

Bio-Optimized Technologies to keep Thermoplastics out of Landfills and the Environment

U.S. DEPARTMENT OF ENERGY

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

BOTTLE 6 – Characterization

April 3, 2023

Technology Session Review Area: Plastics Deconstruction and Redesign

PI: Christopher Tassone, SLAC National Accelerator Laboratory

PI: Meltem Urgun-Demirtas, Argonne National Laboratory

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE ADVANCED MATERIALS & MANUFACTURING TECHNOLOGIES OFFICE

This presentation does not contain any proprietary, confidential, or otherwise restricted information

proposed in 2021 review¹

- Enables reproducibility across studies and research groups
- Finalizing characterization of research substrates for the community

[1] Ellis, Rorrer, Sullivan et al., Nature Catalysis 2021

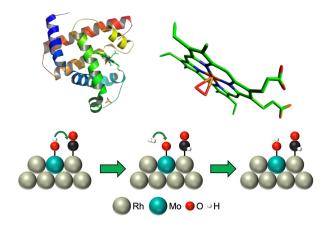
Characterization is central to BOTTLE's mission

- Develop robust processes to upcycle existing waste plastics, and
- Develop new plastics and processes that are recyclable-by-design
- Detailed characterization is critical for developing efficient and effective processes and understanding the behavior of redesigned polymers

Activities in chemical, physical, and end-of-life studies

- Chemical and physical characterization takes advantage of SLAC and other BOTTLE partner core capabilities
- End-of-life testing capability is critical for redesigned polymers

109



Approach: Mechanisms, structure, and EOL

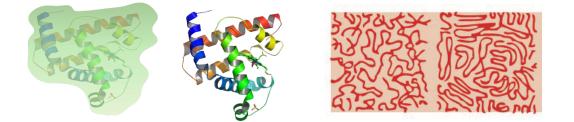
Three cross-cutting activities:

- **Mechanism determination**, quantification of products, and elucidating kinetics enables us to improve process efficiency, product selectivity, and process compatibility
- **Polymer structure** characterization used to determine relationships between polymer chemistry, and its associated structure and performance to improve redesigned polymers and design deconstruction processes
- End-of-Life (EOL) determines environmental impacts of redesigned polymers in natural (soil and fresh water) and engineered environments (landfill, composting, and anaerobic digester)

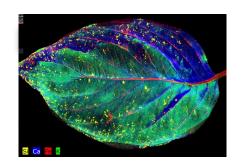
Mechanism Determination

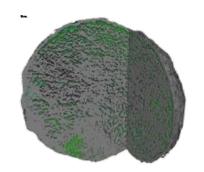
Polymer Structure

End-of-Life

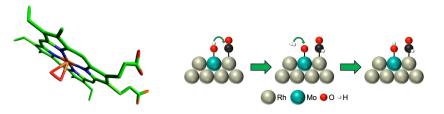


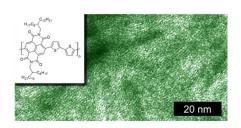
Approach: Advanced characterization capabilities

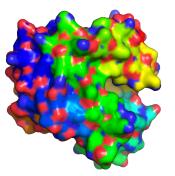

X-ray scattering


Multiple beamlines to characterize polymer substrate evolution during deconstruction, substrate-catalyst interactions, and structure-property relationships in redesigned polymers

X-ray imaging


Imagine capabilities with resolution from nm to µm scales. Full spectral-tomographic reconstruction to visualize catalyst-substrate interaction to inform process design


X-ray spectroscopy

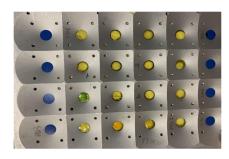

Multiple beamlines to characterize the structural trajectory during reactions with fs resolution; elucidate mechanisms and describe the substrate-catalyst active electronic coupling

Cryo-EM

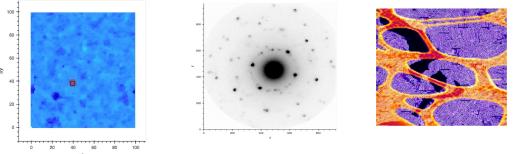
World-class cryo-EM capabilities with atomic resolution to determine structure in non-crystalline samples; imaging of amorphous polymers and structural work on biocatalysts

Progress and outcomes: developing sample environments

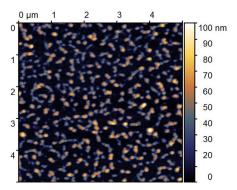
High-pressure reactors


Developed reactors to characterize physical and chemical deconstruction mechanisms in realistic systems

High-throughput measurements

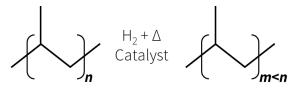

Developed sample environments to enable high throughput measurements of either ex-situ samples of commodity or redesigned polymers, or to rapidly scan process spaces

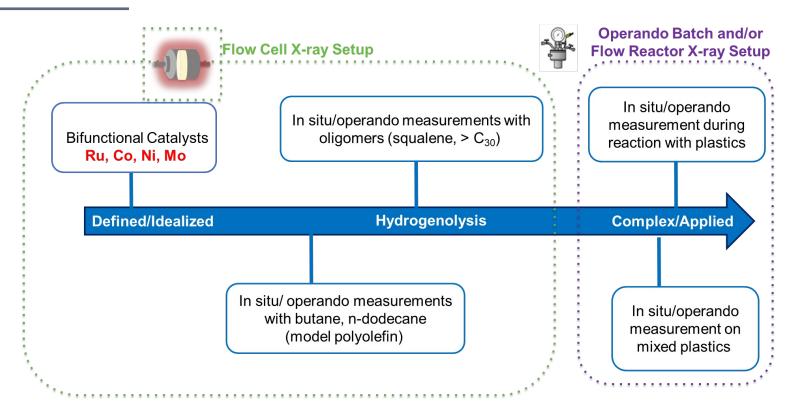
4D STEM


Developed data processing and interpretation pipelines to use 4D STEM to characterize molecular orientation of polymers over large length scales and understand the impacts of morphology to deconstruction chemistries and thermo-mechanical properties

In situ thin film deconstruction

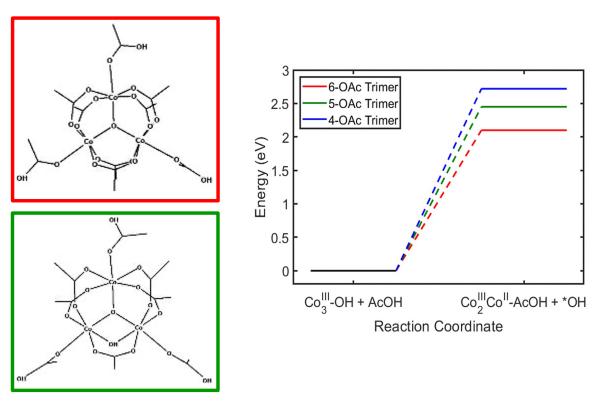
Developed model systems to understand the role of degree of crystallinity, crystallite size, and spacing on enzymatic PET deconstruction

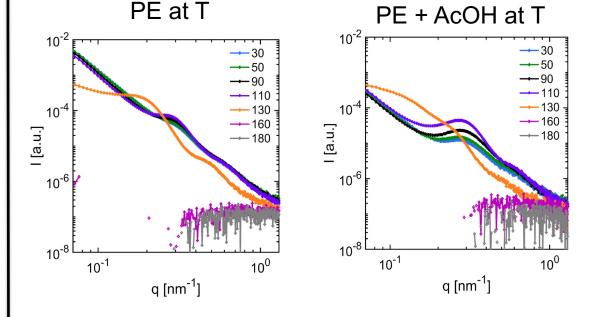



Operando heterogeneous catalytic deconstruction

Goal: Use X-ray Absorption Spectroscopy (XAS) of heterogeneous catalysts for deconstruction to answer key questions:

- What is the catalyst structure?
- What role does the metal play in the catalysis?
- Is the in situ/operando chemical state of the metal different across different samples?
- Does the metal structure change with TOS?

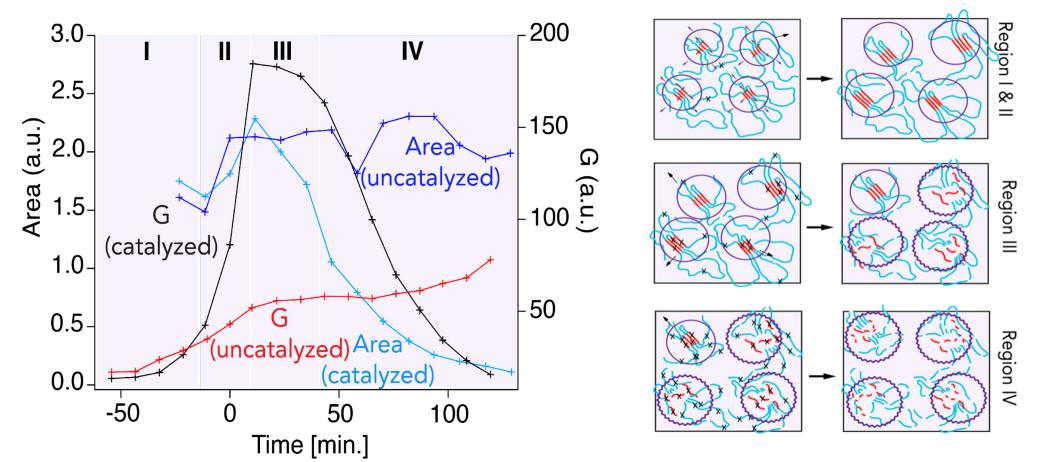

Sample	Onset Reduction Temperature (°C)				
	Hydrogen	n-dodecane + H2			
Ni/ZSM-5	180	350			
Ni/SiO ₂	150	250			



Impact: Understanding heterogeneous catalyst reorganization under reaction conditions is essential to the rational design of catalysts and processes

Characterization of oxidative deconstruction catalysis

Goal: Identify the physical and chemical processes responsible for high activity observed in autoxidation



Outcome: Determination of key role played by the Co³⁺, stabilized by AcOH ligands, in the reaction activity and how water content reduces activity

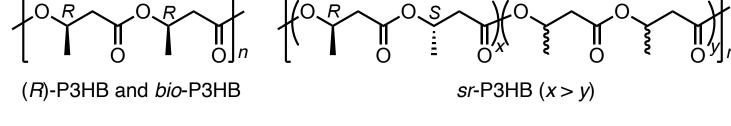
Outcome: Determination of the key role that acetic acid plays to diffuse catalyst into the solid polymer, turning what should be a surface limited process into a bulk deconstruction process

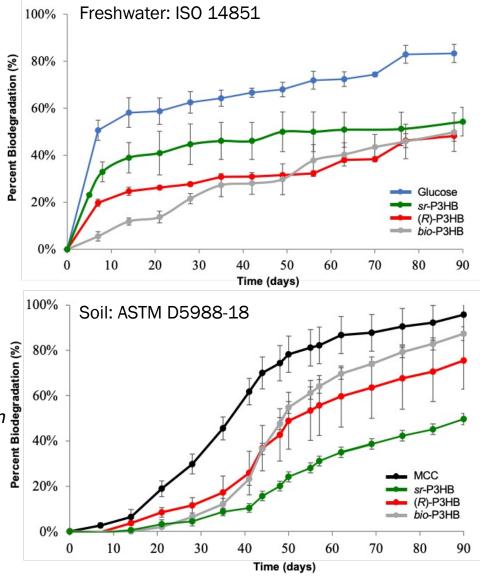
Characterization of PET glycolysis

Goal: Identify the physical and chemical mechanisms controlling activity in PET glycolysis

Outcome: Determined the key step in the deconstruction process is deconstruction within the amorphous interphase, likely at chain terminations, which then allows catalyst access to crystalline fraction of PET

Approach: Scaled-down standard methods used for EOL testing


Method Name	Temperature	Inoculum	Sample Size	Reactor size	Duration	Measurement
ISO 14851 - Aerobic biodegradability of plastic materials in an aqueous medium	23 °C ± 2 °C	Activated sludge taken from a WWTP	100 mg	300 mL	Min 28 days	BOD over time or CO_2
ASTM 5988 - Aerobic Biodegradation of Plastic Materials in Soil	23 ± 2 °C	Natural Soil	3 g	2 L	Max 2 years	Volume of CO ₂
ASTM 5338 - Aerobic Biodegradation of Plastic Materials Under Controlled Composting Conditions	58 ± 2 °C	Mature compost	10 g	300 mL	Min 45 Days	Volume of CO ₂
ASTM 5511 - Anaerobic Biodegradation of Plastic Materials Under High-Solids Anaerobic Digestion Conditions	37 ± 2 °C	Activated sludge taken from a stand- alone food waste digester	6 g	300 mL	15-30 Days	Volume of CO_2 and CH_4


Goal: Determine polymer performance and sample fate in case of leakage into the environment. Progress: 27 polymer samples have been received and tested

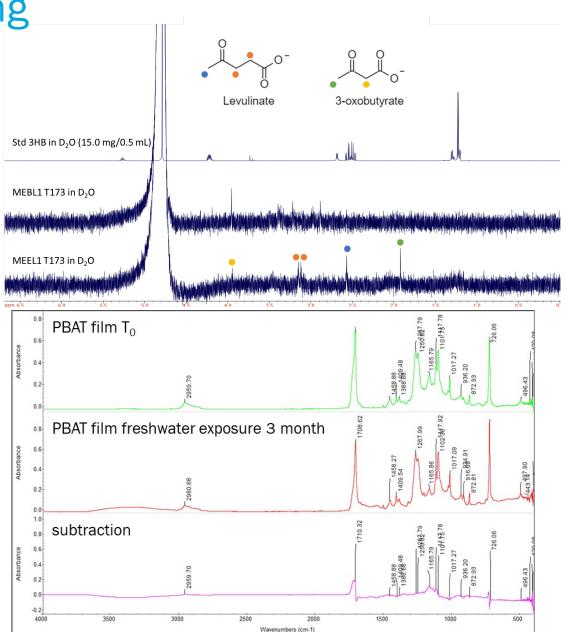
- 22 samples in freshwater
- 24 samples in soil
- 6 samples in compost
- 1 in an anaerobic digester

End-of-life (biodegradation) testing on designer PHAs

- **Background:** syndio-rich PHA, *sr*-P3HB, shows comparable mechanical properties to HDPE and PP
- Outcome: In freshwater: bio-P3HB (282 days) shows slightly higher biodegradation than *sr*-P3HB (383 days) and (*R*)-P3HB (433 days)
- Outcome: In soil: bio-P3HB (105 days) shows slightly higher biodegradation than (*R*)-P3HB (145 days) and *sr*-P3HB (268 days)

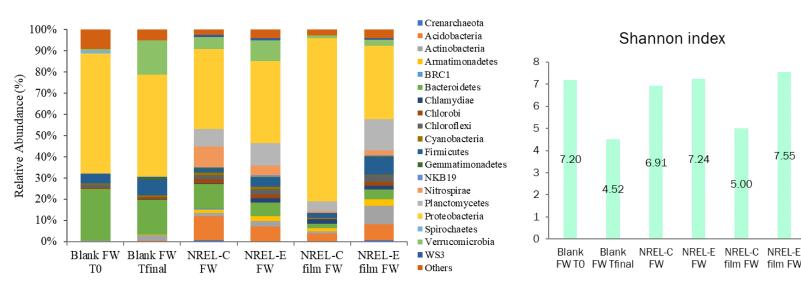
Beyond the standard EOL testing

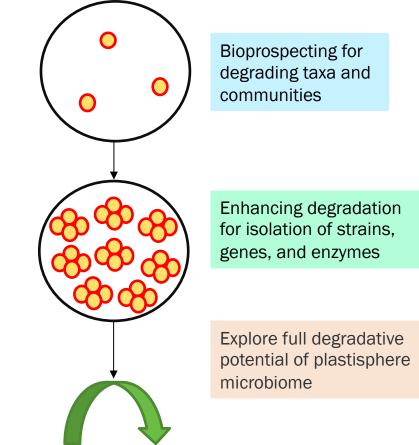
Methods used to assess changes in polymer structure:


DSC	FTIR	GPC	NMR	
SEM	XRD	Viscom	Viscometry	

Methods used to assess plastic degradation: TGA CO_2/CH_4 evolution

```
Methods used to assess generation of plastic metabolites:
GC SEC HPLC
```


GC	SEC	HP
LC-MS	FTIR	


Future Work: combine methods used for changes in polymer structure, plastics degradation, and detection of metabolites

Enhanced polymer degradation and pathway discovery

Elucidate dynamics and core constituents of microbial communities from samples showing biodegradation – 16 s RNA analysis

- Assess diverse plastisphere communities: abundance, functionality, spatial and temporal dynamics (pioneer species, colonization stages)
- Understand complex interactions between the degrading microbes and their corresponding genes, along with environmental conditions

Feedback to Redesign and **Deconstruction teams**

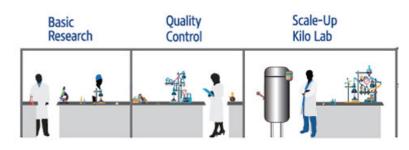
7.55

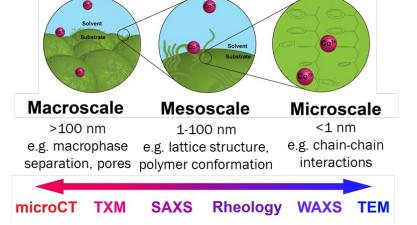
5.00

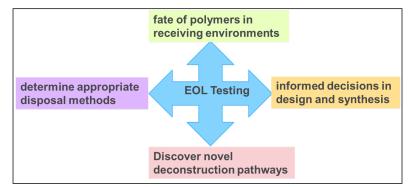
film FW film FW

Impact

Inform


- Develop understanding of physical, chemical, and biological mechanisms that control deconstruction outcomes
- Determine the pathways into and the impact to environment for conventional and RBD polymers


Guide


- Rationalize design of deconstruction processes, mitigations to contaminants, and scale considerations
- Bring EOL behavior as a property to design RBD polymers

Enable

- Scale-up of deconstruction chemistries, while accounting for real world post-consumer plastic waste streams
- Design of high performing polymers with minimum environmental impact
- Discover plastisphere microbiome and their genomes for deconstruction of plastic waste streams

Meltem Urgun-Demirtas Chaoyi Ba Thai Scheve Reni Truhtcheva - *Owikoti* Shu Xu Haoran Wu

Eugene Chen Deepak Barange Ryan Clarke Robin Cywar Maëlle Gace Reid Gilsdorf Ravikumar Gowda Celine Parker Ethan Quinn Eswara Rao Ainara Sangroniz Changxia Shi Andrea Westlie Zhen Zhang Li Zhou

Taraka Dale Shounak Banerjee Carson Gido Rommel Granja Tom Groseclose Ramesh Jha Erin Kober Hau Nguyen Sang-Min Shin

Yuriy Román Lucas Baston Anna Brenner Griffin Drake Alexi Khechfe Ydna Questell Julie Rorrer Clara Troyano-Valls Xiao Wang Bing Yan Guido Zichitella

Jen DuBois Emmanuel Akpoto Jessica Lusty Beech Rita Clare Dongjin Kim Will Kincannon Ronivaldo Rodrigues da Silva Ari Romberg Monica Sanchez

Northwestern University

Linda Broadbelt Sri Bala Gorugantu Sai Phani Kumar Vangala Joseph Ni Alexander Shaw Quan Zhang William Sprague Kevin Shebek

Gregg Beckham Bob Allen Hannah Alt Abhay Athaley Robert Baldwin Elizabeth Bell David Brandner Jeremy Bussard Birdie Carpenter Young-Saeng Cho Kathy Cisar Rvan Clarke Julia Curley Amy Cuthbertson Mackenzie Denton Jason DesVeaux Rebecca DiPucchio **Bryon Donohoe** Meredith Doyle Rebeka Durand Japheth Gado **Oliver Greener** Stefan Haugen

Laura Hollingsworth Morgan Ingraham Katrina Knauer Megan Krysiak Eugene Kuatsjah **Ciaran Lahive** Patrick Lamers Clarissa Lincoln Swarnalatha Mailaram **Heather Mayes** William Michener Joel Miscall Hyunjin Moon Brenna Norton-Baker Eric Payne Kelsey Ramirez Michelle Reed Erik Rognerud Nic Rorrer Ron Schoon Lisa Stanlev Katie Stevenson

Gayle Bentley, BETO Jay Fitzgerald, BETO Kate Peretti, AMMTO Michelle Seitz, AMMTO Kevin Sullivan **Taylor Uekert** Allison Werner Sean Woodworth Geetanjali Yadav Robin Cvwar Shaik Afzal Brenna Black **Richard Brizendine Bonnie Buss** Erika Erickson Mikhail Konev Scott Nicholson Avantika Singh Megan Browning Morgan Skala Nolan Wilson Lucas Ellis Ana Morais Felicia Bratti

U.S. DEPARTMENT OF

ENERGY

Office of ENERGY EFFICIENCY

CAK RIDGE

Adam Guss

Bill Alexander

Austin Carroll

Carrie Eckert

Jim Elkins

Rich Giannone

Bob Hettich

Jay Huenemann

Ikenna Okekeogbu

Darren Parker

Sirisha Parimi

Miriam Silberman

Shanice Taylor

Jessie Tweedie

Walter Woodside

National Laboratory

& RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

ADVANCED MATERIALS & MANUFACTURING

TECHNOLOGIES OFFICE

Coralie Backlund, BETO

U.S. DEPARTMENT OF ENERGY

Technical Advisory Board Tim Long Thomas Epps Scott Farling Adrienne Huston-Davenport Guy Joly Kara Lavender Law Susannah Scott Brent Shanks Margaret Sobkowicz-Klein Mark Spalding Scott Trenor

Chris Tassone Arun Asundi Simon Bare Amani Ebrahim Sarah Hesse Anjani Maurya Riti Sarangi Chris Takacs Yue Wu

UNIVERSITY OF PORTSMOUTH

Andy Pickford Victoria Bemmer Anastasia Callaghan Simon Cragg Rosie Graham John McGeehan Rory Miles Joy Watts Luisana Avilan Paul Cox Raj Gill Gerhard Konig Bruce Lichtenstein Michael Zahn In preparation

Amy A. Cuthbertson, Clarissa L. Lincoln, Joel Miscall, Lisa Stanley, David T. Moore, Brenna A. Black, Nicholas A. Rorrer, Gregg T. Beckham, Characterization of polymer properties and identification of additives in commercial research plastics, in preparation.

Shaik Afzal, Avantika Singh, Scott R. Nicholson, Taylor Uekert, Eric C.D. Tan, Abhijit Dutta, Robert M. Baldwin, Gregg T. Beckham, Techno-economic analysis of mixed plastic waste gasification for the production of methanol and hydrogen, in preparation for *Energy Env. Sci.*

Rosie Graham, Erika Erickson, Richard K. Brizendine, Davinia Salvachúa, Zhongping Tan, Gregg T. Beckham, John E. McGeehan, and Andrew R. Pickford, Enzymatic deconstruction of poly(ethylene terephthalate) is not improved by the use of carbohydrate-binding modules at industrially-relevant solids loadings, in preparation for *Chem Catalysis*.

Julie E. Rorrer, Amani M. Ebrahim, Ydna Questell-Santiago, Clara Troyano-Valls, Arun S. Asundi, Simon R. Bare, Christopher J. Tassone, Gregg T. Beckham, Yuriy Román-Leshkov, Selective hydrogenolysis of polyethylene and polypropylene waste to liquid hydrocarbons over bifunctional Ru/acid catalysts, in preparation.

Geetanjali Yadav, Avantika Singh, Abhijit Dutta, Scott R. Nicholson, Kylee Harris, Calvin Mukarakate, Joshua A. Schaidle, Cody J. Wrasman, Yuriy Román-Leshkov, Robert M. Baldwin, Gregg T. Beckham, Techno-economic analysis of pyrolysis of mixed plastics waste, in preparation for *Energy Env. Sci.*

Submitted

Houqian Li, Robert D. Allen, Xianglan Bai, Gregg T. Beckham, et al., Expanding plastics recycling technologies: chemical aspects, technology status and challenges, submitted to ACS SusChemEng.

In review

Richard K. Brizendine, Erika Erickson, Stefan J. Haugen, Kelsey J. Ramirez, Joel Miscall, Davinia Salvachúa, Andrew R. Pickford, Margaret J. Sobkowicz-Kline, John E. McGeehan, Gregg T. Beckham, Effect of particle size and substrate crystallinity on enzymatic depolymerization of poly(ethylene terephthalate), in review at ACS SusChemEng.

Kevin P. Sullivan, Allison Z. Werner, Kelsey J. Ramirez, et. al., Tandem chemical oxidation and biological funneling for upcycling of mixed plastic waste, in review at Science.

In revision

Anelia Milbrandt, Kamyria Coney, Alex Baggett, Gregg T. Beckham, Quantity, distribution, market value, and energy value of plastic waste in the United States, in revision at Resources, Conservation, and Recycling.

Allison Z. Werner, Rita Clare, Thomas D. Mand, et. al, Tandem chemical deconstruction and biological upcycling of poly(ethylene terephthalate) to b-ketoadipic acid by Pseudomonas putida KT2440, In revision at Metabolic Engineering.

In press

Scott R. Nicholson, Julie E. Rorrer, Avantika Singh, Mikhail O. Konev, Nicholas A. Rorrer, Alberta C. Carpenter, Alan J. Jacobsen, Yuriy Román-Leshkov, Gregg T. Beckham, The critical role of process analysis in chemical recycling and upcycling of waste plastics, in press at Ann. Rev. Chem. Biomolec. Eng.

2023

Taylor Uekert, Avantika Singh, Jason S. DesVeaux, Tapajyoti Ghosh, Arpit Bhatt, Geetanjali Yadav, Shaik Afzal, Julien Walzberg, Katrina M. Knauer, Scott R. Nicholson, Gregg T. Beckham, and Alberta C. Carpenter, "Technical, economic, and environmental comparison of closed-loop recycling technologies for common plastics," ACS Sustainable Chemistry & Engineering (2023) 11, 3, 965–978.

2022

Taylor Uekert, Scott R. Nicholson, Avantika Singh, Jason S. DesVeaux, Tapajyoti Ghosh, John E. McGeehan, Alberta C. Carpenter, Gregg T. Beckham, "Life cycle assessment of enzymatic poly (ethylene terephthalate) recycling," Green Chemistry (2022) 24, 6531-6543.

Guido Zichittella, Amani M. Ebrahim, Jie Zhu, Anna E. Brenner, Griffin Drake, Gregg T. Beckham, Simon R. Bare, Julie E. Rorrer, and Yuriy Román-Leshkov, Hydrogenolysis of polyethylene and polypropylyne into propane over cobalt-based catalysts, JACS Au. (2022) 2, 10, 2259–2268.

Kevin P. Sullivan, Allison Z. Werner, Kelsey J. Ramirez, et. al., Mixed plastics waste valorization through tandem chemical oxidation and biological funneling, Science (2022) 378, 207-211.

Rosie Graham, Erika Erickson, Richard K. Brizendine, Davinia Salvachúa, William E. Michener, Yaohao Li, Zhongping Tan, Gregg T. Beckham, John E. McGeehan, Andrew R. Pickford, The role of binding modules in enzymatic poly(ethylene terephthalate) hydrolysis at high-solids loadings, Chem. Catalysis. (2022) 2644-2657.

Sang-Min Shin, Ramesh K. Jha, and Taraka Dale, Tackling catch-22 situation of optimizing a sensor and transporter system in a whole cell biosensor design for an anthropogenic small molecule, ACS Synthetic Biology (2022), 11, 3996-4008.

Publications

Julie E. Rorrer, Amani M. Ebrahim, Ydna Questell-Santiago, Jie Zhu, Clara Troyano-Valls, Arun S. Asundi, Anna E. Brenner, Simon R. Bare, Christopher J. Tassone, Gregg T. Beckham, and Yuriy Román-Leshkov, The role of bifunctional Ru/acid catalysts in selective hydrocracking of polyethylene and polypropylene waste to liquid hydrocarbons, *ACS Catal*. (2022) 12, 22, 13969–13979.

Andrea H. Westlie, Eugene Y.-X. Chen, Chris M. Holland, Shannon S. Stahl, Meredith Doyle, Scott R. Trenor, Katrina M. Knauer, Polyolefin innovations towards circularity and sustainable alternatives, *Macromolecular Rapid Communications* (2022) 43, 2200492.

Raka G. Dastidar, Min Soo Kim, Panzheng Zhou, Zaneta Luo, Changxia Shi, Kevin J. Barnett, Daniel J. McClelland, Eugene Y.-X. Chen, Reid C. Van Lehn, George W. Huber, Catalytic production of tetrahydropyran (THP): a biomass-derived, economically competitive solvent with demonstrated use in plastic dissolution, *Green Chem*. (2022) 24, 9101–9113.

Zhen Zhang, Changxia Shi, Miriam Scoti, Xiaoyan Tang, and Eugene Y.-X. Chen, Alternating Isotactic Polyhydroxyalkanoates via Site- and Stereoselective Polymerization of Unsymmetrical Diolides, *J. Am. Chem. Soc.* (2022), 144, 20016–20024.

Andrea H. Westlie, Ethan C. Quinn, Celine R. Parker, Eugene Y.-X. Chen, Synthetic biodegradable polyhydroxyalkanoates (PHAs): recent advances and future challenges, *Prog. Polym. Sci.* (2022), 134, 101608.

Erika Erickson, Japheth E. Gado, Luisana Avilán, et al., Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity, *Nat Comm.* (2022) 13, 7850.

Robin M. Cywar, Nicholas A. Rorrer, Heather B. Mayes, Anjani K. Maurya, Christopher J. Tassone, Gregg T. Beckham, Eugene Y.-X. Chen, Redesigned hybrid nylons with optical clarity and chemical recyclability, *J. Am. Chem.* Soc. (2022) 144, 5366–5376.

Publications

Coralie Jehanno, Jill W. Alty, Martijin, Steven De Meester, Andrew P. Dove, Eugene Y.-X Chen, Frank A. Leibfarth, Haritz Sardon, Critical advances and future opportunities in upcycling commodity polymers, *Nature* (2022), 603, 803–814.

William M. Kincannon, Michael Zahn, Rita Clare, Jessica Lusty Beech, Ari Romberg, James Larson, Brian Bothner, Gregg T. Beckham, John E. McGeehan, and Jennifer L. DuBois, Biochemical and structural characterization of an aromatic ring-hydroxylating dioxygenase for terephthalic acid catabolism. *Proc. Natl. Acad. Sci.* (2022) 19(13):e2121426119.

Jessica Lusty-Beech, Rita Clare, William M. Kincannon, Erika Erickson, John E. McGeehan, Gregg T. Beckham, Jennifer L. DuBois, A flexible kinetic assay efficiently sorts prospective biocatalysts for PET plastic subunit hydrolysis. *RSC Adv.* (2022) 12, 8119-8130.

Changxia Shi, Ryan W. Clarke, Michael L. McGraw, Eugene Y.-X., Closing 'one monomer-two polymers-one monomer' loop via orthogonal (de)polymerization of a lactone/olefin hybrid, J. Am. Chem. Soc. (2022) 144, 2264–2275.

Erika Erickson, Thomas Shakespeare, Felecia Bratti, Bonnie L. Buss, Rosie Graham, McKenzie Hawkins, Gerhard König, William E. Michener, Joel Miscall, Kelsey J. Ramirez, Nicholas A. Rorrer, Michael Zahn, Andrew R. Pickford, John E. McGeehan, Gregg T. Beckham, "Comparative PETase performance as a function of reaction conditions, substrate properties, and product accumulation," *ChemSusChem* (2022) 15, e202101932.

2021

Bing Yan, Changxia Shi, Gregg T. Beckham, Eugene Y. X. Chen, Yuriy Román-Leshkov, Electrochemical activation of C-C bonds via mediated hydrogen atom transfer reactions, ChemSusChem (2021) 15,6, e202102317.

Publications

Changxia Shi, Liam T. Reilly, Vi Sai Phani Kumar, Matthew W. Coile, Scott R. Nicholson, Linda J. Broadbelt, Gregg T. Beckham, Eugene Y.-X Chen, Design principles for intrinsically circular polymers with tunable properties, Chem (2021), 7, 2896–2912.

Julie E. Rorrer, Clara Troyano-Valls, Gregg T. Beckham, and Yuriy Román-Leshkov, Hydrogenolysis of polypropylene and mixed polyolefin plastic waste over Ru/C to produce liquid alkanes, ACS Sustainable Chemistry & Engineering (2021) 9, 35, 11661-11666.

Elani Lacovidou, Richard Geyer, Julia Kalow, James Palardy, Jennifer Dunn, Timothy Hoellein, Eugene Y.-X. Chen, Toward a circular economy for plastics, One Earth (2021), 4, 591–594 (Featured as Voices article).

Lucas D. Ellis, Nicholas A. Rorrer, Kevin P. Sullivan, et al. Chemical and biological catalysis for plastics recycling and upcycling. Nature Catal. (2021) 4, 539–556.

Lucas D. Ellis, Sara V. Orski, Grace A. Kenlaw, Andrew G. Norman, Kathryn L. Beers, Yuriy Román-Leshkov, Gregg T. Beckham, Tandem heterogeneous catalysis for polyethylene depolymerization via an olefin intermediate process, ACS Sustainable Chemistry & Engineering (2021) 9, 623-628.

Scott Nicholson, Nicholas A. Rorrer, Alberta C. Carpenter, and Gregg T. Beckham, Manufacturing energy and greenhouse gas emissions associated with plastics consumption, Joule (2021) 5, 3, 673-686.

Changxia Shi, Zi-Chen Li, Lucia Caporaso, Luigi Cavallo, Laura Falivene, Eugene Y.-X., Hybrid monomer design for unifying conflicting polymerizability, recyclability, and performance properties, Chem (2021), 7, 670–685.

Patents and patent applications

- Synergistic dual cure for rapid manufacturing of thermoset material, 22-71: U.S. provisional patent application 63/414,238
- Base-mediated method for the recycling of epoxy resin-carbon fiber composites, 22-130: U.S. provisional patent application 63/418,874
- Renewable bio-advantaged plasticizer generated by reductive cross coupling of lignin-derived aromatics, 22-124: U.S. provisional patent application 63/379,217
- Process for sequential acetolysis-autoxidation of plastic streams, 22-107: U.S. provisional patent application 63/383,293
- Methods and systems for dye removal from polymer textiles, 22-106: U.S. provisional patent application 63/384,137
- Biodegradable elastomeric thermosets from microbially-produced polyhydroxyalkanoates, 19-104: U.S. provisional patent application 63/386,011
- Light-driven C-C bond cleavage enabled by polyoxometalate photocatalysts, 21-95: U.S. provisional patent application forthcoming

- Hydrogenolysis of Polyethylene and Polypropylene into Propane over Cobalt-Based Catalysts, 22-81: U.S. provisional patent application 63/340,322
- Catalysts for Depolymerizing Plastics, 20-22: 17/370,244
- Plastic Degrading Fusion Proteins and Methods of Using the Same, 20-86: PCT/US21/31610
- Polymer Degrading Enzymes, 21-88: PCT/US22/25624.
- Dissolution Purification and Recovery for Polymeric Recycling, 22-16: 63/307,676
- Method to Produce Branched-Chain Polyhydroxyalkanoates and Branched Chain 3-Hydroxyacids from Glucose, 21-63A: 63/321,207.
- Upcycling Mixed Waste Plastic Through Chemical Depolymerization and Biological Funneling, 20-123: PCT/US21/63725.
- Genetically engineered Pseudomonas strains capable of metabolizing ethylene glycol, 17-26: 11,021,721
- Engineered Pseudomonas for the Deconstruction of Polymers, 18-76: 17/055,626
- Microorganisms Engineered for Muconate Production, 20-48: 17/184,580

Patents and patent applications

- Polymers from bio-derived dicarboxylic acids (BKA to nylon), 17-48: 10,662,289
- Polymers and methods of making the same (PET formulated with adipic/muconic acids), 17-55A: 17/205,232
- Monomers, Polymers and Methods of Making the Same (Bio-plastic ABS), 18-69: 16/583,471
- Bio-derived biphenyl compounds (Polycarbonates), 18-81: 16/791,873
- Bioderived monomers as replacements in petroleum-based polymers and copolymers (novel bio-based plasticizers), 19-38: 16/790,093
- Conversion of dicarboxylic acids to monomers and plasticizers, 19-41A: 16/995,338
- Bio-derived Epoxide Triazine Networks and Methods of Making the Same, 20-26: 17/324,222
- Bio-derived Epoxy-Anhydride Thermoset Polymers for Wind Turbine Blades and Anti-Static Coatings, 20-59: 17/494,514
- Plastic waste derived polymers and resins and methods of making the same (PET upcycled to 3D printing materials). 20-37: 17/371,421
- Mixed Waste Plastics Compatibilizers for Asphalt (filed by ASU), 21-53: 63/148,423

Patents and patent applications

- Bioderived Benzoxazines, 20-130: 17/690,131
- Novel Routes to Bis-furan Diacids, Dialcohols and Diamines, US 9840485
- Improved Industrial Production of Isotactic Polylactides (PLA), US 10174161
- Chemically Recyclable Polymers to Combat Single-Use Plastics, PCT Patent Pending: WO 2021/113325
- Synthesis of Crystalline Polymers from Cyclic Diolides, US Utility Patent Pending: US 2019/0211144
- Novel Compounds and Methods for Upgrading Biomass to Produce Premium Biofuels, US Utility Patent: US 9469626 B2, US Utility Patent: US 9828354 B2
- High-Speed, Stereoselective Polymerization for Renewable Bio-derived Plastics, US Utility Patent: US 9309332

Selective Hydrogenolysis of Polyolefin Waste to Liquid Hydrocarbons over Bifuncational Ru/Acid Catalysts, AIChE National Conference, November 15, 2022.

Developing Strategies for Polymer Redesign and Recycling Using Reaction Pathway Analysis, AIChE Annual Meeting, November 2022.

Development of non-model microbes as chassis organisms for bioconversion. Presented at the AIChE Annual Meeting, November 2022.

Redesigning Polymers to Leverage a Circular Economy, Chemical Engineering, Purdue University, November 2022.

Bio-based Polymers with Performance & Recyclability Advantages, Braskem, virtual seminar, November 2022.

Design Principles and Chemocatalytic Methods for Circular Polymers and Biodegradable Plastics, BASF Lecture in Organic Chemistry, November 2022.

Developments in Advanced Recycling, TA Instruments Webinar, October 2022.

Design of Polyolefin-like Polyesters with Closed-loop Lifecycles, ACS WRM Polymer Symposium, October 2022.

Adopting a sustainable plastics supply chain, RISE 2022, September 2022.

Redesigning plastics to be recyclable-by-design, RISE 2022, September 2022.

Advances in lignin and plastics conversion, VITO, September 2022.

Decoding the mechanism of autoxidation deconstruction reaction of plastics by in-situ simultaneous SAXS and WAXS," XVIII International Small-Angle Scattering Conference (SAS2022), September 2022.

Design of functionalized polyolefins and polyolefin-like polyesters with close-loop chemical recycling, ACS Advances in Polyolefins, September 2022.

Using synthetic biology to solve challenges in plastic waste and renewable chemical production, Biological Sciences Departmental Seminar, September 2022.

Advancing the catalytic upcycling of waste polyolefin plastics, Beckman Foundation Regional Symposium, August 2022.

Using redesigned iron catalysts to bring aromatic subunits to a common intermediate, SIMB 2022, August 2022

Techno-economic analysis and life cycle assessment for catalytic fast pyrolysis of mixed plastic waste, BioEnergy TRP Meeting, National Renewable Energy Laboratory, August 2022.

Bio-based, recyclable-by-design polymers, ACS National Meeting, August 2022

Techno-Economic analysis and life cycle assessment of mixed waste plastics via pyrolysis and gasification, ACS Fall Conference, August 2022.

Monomer design for circular polymers that unify conflicting properties, ACS Symposium: Design Polymers for Upcycling, ACS National Meeting, August 2022.

Bio-based acrylic plastics with performance and recyclability advantages, ACS Symposium: Green Polymer Chemistry and Sustainability, ACS National Meeting, August 2022.

Plastics recycling, upcycling, and redesign in the BOTTLE Consortium, ACS National Meeting, August 2022. Plastics Deconstruction & Upcycling in the BOTTLE Consortium, ACS National Meeting, August 2022.

Design principles and chemocatalytic methods for intrinsically circular polymers and biodegradable plastics, ACS Presidential Event: Series-Enabling Circular Economy via Polymer Molecular Recycling, ACS National Meeting, August 2022.

Techno-economic, life-cycle, and socioeconomic impact analysis of enzymatic recycling of poly(ethylene terephthalate), ACS Fall Conference, August 2022.

Kinetic Monte Carlo-based tool to unravel solvolysis chemistry of step-growth polymers, National Meeting of the American Chemical Society, August 2022.

Tracking in situ structural changes in Ru, Mo and Co-based hydrogenolysis catalysts for polyolefin deconstruction under mild temperature using in situ/operando X-ray absorption spectroscopy, ACS Fall Meeting: Polymer Upcycling Symposium, August 2022.

High throughput test tools for industrially relevant microbial chassis, SIMB 2022, August 2022.

Circular polymers and biodegradable plastics, Circular Polymers and Biodegradable Plastics International Research Training Group, University of Muenster, July 2022.

Engineering P450s to alleviate a bottleneck to lignin demethylation, Intl. Conference on Porphyrins and Phthalocyanines, July 2022.

Difficult to recycle plastics, Sustainable Packaging Coalition Engage Meeting, July 2022.

Selective chemical recycling of mixed plastics waste, Polymer Physics Gordon Research Conference, July 2022.

Plastics recycling and upcycling in the BOTTLE Consortium, NASEM Committee on Repurposing Plastic Waste, July 2022.

Developing strategies for polymer redesign and recycling using reaction pathway analysis, Gordon Research Conference on Polymer Physics, July 2022.

Multi-Material Flexible Packaging Coalition SPC, February 2022.

Development of chemical recycling approaches for plastic waste (via webinar), BASF, March 18th, 2022

Development of chemical recycling approaches for plastic waste, Enzyclic Consortium (via webinar), January 2022

Development of chemical recycling approaches for plastic waste, UIUC, December 2021

Design Principles and Synthetic Methodologies for Circular Polymers with Intrinsic Recyclability and Tunable Properties, Pacifichem Conference, December 2021

New building blocks for performance-advantaged renewable and recyclable polymers, Pacifichem (via webinar), December 2021

Discovery and characterization of PET degrading enzymes, University of Rochester microplastics workgroup seminar series, December 2021.

Design Principles and Synthetic Methodologies for Intrinsically Circular Polymers and Biodegradable Plastics, Columbia University, November 2021

Selective Hydrogenolysis of Polyethylene and Polypropylene to Liquid Alkanes over Tunable Ruthenium-Based Heterogeneous Catalysts, 2021 AIChE National Conference, Boston, MA, November 2021.

Plastics recycling and upcycling, ACS Converge (via webinar), October 2021

Genetic tools and microbial engineering for biological production of sustainable fuels and chemicals, Presented to Weekly Seminar for DOE CCI/SULI Students. October 2021

Heterogeneous Catalytic Deconstruction and Upcycling of Waste Polyolefins, Biodesign Institute at Arizona State University, SM3 Seminar Series, October 2021.

Domestication of diverse non-model microbes for plastics upcycling and sustainable fuel and chemical production, Biological Sciences Departmental Seminar, Michigan Technical University. October 2021.

Catalysis for valorization of lignin and plastics, Great Plains Catalysis Society (via webinar), June 2021

The critical role of economic and environmental analysis to guide research in lignin valorization and plastics upcycling, Keynote Invited Lecture, ACS Green Chemistry and Engineering (via webinar), June 2021

Towards Intrinsically Circular Thermoplastics and Reprocessable Thermosets, Dow Chemical Company, virtual seminar, May 2021

Recent progress in performance-advantaged bioproducts and plastics upcycling, Arizona State University (via webinar), April 2021

Recent adventures in biomass conversion and plastics upcycling, Rutgers University (via webinar), April 2021

Recent adventures in biological plastics upcycling, MIX-UP Consortium (via webinar), April 2021

Framing challenges and opportunities for chemical recycling of waste plastics, ACS Presidential Symposium on Chemistry and the Future of Plastics (via webinar), April 2021

Recent updates in plastics upcycling from the BOTTLE Consortium, ExxonMobil Research and Engineering, April 2021

Design Principles and Synthetic Methodologies for Circular Polymers and Biodegradable Plastics, KAUST, Physical Science and Engineering Division, virtual seminar, April 2021

Heme and non heme iron enzymes and renewable carbon, University of San Antonio Texas, April 2021

A flexible kinetic assay efficiently sorts potential biocatalysts for BHET hydrolysis, Symposium on Biomaterials, Fuels, and Chemicals, April 2021

BETO 2021 Peer Review, virtual, March 2021

Design Principles for Circular Plastics with Tunable Properties, CellPress LabLinks: The Circular Plastics Economy: Linking Across Scales, virtual event with 440 registered attendees. March 2021.

Process analysis for enzymatic PET recycling, Global Research and Innovation on Plastics annual meeting (via webinar), March 2021

Polyolefin upcycling in the BOTTLE Consortium, Annual SPE meeting (via webinar), February 2021

Biological processes for lignin and plastics conversion, University of California Riverside (via webinar), January 2021