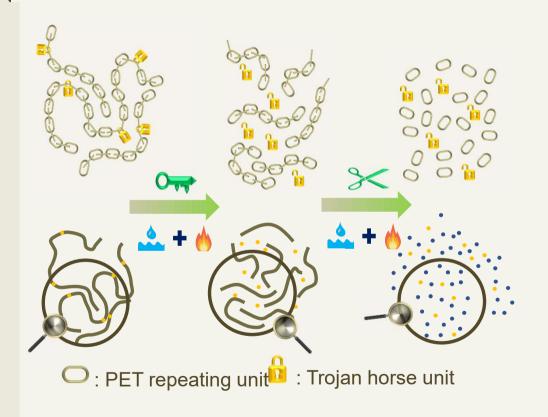



## 1 – Approach

#### **Diversity, Equity, and Inclusion**

- 2 of 6 Principal Investigators identify with minoritized identities.
- 40% of researchers identify as female
- Successful graduate recruiting from minority serving institutions, e.g. Tuskegee University
- Project interacts with ISU outreach programs such as Science Bound: pre-college through college program to increase the number of racially and ethnically minoritized Iowa youth in STEM

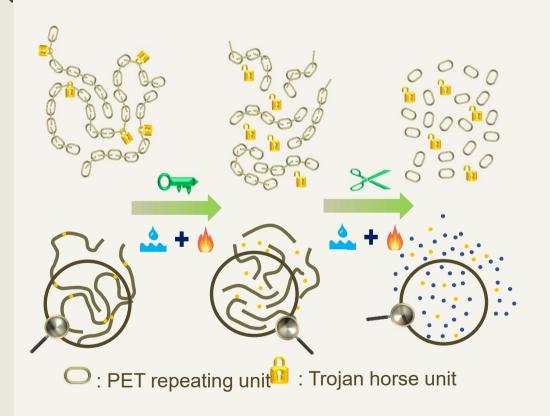



## 1 - Approach

Budget Period 2 – Prototype Chemically Circular PET

BP2 Go-No Go Objective (*Attained*)

Synthesis of at least 5 g PET/TH

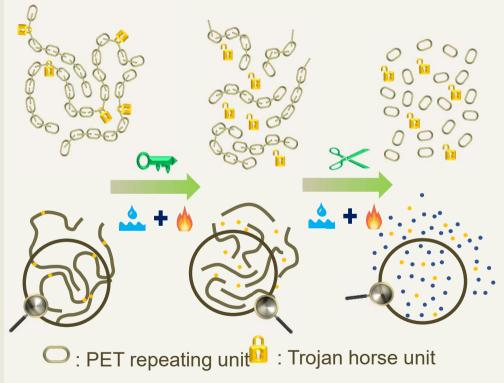

- to at least 15 kDa
- decomposition to at least
  25 wt % monomers.
- At least 1 g of recovered monomers/oligomers will be repolymerized to at least 1 kDa (via GPC) and characterized by DSC.



## 1 – Approach

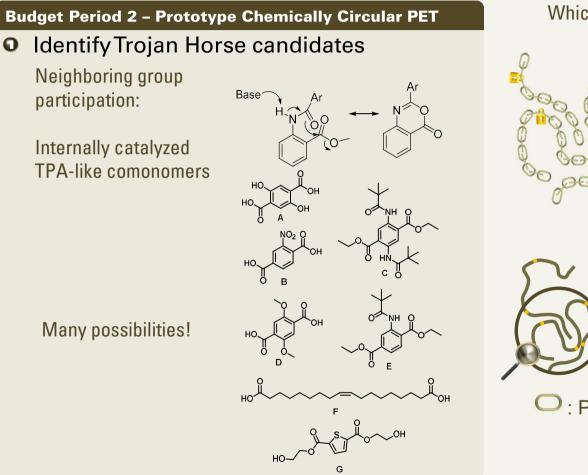
#### Budget Period 3 – Scale-up, optimize, and demonstrate

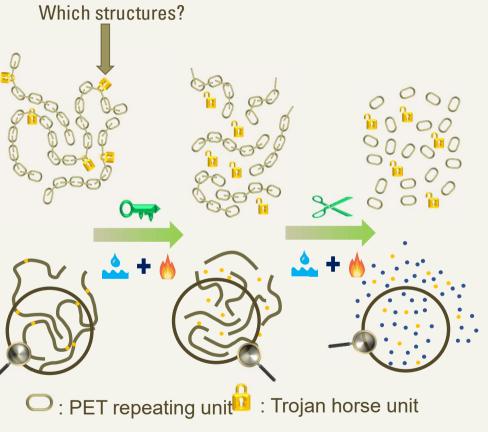
- BP3 Go-No Go Objective (*In-progress*)
- End of Project Goal: The project team demonstrates the synthesis of at least 10 kg PET/TH
  - with at least 50 wt % non-food-starch-based content to at least 15 kDa and
  - subsequently shows decomposition to at least 50 wt % monomers or polymerizable oligomers (MPOs).
  - The MPOs can be repolymerized to at least 10 kDa recycled PET/TH at 50% yield or greater.
  - Compared to virgin PET, barrier performance of recycled PET/TH is at least 50% (no greater than 200% permeability) with respect to water, ethanol, CO<sub>2</sub>, and O<sub>2;</sub>
  - tensile strength of at least 50% of virgin PET is achieved.




### 1 – Approach

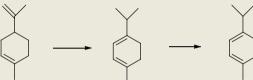
#### **Risk Mitigation**


#### Risk


| Risk                              | Mitigation                                                                                                                                                             |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inadequate properties             | Several Trojan Horse candidates.                                                                                                                                       |
| Depolymerization too<br>costly    | Several depolymerization<br>pathways (hydrolysis,<br>methanolysis, glycolysis)<br>Several Trojan Horse<br>designs change<br>depolymerization condition<br>requirements |
| Monomer recovery too<br>difficult | Several depolymerization<br>pathways (hydrolysis,<br>methanolysis, glycolysis)                                                                                         |






0





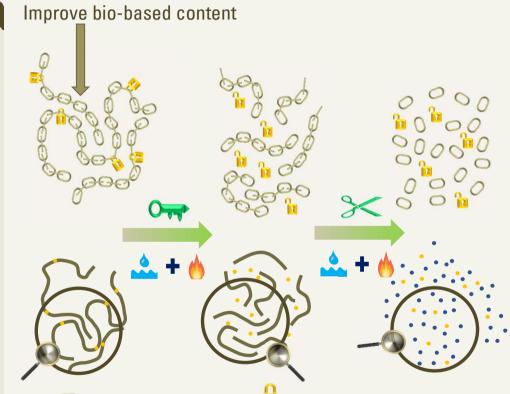
IOWA STATE UNIVERSITY 10 OF SCIENCE AND TECHNOLOGY

Budget Period 2 - Prototype Chemically Circular PET
Explore non-food routes to bio-TPA



**Limonene** Citrus peel waste extract

о́он **BioTPA** 300,000,000 *Pound per year potential* 


HO, O

#### Dehydrogenation

- 100% Conversion
- 75% isolated yield
- Reaction time 2h

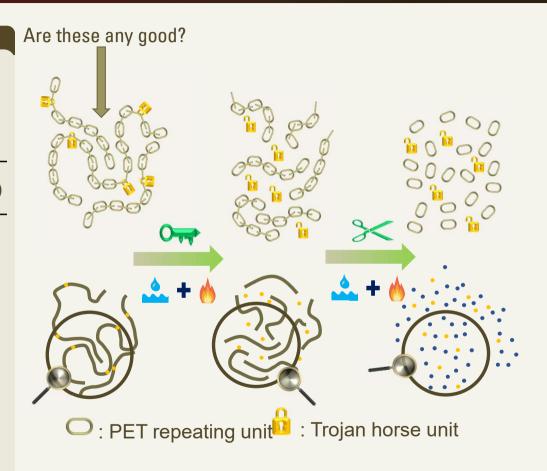
#### Oxidation

- Mid-Century oxidation
- Explore to improve yield



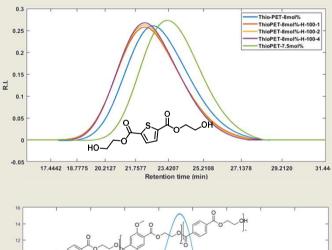
igodows : PET repeating unit ${}^{igodows}$  : Trojan horse unit

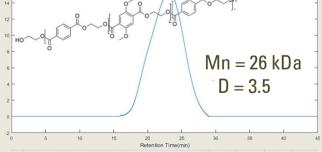


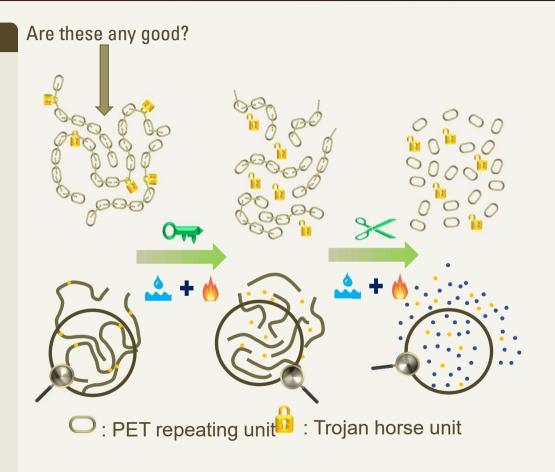

Make examples of these **Budget Period 2 – Prototype Chemically Circular PET Prepare PETTH copolymers** Θ 077 ◯ : PET repeating unit : Trojan horse unit IOWA STATE UNIVERSITY 12

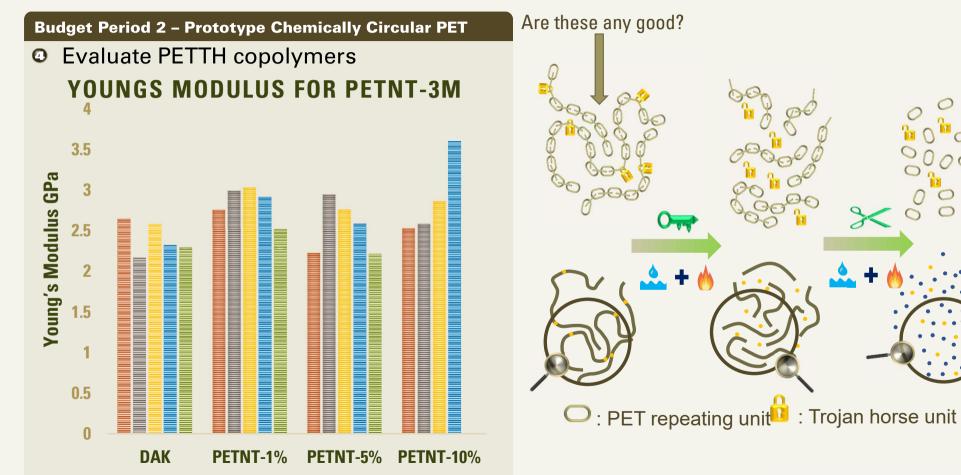
OF SCIENCE AND TECHNOLOGY

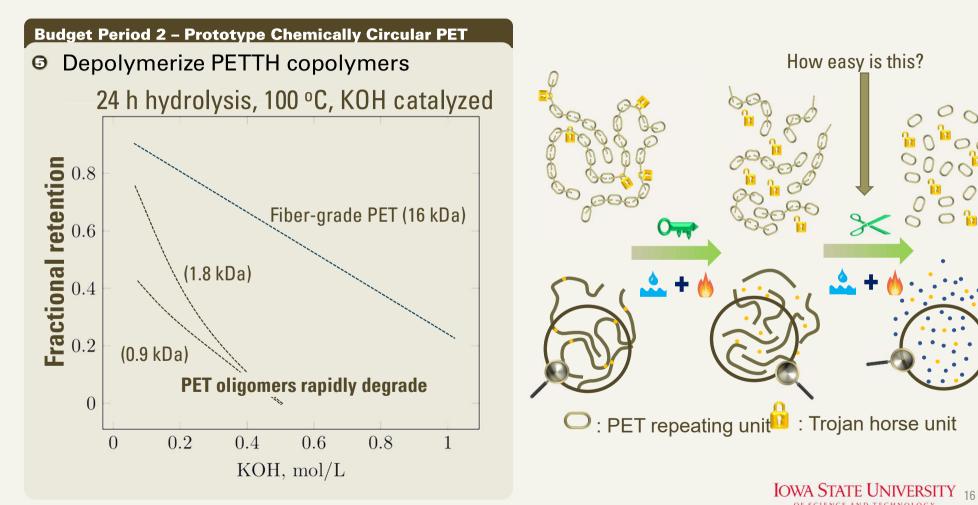
Budget Period 2 – Prototype Chemically Circular PET

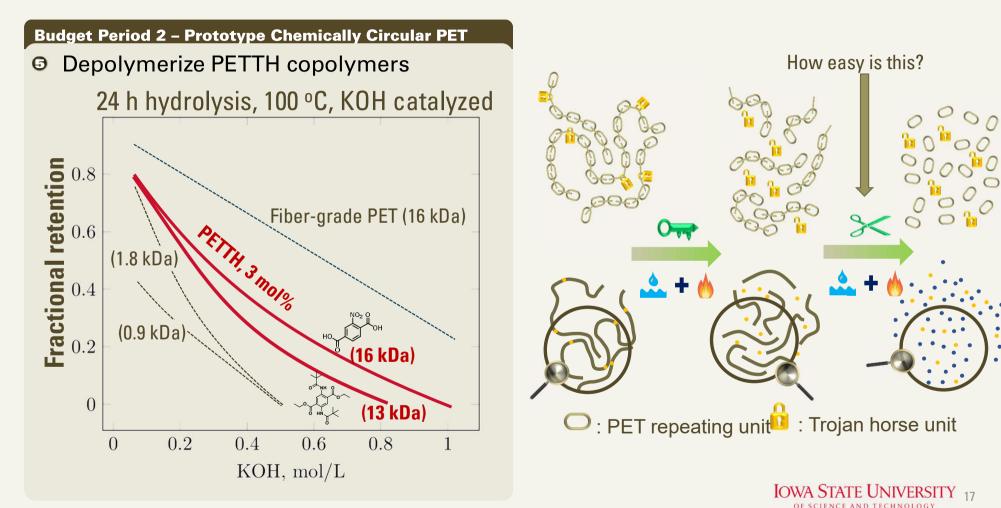

O Evaluate PETTH copolymers

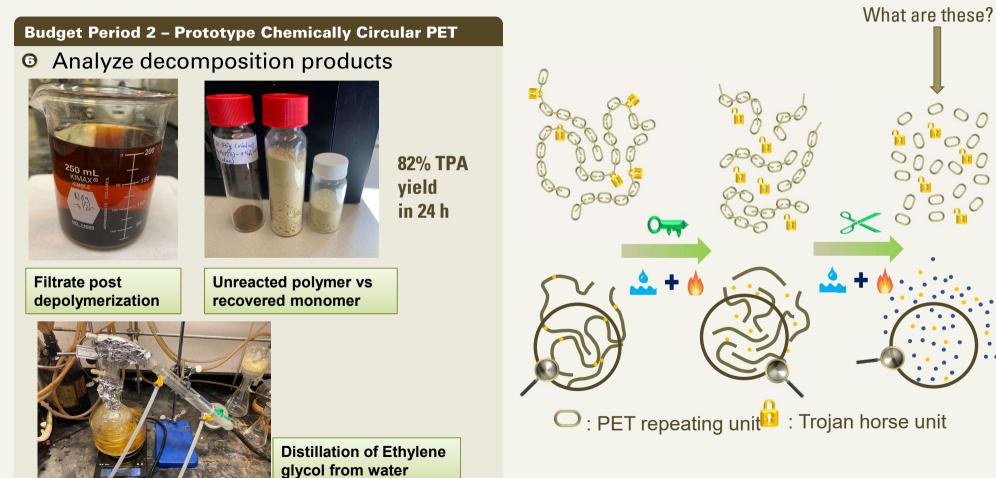

|                |             |      | 0    |         |         |
|----------------|-------------|------|------|---------|---------|
| Sample<br>name | % Inc.      | Mn   | Mw   | Tg (°C) | Tm (°C) |
| PET (polyscie  | ence) 100/0 | 18.7 | 38.0 | 77.3    | 253.4   |
| Dak-PET        | 100/0       | -    | -    | 77.5    | 245.32  |
| PETNT-1        | 95/5        | 15.4 | 46.8 | 70.3    | 239.40  |
| PETNT-2        | 97/3        | 21.4 | 70.1 | 73.5    | 244.4   |
| PETNT-3        | 96/4        | -    | -    | 78.2    | 236.98  |
| PETNT-4        | 89.5/11.5   | 22.1 | 61.4 | 74.3    | 230.7   |
| PETNT-repoly   | y 95/5      | 9.3  | 23.9 | 82.0    | 224.5   |
| PETNT-1%       | 99/1        | 12   | 29.6 | 86.8    | 252.9   |
| PETNT-5%       | 95/5        | 11.8 | 37.7 | 81.3    | 244.5   |
| PETNT-10%      | 90/10       | 13.3 | 57.4 | 71.1    | 218.3   |
|                |             |      |      |         |         |



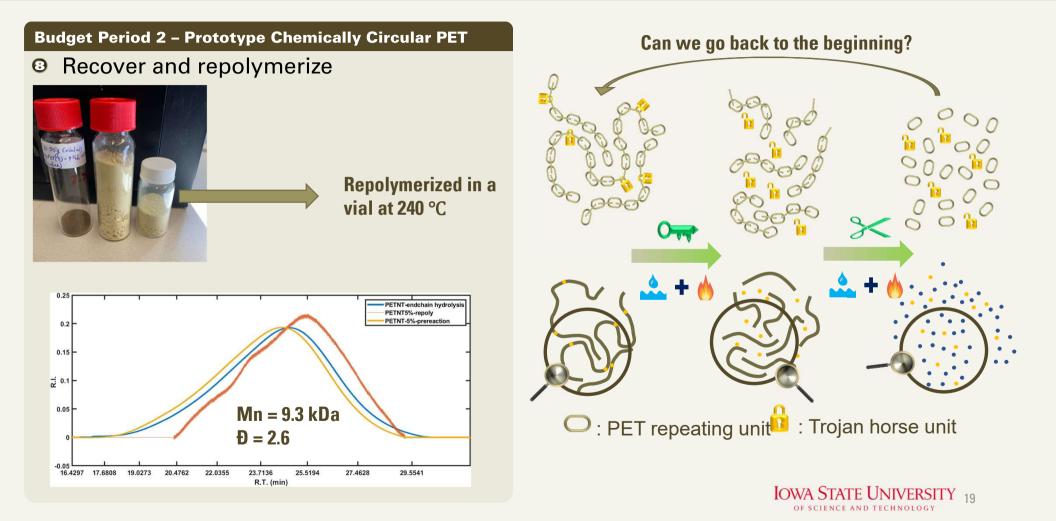


**Budget Period 2 – Prototype Chemically Circular PET** 


Evaluate PETTH copolymers





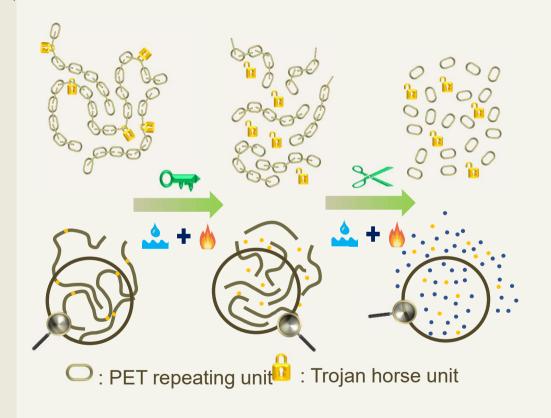






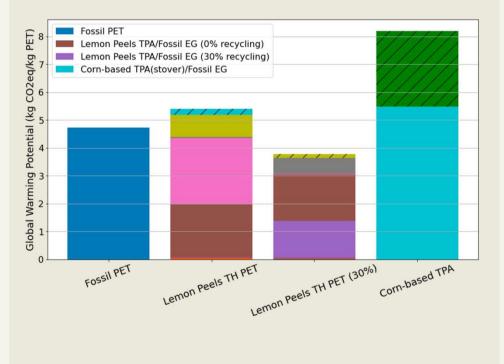

IOWA STATE UNIVERSITY 18 OF SCIENCE AND TECHNOLOGY

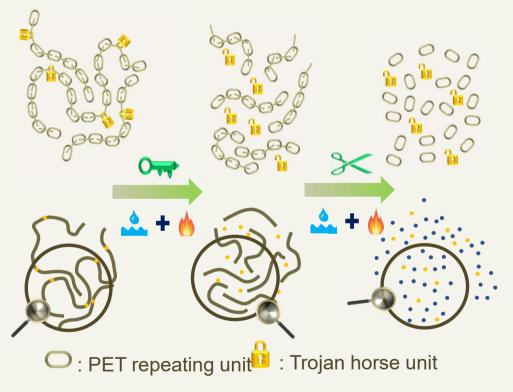



OH

#### Budget Period 3 – Scale-up, optimize, and demonstrate

Scale-up


- 3M made 2 kg ea of 3 PETTH Compositions
- Biaxially oriented films are being evaluated
- New compositions with minimal discoloration are planned
- 100 pounds of bottle production with Diageo on track for late 2023 / early 2024.






Budget Period 3 – Scale-up, optimize, and demonstrate

#### **O** Life cycle assessment







### 3 – Impact

#### **Journal Articles**

#### • Recently Accepted:

 Lee, Ting-Han; Yu, Huangchao; Forrester, Michael; Wang, Tung-ping; Shen, Liyang; Liu, Hengzhou; Li, Jingzhe; Li, Wenzhen; Kraus, George; Cochran, Eric W. "Dihydroxyterephthalate: A Trojan Horse PET Counit for Facile Chemical Recycling". Advanced Materials, February 2023. https://doi.org/10.1002/adma.202210154. In Press.

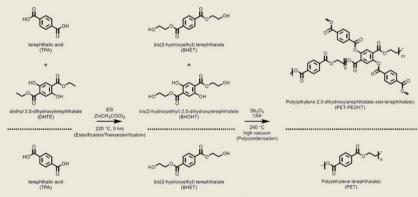
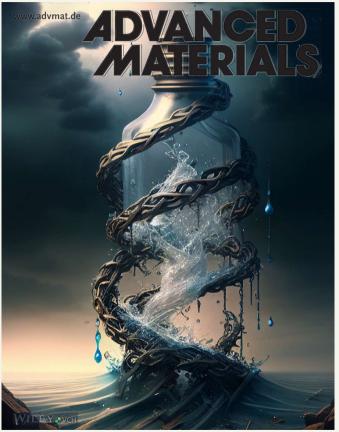




Figure 2: Step-growth polycondensation of pure PET and PET-PEDHT copolymer via a two-step polymerization



Draft of proposed cover art



### 3 – Impact

#### **Journal Articles**

#### In Progress

- This Trojan Horse operates through oxidative cleavage
- This Trojan Horse shows high performance in water with little discoloration

#### **Patent Application**

#### Filing (ADM)

Process innovations related to lemon peel-to-TPA conversion.

OH

#### **Patent Application**

- Provisional filing Jan 2023 (ISU)
  - Several polymer compositions covering PET/TH concept

#### **Student education**

- Sharan Raman, M. Sc. 2022
- Dhananjay Dileep, M. Eng. 2022 (ongoing Ph. D.)
- Ting-Han Lee, Ph. D. 2022
- Patrick Wang, Ph. D. 2022
- Brianna Burton, B. Sc., admitted to 5 top 10 Ph.
   D. programs
- Other undergraduates mentored: Jacques Attinger, Emma Fetters, Elijah Erickson, Eagan Kirk, Kyle Tsujimoto, Aadhi Subbiah, Jefferson Roberts-Dobie, Ana Soares, Jacob Gebis



## Summary

Plastics can be re-designed for responsible end-of-life management ISU, ADM, 3M, and Diageo are an integrated team ISU – technology development and prototyping ADM – Biobased feedstock development SM – Polymer manufacturing and end-user Diageo – Bottle manufacturing and recycling The PET/TH copolymerization strategy for chemical recycling is effective Scale-up and bottle demonstration ongoing over next 12 months Life cycle assessment will guide selection of "optimal" PET/TH design.

#### **Quad Chart Overview**

| Timeline <ul> <li>4/1/2021</li> <li>3/31/2024</li> </ul> |                                          |                                                    | Project Goal<br>To demonstrate the technical performance,<br>commercial viability, and life cycle impact of a<br>highly recyclable biobased polyethylene<br>terephthalate/Trojan Horse (PET/TH) copolymer.                                                                                                                                                                                          |  |
|----------------------------------------------------------|------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                          | FY22<br>Costed                           | Total Award                                        | End of Project Milestone<br>The project team demonstrates the synthesis of at least 10<br>kg PET/TH with at least 50 wt % non-food-starch-based<br>content to at least 15 kDa and subsequently shows                                                                                                                                                                                                |  |
| DOE<br>Funding                                           | (10/01/2021 –<br>9/30/2022)<br>\$655,968 | (negotiated total<br>federal share)<br>\$2,165,000 | decomposition to at least 50 wt % MPOs. The MPOs can<br>be repolymerized to at least 10 kDa recycled PET/TH at<br>50% yield or greater. Compared to virgin PET, barrier<br>performance of recycled PET/TH is at least 50% (no<br>greater than 200% permeability) with respect to water,<br>ethanol, CO2, and O2; tensile strength of at least 50% of<br>virgin PET is achieved<br>Funding Mechanism |  |
| Project<br>Cost<br>Share *                               | \$158,509                                | \$ 557,420                                         | DE-FOA-002245 Joint FY20 Bioenergy and<br>Advanced Manufacturing FOA BOTTLE: Bio-<br>Optimized_Technologies to keep Thermoplastics out<br>of Landfills and the Environment                                                                                                                                                                                                                          |  |
| TRL at Project Start: 2<br>TRL at Project End: 5         |                                          |                                                    | <ul> <li>Project Partners*</li> <li>Iowa State University</li> <li>Archer-Daniels Midland</li> <li>3M</li> </ul>                                                                                                                                                                                                                                                                                    |  |
| *Only fill out if applicable.                            |                                          |                                                    | • Diageo                                                                                                                                                                                                                                                                                                                                                                                            |  |