

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Biochemical Conversion / Lignin Utilization – Day 2

Beau Hoffman, Lisa Guay

Format:

- Each presentation is 20 minutes
 + 5 minutes of panel Q&A
 + 5 minutes of audience Q&A
- Ryan Lawrence will be giving time checks (10 min, 5 min, 1 min remaining)
- Please do not take photos (ALL presentations will be posted publicly)

Peer Review Agenda – Day 2

			DAY 5 – Friday, April 7, 202	3	·
8:00 AM	8:30 AM	30	Registration, Breakfast	All	
8:30 AM	8:45 AM	15	Technology Area Daily Intro	BETO	
8:45 AM	9:15 AM	30	Continuous Enzymatic Hydrolysis		
			Development	NREL	Mike Himmel
9:15 AM	9:45 AM	30	Production of Low-Cost and Highly	NREL	Xiaowen Chen
			Fermentable Sugar from Corn Stover via		
			Chemical-Recovery-Free Deacetylation and	l	
			Mechanical Refining (CRF-DMR) Process		
9:45 AM	10:15 AM	30	Sugar is the New Crude	AVAPCO LLC	Kim Nelson
10:15 AM	10:30 AM	15	Break	All	•
10:30 AM	11:00 AM	30	Biological Upgrading of Sugars	NREL	Jeffrey Linger
11:00 AM	11:30 AM	30	Bench Scale Research and Development	NREL	Nancy Dowe
11:30 AM	12:00 PM	30	Cell Free & Immobilization Technologies	NREL	Yannick Bomble
			(CFIT) to Produce Sustainable Aviation		
			Fuels and Other Bioproducts		
12:00 PM	1:00 PM	60	Lunch	A11	
1:00 PM	1:30 PM	30	Towards Economical Cell-free Isobutanol	Invizyne Technologies, Ind	e Paul Opgenorth
			Production and Cell-Free Production of		
			Terpenoid Chemical Astaxanthin Using		
			Crude Cofactor Lysates		
1:30 PM	2:00 PM	30	Engineered reversal of the β -oxidation cycle	I anzatach (an bahalf of	
			in clostridia for the synthesis of fuels and	Lanzatech (on benair of	Shivani Garg
			chemicals	Normwestern University)	
2:00 PM	2:30 PM	30	Fermentative production of Tulipalin A: a	Arzeda	Alex Zanghellini
			next-generation, sustainable monomer that		
			drastically improves the Performance of		
			pMMA		
2:30 PM			Adjourn		

BETO's Strategy for Today's Presentations

Convertible Clean Sugars

Area Goal: Demonstrate sugars with:

- >90% convertibility (titer/rate/yield) relative to dextrose (as demonstrated by multiple partners)...
- At a cost of <\$0.20/lb...
- From multiple sustainable feedstocks...
- While quantifying sustainability impacts

DAY 5 – Friday, April 7, 2023						
8:00 AM	8:30 AM	30		Registration, Breakfast	All	
8:30 AM	8:45 AM	15		Technology Area Daily Intro	BETO	
8:45 AM	9:15 AM	30	2.4.1.101	Continuous Enzymatic Hydrolysis Development	NREL	
9:15 AM	9:45 AM	30	2.2.3.200	Production of Low-Cost and Highly Fermentable Sugar from	NREL	
				Corn Stover via Chemical-Recovery-Free Deacetylation and		
				Mechanical Refining (CRF-DMR) Process		
9:45 AM	10:15 AM	30	2.4.3.201	Sugar is the New Crude	AVAPCO LLC	

Biochemical Pathways Through the Years

Area Goal: Move beyond proof of principle for the following:

- Achieving co-factor recycling/re-use
- Cell-free 'prototyping'
- Immobilization/stabilization of enzymes

11:30 AM	12:00 PM	30	2.5.4.101	Cell Free & Immobilization Technologies (CFIT) to Produce	NREL
				Sustainable Aviation Fuels and Other Bioproducts	
12:00 PM	1:00 PM	60		Lunch	All
1:00 PM	1:30 PM	30	2.5.6.203	Towards Economical Cell-free Isobutanol Production and Cell-	Invizyne Technologies,
				Free Production of Terpenoid Chemical Astaxanthin Using	Inc
				Crude Cofactor Lysates	
1:30 PM	2:00 PM	30	2.5.3.206	Engineered reversal of the β-oxidation cycle in clostridia for	Lanzateen (on benan of
				the synthesis of fuels and chemicals	Northwestern
2:00 PM	2:30 PM	30	2.3.4.208	Fermentative production of Tulipalin A: a next-generation,	Arzeda
				sustainable monomer that drastically improves the Performance	
				of pMMA	

Relevant FOAS / Funding Opportunities

Clean Sugars FOA	 Clean Cellulosic Sugars (FY21) 	<\$0.20/lb >90% convertibility demonstrated with at least 3 downstream technologies	NREL AVAPCO
Advanced Bioprocessing	 Advanced Bioprocessing FOA (FY19) 	Demonstrate cell free production >0.5 g/L/hr for >72 hours	Invizyne
Other FOAs	 Performance Advantaged Bioproducts (FY18) USDA BRDI 	>10% increase in bioproduct performance*	Arzeda Northwestern U

*Relative to an appropriate benchmark technology **Not presenting today

Recent Successes Emerging from Biochemical Conversion & Lignin Utilization Work

Genomatica and Renewable Polymers

NREL – Bioprincipia Partnership

Commercialization:

• NREL has developed two collaborations with industrial entities for the Technology Commercialization.

- Intellectual property has been licensed to both entities.
- One Cooperative Research & Development Agreement (CRADA) has been executed and another is currently being negotiated.

Corn Kernel Fiber Analytical Method Development

Recommendations:

- 1) Increase use of LCA to guide research
- 2) Greater transparency in TEA methodology/assumptions
- 3) Clarify emphasis on DMR investments
- 4) Build a balance of early stage and deployment

Increase use of LCA to guide research

Examples of LCA analyses that are informing R&D priorities

		Fossil	Total	
	GHG*	Energy	Energy	
	(CO_2e/kg)	(MJ/kg)	(MJ/kg)	Cost (\$/lb)
NaOH (100%)	2.1	28.9	32.3	0.24
Na ₂ CO ₃ (100%)	0.7	5.93	5.94	0.08

*The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation Model (GREET)

Topic Area 2: Affordable, Clean Cellulosic Sugars for High Yield Conversion Overview

Topic Area 2 Specific Requirements

- GHG emissions tracked in gCO2e/lb sugars;
- Water consumption tracked in gallons water/lb sugars; and
- Carbon intensity of the process

Figure 6. LCA carbon balance of fermentation with CCS only.

TEA Methodology

Examples of standardized assumptions and publicly available TEA tools

Increased emphasis on "smaller system boundary" TEA

Biorefinery Analysis Process Models

THIS PAGE IS TO DISTRIBUTE THIS INFORMATION TO THE PUBLIC

To save files to local computer, right click on link and choose "Save Target As...". For Aspen Plus BKP files, replace ".tiff" file name extension with ".bkp".

NOTICE: All information on this page is subject to a disclaimer.

Last Updated: November 2018

Algae Production via Open Pond Cultivation: NREL Algae Farm Model (Excel TEA Tool) Contacts: Ryan Davis and Jennifer Clippinger

2016 Algae Farm Design Report of Davis et al. [PDF]

Excel Spreadsheet

NREL 2017 Biochemical Sugar Model

Contacts: Ling Tao and Ryan Davis

- BKP File (Built in Aspen Plus V7.2)
- Excel Spreadsheet
 Readme Summary Sheet

Process Design for Biochemical Conversion of Biomass to Ethanol (2002 and 2011 Design Reports) Contacts: Ling Tao and Ryan Davis

2011 Design Report of Humbird et al. [PDF]

DW1102A - Files supporting the 2011 Design Report

Tables in the spreadsheet may differ slightly from those in the report due to small errors corrected after publication

- BKP File (Requires Aspen Plus V7.2; does not require NREL databanks or Fortran compiler)
- Excel Spreadsheet with Macros (Requires Excel 2007 or later)

DW1107A - Direct Port of DW1102A to Aspen Plus V7.3

- BKP File (Requires Aspen Plus V7.3)
- Excel Spreadsheet with Macros (Requires Excel 2007 or later)

Biorefinery Analysis Process Models | NREL

Topic Area 2: Affordable, Clean Cellulosic Sugars for High Yield Conversion Overview

Topic Area 2 Specific Requirements

- Provide a techno-economic analysis to calculate the minimum sugar selling price including:
 - Cost of enzyme production and/or purchase
 - Capital and operating costs to produce monomeric sugars
 - Assuming a delivered feedstock cost of \$86/ton

Case	Feedstock	Pretreatment and enzymatic hydrolysis	Minimum sugars selling price (\$/kg)	GHG emissions ¹ (gCO ₂ e/MJ SAF)	GHG emission reduction
1	Poplar	DAP-EH	0.33	19	77%
2	Corn stover	DAP-EH	0.37	16	81%
3	Poplar	DMR-EH	0.53	35	59%
4	Corn stover	DMR-EH	0.60	39	54%

Why the Emphasis on DMR?

Deacetylation and Mechanical Refining (DMR)

electrek

AX advancebio Lanzajet CONREL

Ensure a Balance of Early and Applied TRL Work

"Therefore, this should not become an either/or for fundamental research versus applied science and large-scale demonstrations. The most powerful combination of activities for BETO would be the retention of the strong scientific program that BETO has built while advocating for new projects to support what appears to be a strong administration interest in large-scale demonstration."

-2021 Biochemical Conversion and Lignin Utilization Panel

Analysis/Crosscutting Activities

Polymer chain in crystal surface

Polymer chain extracted from surface

Molecular dynamics based procedure to compute the free energy to decrystallize a single chain.

Decrystallization is the first step in many depolymerization processes, including biological routes (e.g. PETase).

Examples of fundamental R&D that are critical for applied R&D projects:

Lignin Utilization

Exemplary C-C bonds in lignin that catalytic approaches must cleave

Gu, Palumbo, Bleem et al. in review

Contact Info:

Beau Hoffman, Bioenergy Technologies Office

Beau.Hoffman@ee.doe.gov

Lisa Guay, Bioenergy Technologies Office Lisa.Guay@ee.doe.gov