

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

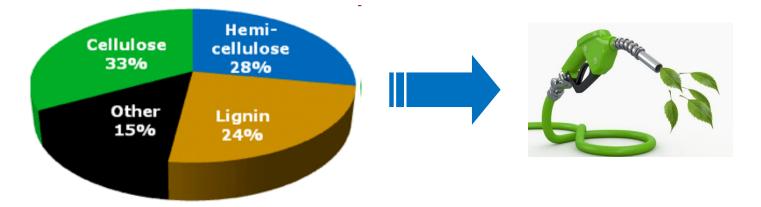
SPERLU Selective Process for Efficient Removal of Lignin and Upgrading

April 6, 2023 Biochemical Conversion and Lignin Utilization Ian Klein, PhD Spero Renewables, LLC

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Mission & Value proposition

To provide renewable and cost-effective substitutes to petrochemicals – enhancing the quality of life and the environment


Spero Management team

- 20+ year of R&D management experience
- Technology translation & major JDA with multi-nationals
- Forbes 30 under 30
- Board/advisors include co-founder of a major oil exploration company, a former CTO of a major chemical company, and a world expert in polymers.

Moving towards a barrel of biomass will require making chemicals from lignin

\$0.4 / kg Technical lignin

SPERLU™

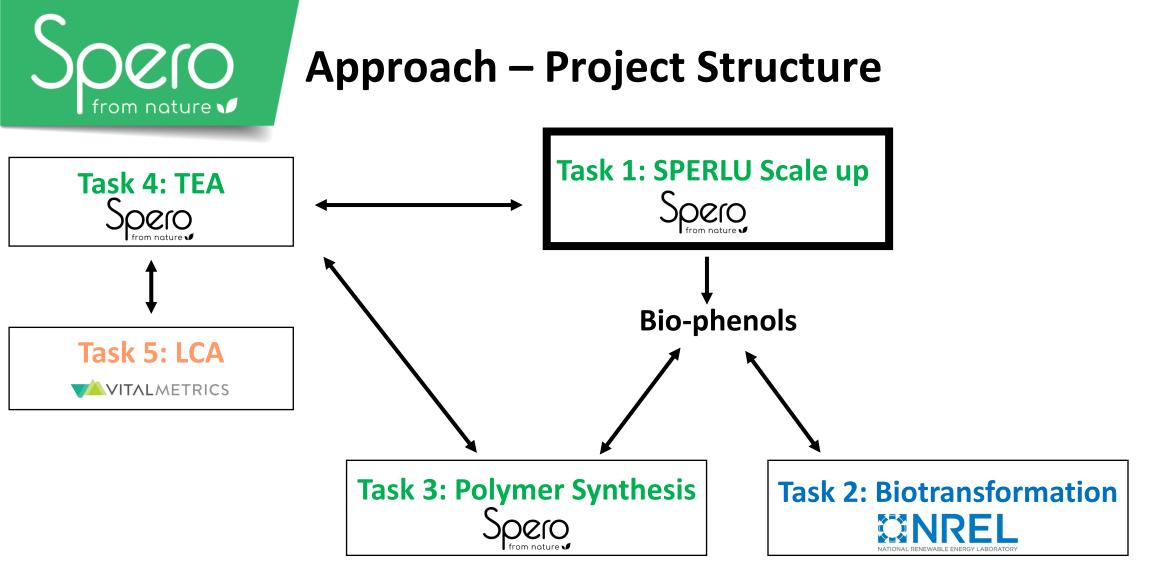
"Selective Process for Efficient Removal of Lignin and Upgrading"

- Feedstock: wood, non-food agricultural residues, technical lignin
- Replacement for Bisphenol A (BPA) in production of thermoset plastics
- Bio-based chemicals for consumer products

Project Overview

Project Goals:

- Convert 50% of lignin carbon into bio-phenols.
- Make polymers from lignin bio-phenols.
- Bioprocess lignin bio-phenols into chemicals.
- Establish technoeconomic analysis (TEA) and life cycle analysis (LCA) for SPERLU[™].

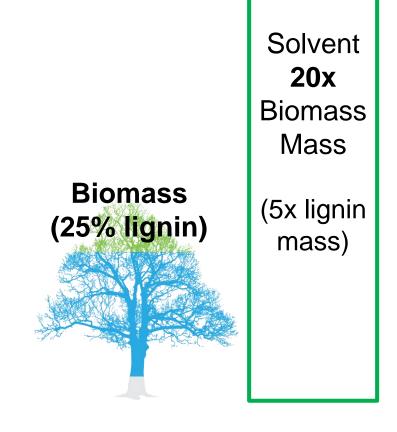

Approach - Objectives

- Task 1: Scale SPERLUTM to produce \geq 200 g of bio-phenols per day
- Task 2: Biotransformation optimization
- Task 3: Bio-polymer synthesis and determine physical properties
- Task 4: TEA of SPERLU[™]
- Task 5: LCA of SPERLUTM

Risk Management: (1) Monthly Project Meetings (PIs) (2) TEA of all process changes

Technical Approach

Task	Technical Approach	
1) Scale SPERLU TM to \geq 200 g bio-phenols	 Extraction kinetics, Catalysis kinetics, Catalyst regen. Design & Build reactor, produce 200 g bio-phenols (G/NG) Purify Bio-phenols for Task 2 & 3 	
2) Biotransformation Optimization	 Strain optimization (delete known aldehyde dehydrogenase) Test Spero bio-phenols of varying purity 90% conversion, titer ≥ 10 g/L, productivity ≥ 0.2 g/L/h 	
3) Biopolymer synthesis & testing	 Polymers from (1) purified bio-phenols (2) bio-phenol mixtures Test thermal and mechanical properties 	
4) TEA of SPERLU [™]	 ASPEN model based on experimental data Evaluate process alternatives (lignin feed & purifications) Sensitivity analysis to maximize NPV 	
5) LCA of SPERLU [™]	 Life-cycle GHG emissions & energy balance Sensitivity analysis & process recommendations 	

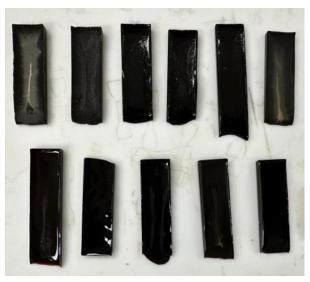


Approach – Challenges

Top challenges:

- (1) Scale and develop SPERLU[™] process while meeting BPA cost targets
 - Risk analysis: TEA (ASPEN modeling)
 - Risk identified: Solvent volume requirements
 - Risk mitigation: Feedstock & purification changes

Technical lignin available commercially at >>20 kta


Approach – Challenges

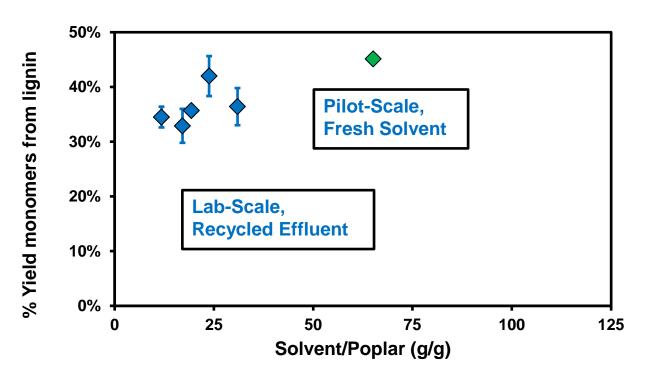
Top challenges:

(2) Lignin-based polymers match specs of BPA based polymers (glass transition temperature, storage modulus)

- Risk analysis: Mechanical analysis of polymers
- Risk identified: Pre-polymer purity
- Risk mitigation: (1) Frequent lab scale polymer testing to assess impact of process changes

(2) Material evaluation by customers

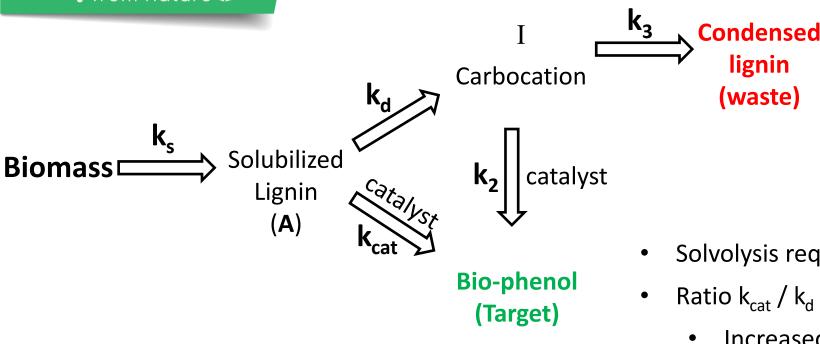
Lignin-based thermoset


Progress and Outcomes Task 1: Scaling SPERLU to 200 g bio-phenols

- ✓ M1.1 Lignin extraction kinetics
- ✓ M1.2 Catalyst selection
- ✓ M1.3 Reactor construction
- ✓ M1.4 Catalyst kinetics
- ✓ M1.5 Catalyst regeneration methodology
- ✓ M1.6/ GNG 2: 200 g bio-phenols at 40% yield (04/2021)
- ✓ M1.7 Bio-phenol separations at 200 g scale (02/2023)

Progress and Outcomes: Task 1 Addressing Solvent Use

Monomer yield from poplar with solvent recycle



Reductive Catalytic Fractionation (RCF) Approach

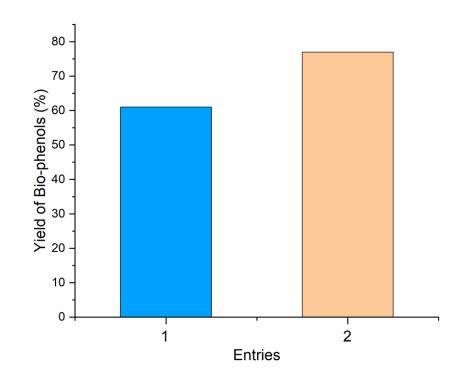
- Investigated in Plug-Flow Reactors
- Pilot scale: 200-300 g poplar, lab scale 10-20 g poplar

- Solvent : biomass = 62:1 (no recycle)
 - 40-50% monomer yield from poplar
- Solvent recycle reduces ratio to 10:1
 - 30-40% monomer yield from poplar
- Technical lignin reduces ratio to 5:1

Mechanistic Understanding of Solvent Demand and Yield

Reductive Catalytic Fractionation (RCF) Approach

• Investigated in Batch and Plug-Flow Reactors

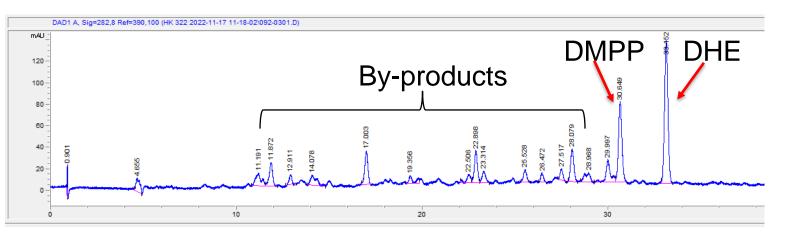

Key Learnings

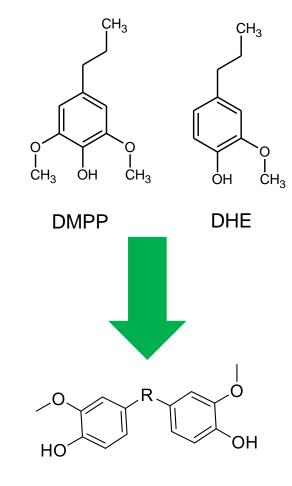
- Solvolysis requires wetted biomass (solvent intensive)
- Ratio k_{cat} / k_d determines product yield
 - Increased catalyst loading or solvent volume favors k_{cat} over k_{d}
 - k_d is concentration dependent
- Technical lignin removes solvent demand for solvolysis

SPERLU[™] Technology with Technical Lignin

Bio-phenol yield from technical lignin

- 60-90% Yield soluble bio-phenols
- TEA mixed solvent systems under investigation
- Technical lignin commercially available


Conditions: 5 g lignin, 40 g solvent, catalyst, temperature > 100 °C, time 6 hrs *Entry 1: uses single solvent system (basis of TEA), Entry 2 uses mixed solvent system (TEA under investigation) **90% yield soluble bio-phenols achieved with longer reaction time


Milestone 1.7 – SPERLU[™] Monomer Purification

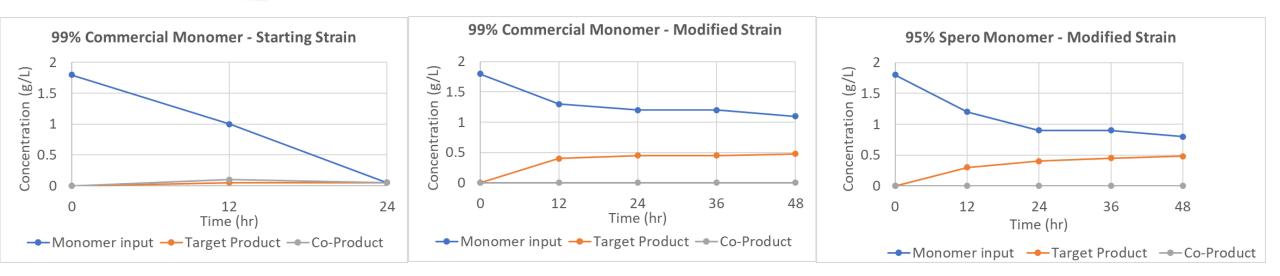
SPERLU[™] with poplar produces 40 wt% DHE & DMPP from lignin

- 100 g poplar yields: 10 g monomer + 60 g carbohydrate
- Monomer purification & upgrading requirements:
 - High temperature vacuum distillation
 - Dimerize to bisphenol

Milestone 1.7 – SPERLU[™] Monomer Purification

SPERLU[™] with technical lignin produces >60-90 wt% soluble bio-phenols

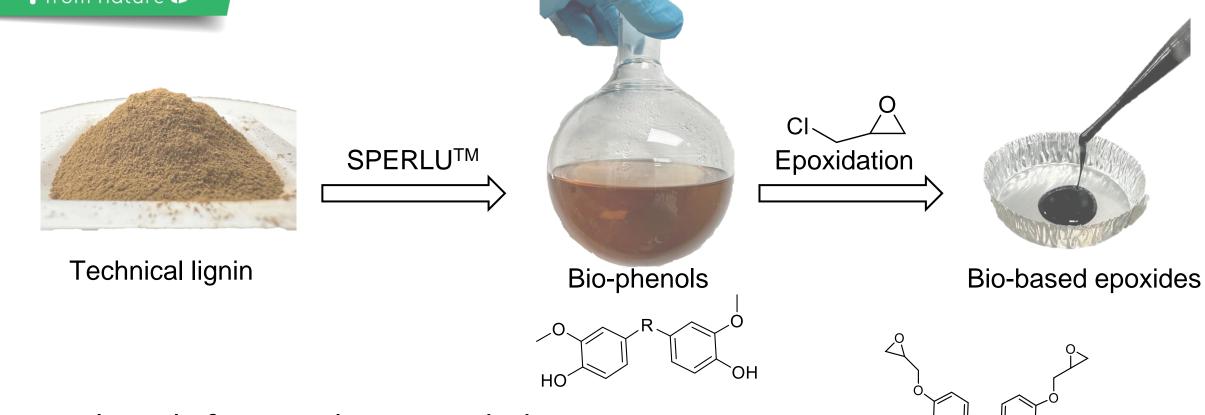
- 100 g lignin yields: 60-90 g bio-phenols
- Bio-phenols mainly dimeric
- Distillation & dimerization not required



Gel Permeation Chromatography (GPC) of soluble bio-phenols (60% yield)

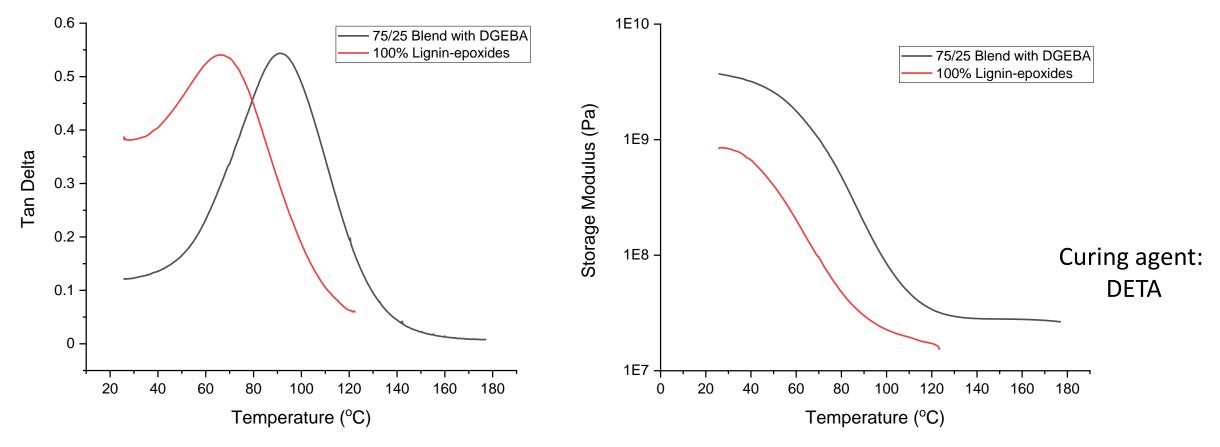
Task 2 Progress & Outcomes: Biotransformation Optimization

Key findings


- Pseudomonas putida genetically modified
 - Eliminating undesired co-products
 - Minimized target product metabolism
- Spero monomer performance similar to commercial standard
- Biotransformation not commercially viable

18

Task 3 Progress & Outcomes: Lignin to Thermoset Polymers



- Bio-phenols from Task 1 upgraded
- Blends with current formulations
- Matches petroleum-based specs. (glass transition temperature, storage modulus)

Task 3: Lignin based Thermosets meet Technical Targets

Dynamic mechanical analysis (DMA) of Lignin based Thermosets

 T_{a} between 65 - 90°C, Strong storage modulus at room temperature \geq 1 GPa

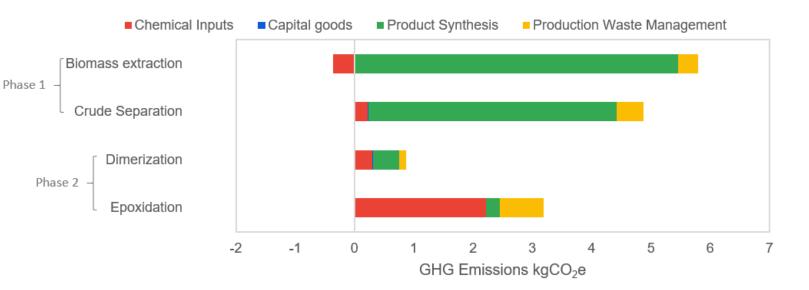
Task 5: SPERLU TEA Progress and Outcomes– OPEX and Indicators

NPV	\$274,836,749	
NPV %	12%	
ROI	140%	

- Technical lignin feed
- 15 year plant lifespan
- 5 year catalyst replacement period
- Catalyst cost estimated using <u>CatCost Tool at</u> <u>ChemCatBio.org</u>

	Mass Flows		Price	
	Name	Mass Flow Rate [kta]	Annual [\$MM/y]	
	Lignin	21.0	-7.4	
Feedstock	Catalyst & Reagents	-	-43.9	
reeuslock	Solvents	-	-12.12	
			-63.4	
	Liquid Waste	-	-4.4	
	Solid Waste	-	-0.2	
OPEX	Cooling Water	17.1 MW	-0.11	
(waste + utilities)	HP Steam	16.4 MW	-1.02	
	Electricity	0.2 MW	-0.08	
			-5.69	
Product	Lignin Epoxide		147.0	

Total Revenue	\$147.0 MM/yr
Total Costs	-\$69.1 MM/yr
Balance	\$77.9 MM/yr


Task 5: SPERLU LCA Progress and Outcomes Use of technical lignin vs wood removes unit operations and reduces GHG

Using <u>Technical lignin vs</u> <u>wood</u> eliminates unit Operations

- Crude separation
- Dimerization


Resulting Impact on Green-House Gas (GHG) Emissions:

GHG: 38% decrease

Impact & Summary

- ◆ SPERLUTM technology applicable to commercially available technical lignin
 - 60-75% yield bio-phenols from technical lignin
 - Scale-up to MT lignin in planning stages
 - Collaborating with leading paper company
- Bio-phenols upgraded to thermoset polymers
 - Drop in replacement for epoxidized bisphenol A (DGEBA)
- TEA: Positive NPV of 12%
- LCA: 38% GHG reduction when technical lignin used vs poplar completed
 - TEA & LCA used to inform process modifications (risk mitigation)

Acknowledgements

Sean Prager Baoyuan Liu Shou Zhao Sergei Hanukovich Jasmine Costas Mahdi Abu-Omar Eric McFarland Ian Klein

Ilona Ruhl Christopher Johnson Gregg Beckham Milena Rangelov Ilayda Dinc Yirui Zhang Sangwon Suh

Quad Chart Overview

Timeline

- Project start 01/2019
- Project end 03/2023

		FY22 Costed	Total Award	End • Pr
	DOE Funding	\$1,307,347	\$1,613,457	• ≥ ∜ • Pu • Sy of • Op ph
	Project Cost Share *	\$376,353	\$419,707	BEEP Lignin 2018
		t Project Start: t Project End: {		Proje NF

Project Goal

Scale-up & validate SPERLU process, converting >50% lignin in non-food biomass to bio-phenols. Make polymers from lignin monomeric bio-phenols and bioprocess bio-phenols into chemicals.

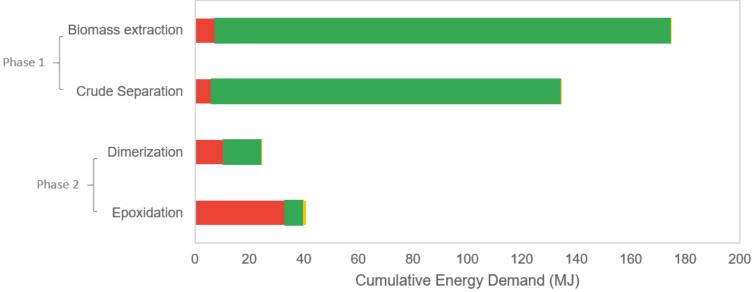
End of Project Milestone Produce 1 kg bio-phenols ≥ 50% lignin conversion to bio-phenols Purify bio-phenols to ≥ 90% purity Synthesize bio-polymers matching properties of BPA thermosets Optimize biotransformation of select bio-phenols

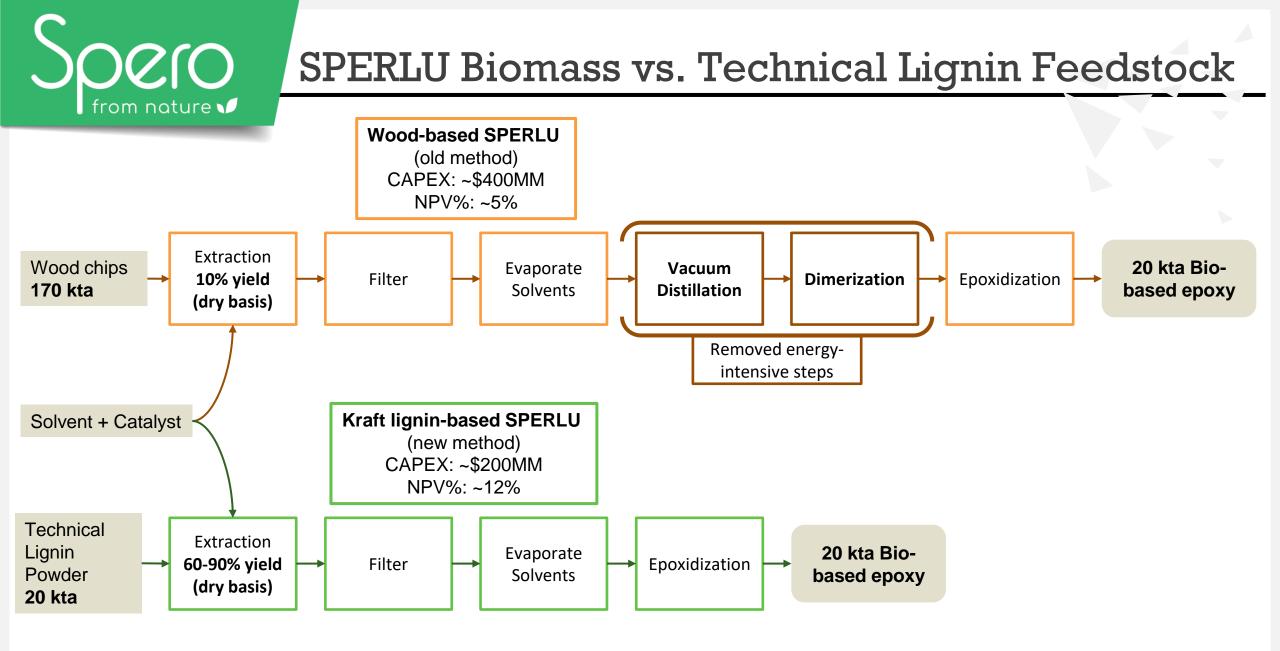
Funding Mechanism BEEPS DE-FOA-0001916 Lignin valorization 2018

Project Partners*

- NREL (Gregg Beckham, PhD)
- Vital Metrics (Sangwon Suh, PhD)

Additional Slides


Task 5: SPERLU LCA Progress and Outcomes – Technical lignin vs wood


Using <u>Technical lignin vs wood</u> eliminates unit Operations

- Crude separation
- Dimerization

Resulting Impact on Cumulative Energy Demand (CED):

CED: 42% decrease

Presentations:

Klein, I. Lignin Conversion and Upgrading to Materials. Presented at Advanced Biofuels Leadership Conference, Washington D.C., March 18, **2021**

Klein, I. Lignin Valorization for use in Bio-Based and Recyclable Materials. Presented at meeting of the American Chemical Society, San Diego, CA, March 23, **2021**

Klein, I. Innovations in Selective Lignin Upgrading to Create Profitable and Sustainable Chemical Businesses. Presented at meeting of the American Chemical Society, Chicago, IL, August 23, **2022**

Response to 2021 Peer Review Comments

 <u>Regarding feedstock variability and selection</u>: Spero has now identified a commercially available (and highly uniform) technical lignin source and is working directly with the lignin producer.