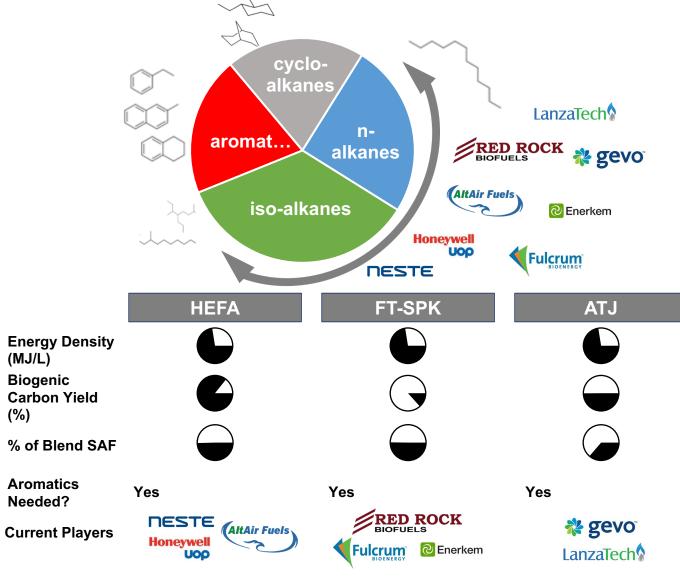
DOE Bioenergy Technologies Office (BETO) 2022 Project Peer Review

Novel Method for Biomass Conversion to Renewable Jet Fuel Blend

April 3 2023 System Development and Integration

> Mukund Karanjikar PhD Technology Holding

This presentation does not contain any proprietary, confidential, or otherwise restricted information


Project Overview

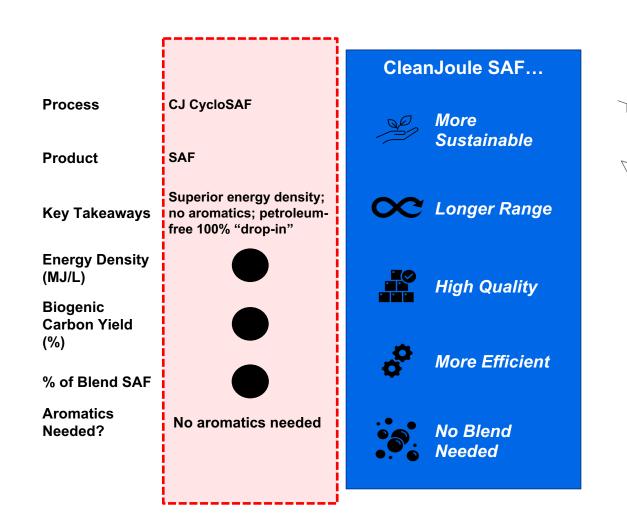
- Higher Energy Density drop-in renewable jet fuel
 blendstock
- Project goal: Develop the process to produce renewable superior jet fuel blend

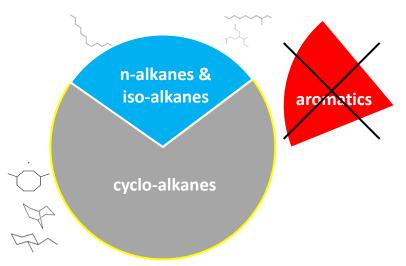
Project Description

- Commercialize renewable jet fuel
- Current Alternatives: Petroleum derived jet and Hydrotreated renewable (F-T fuels) or hydrotreated esters and fatty acids (HEFA)
- Important to demonstrate superior jet fuel from biomass
- Risks: First of a kind plant capital, competition with petroleum jet

The Problem: SAF Technical Attributes

Key Issues in Aviation:

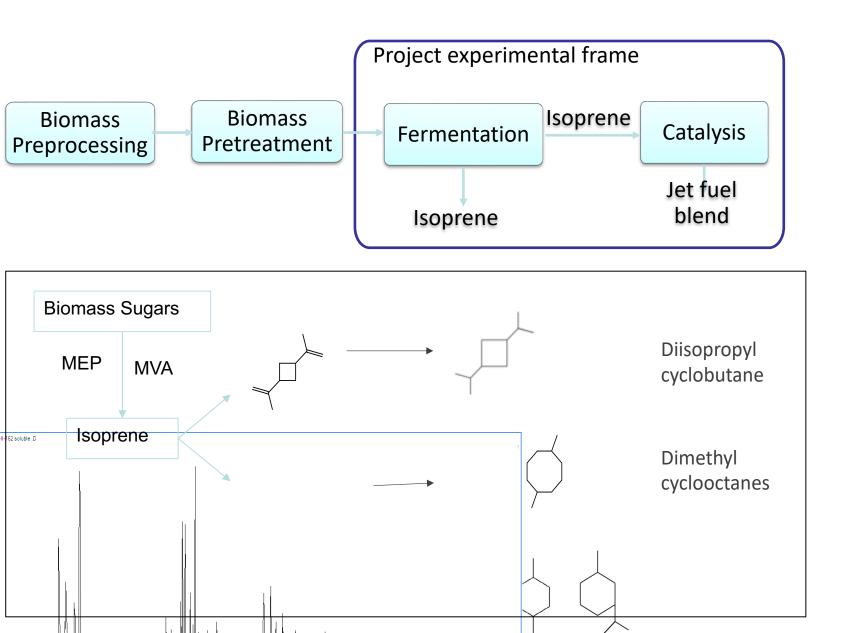

- Aviation is the hardest sector to decarbonize and represents ~1 gigaton⁽¹⁾ of annual CO₂ emissions (12% of total transport CO₂ emissions)
- Current aviation fuel demand is ~360BN liters, and demand is projected to be ~800BN liters by 2050


Key Issues with Current SAF Processes:

Current SAF processes are based on modifications of established procedures, like FT-SPK and ATJ, and produce n-alkanes and iso-alkanes that have:

- Lower energy density than permitted standards
- O-ring swelling considerations
- Substandard and limited economical viability
- Need for petroleum-based additives
- Requires use of aromatics, which have issues with contrails

Fundamental Redesign of Superior SAF



Market size for CycloSAF: 70 Billion Gallons

\bigotimes	Has Higher Energy Density
\bigotimes	Has Higher Biogenic Carbon Yield
\bigotimes	Produces SAF at Low Temp and Low Pressure
Ø	Is Aromatics Free
Ø	Fits in Existing Infrastructure
\bigotimes	Makes Full SAF Tank (100% Drop-in SAF)
\bigotimes	Highly sustainable (Carbon neutral to negative)

1 – Approach

- Optimize and scale-up isoprene production using biomass hydrolysate
- Optimize the catalytic conversion of isoprene to drop-in jet fuel blend to produce higher specific energy jet fuel
- Process integration
- Deliver 100 gallons of fuel blend for characterization
- Develop overall process system, LCA and TEA models

2 – Progress and Outcomes

- ✓ BP1 (verification) Go/No-Go (task 1)
- ✓ Successful chromosomal integration (2.1)
- ✓ Performed directed evolution using biomass hydrolysate (Milestone 2.2)
- ✓ Master cell banking (Milestone 2.3)
- Bioreactor parametric optimization (3.1) 2X improvement in titer of isoprene compared to verification period (in progress)
- ✓ Catalyst optimization for DIPCB (4.1)
- ✓ Catalyst/Activator Optimization for Hydrogenation Protocols (4.2)
- \checkmark Integrated cyclodimerization and hydrogenation (4.3)
- Produced 4 Liter DMCO for detailed characterization as a blend with HEFA and jet A (6.1)
- ✓ Pilot plant design in progress (Task 7)

3 – Impact ASTM D7566 Table 1

Property	DMCO / HEFA Blend	ASTM D7566 / ASTM D1655			
Density (g/mL)	0.780	> 0.775			
η(-20 °C) [mm²s⁻¹]	5.03	< 8.0			
η(-40 °C) [mm²s⁻¹]	10.54	< 12			
NHOC (MJ kg ⁻¹)	43.76	> 42.8			
Flash Point (°C)	51	> 38			
Corrosion (No.)	1A	1			
Smoke Point (mm)	49.4	> 25			
Conductivity (pS/m)	STADIS	STADIS 50-600 (Jet-A)			
Simulated Dist. (T50- T10)	28.5	> 15			
Simulated Dist. (T90- T10)	104	> 40			
Exist. Gum (mg/100 mL)	4	< 7			
Lubricity (mm)	0.734	< 0.85			
Thermal Stability	Code: 1; pressure drop (0 mmHg); deposits (7.050 nm)	Code (<3); pressure drop (<25 mmHg); deposits (<85 nm)			
Acidity (mg KOH/g)	0.001	< 0.10			
Derived Cetane No.	44.1	> 30			
TOL of DMOO is 10.0 commons of to interval at 15.00					

TSI of DMCO is 10.8 compared to jet fuel at 15-29

D7566 Requires:

DMCO: Dimethyl cyclooctane HEFA: Hydrogenated esters and fatty acids

Aromatic content of 8-25% (O-ring swelling properties of DMCO will be sufficient for operability)

Zero-aromatic SAF will reduce coking, emissions and potentially reduce maintenance requirements

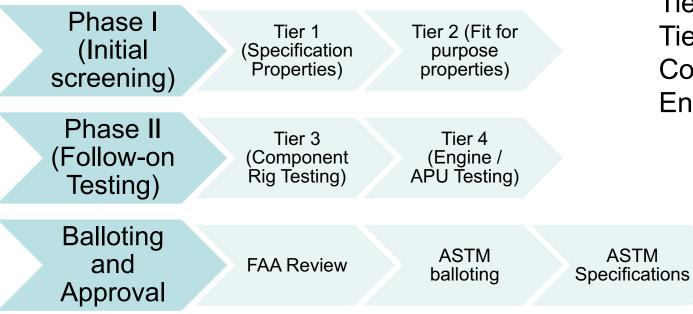
Mercaptan mass percent of less than 0.003% (Not measured since feedstock contains no mercaptans)

Maximum sulfur content 0.3% (zero to trace sulfur in the SAF, lubricity requirements met)

Freezing point of <-40 °C (DMCO freezing point <-78 °C. HEFA – not measured, however a viscosity value at -40 °C suggests lower freezing point)

DMCO eliminates the need for blending, with petroleum

3 - Impact 10:90 Blend Test Results


Property	10:90 DMCO:Jet-A	ASTM D7566	
Density (g/mL)	0.808	> 0.775	
η(-20 °C) [mm²s⁻¹]	4.10	< 8.0	
η(-40 °C) [mm²s⁻¹]	8.03 < 12		
NHOC (MJ kg ⁻¹)	pending > 42.8		
Flash Point	pending > 38		
Corrosion (No.)	1A	1	
Smoke Point (mm)	pending	> 25	
Conductivity (pS/m)	255	50-600 (Jet-A)	
Simulated Dist. (T50-	34.3	> 15	
T10)	54.5	~ 15	
Simulated Dist. (T90-	102.6	> 40	
Т10)	102.0	- 40	
Exist. Gum (mg/100 mL)	pending	< 7	
	pending	-1	
Lubricity (mm)	0.590	< 0.85	
Thermal Stability			
	Code: 1; pressure	Code (<3); pressure	
	drop (13 mmHg);	drop (<25 mmHg);	
	deposits (10.8 nm)	deposits (<85 nm)	
Acidity (mg KOH/g)	0.013	< 0.10	
Derived Cetane No.	43	> 30	

D7566 Table 1 properties met with 10:90 DMCO and Jet A blend

3 – Impact

- Feasible to replace aromatics (ring swelling issue addressed)
- In-service Engine maintenance addressed
- Co-product (intermediate) isoprene as a feedstock to chemical industry
- In discussions with one Aircraft manufacturer and two Oil and Gas Companies
- Interest from Air Force Research Laboratory for defense applications
- Interest from various segments of the US Navy

Path to ASTM Certification

Tier 1 Spec Tests: upto 10 Gallons Tier 2 FFP: 10 – 100 gallon Tier 3:

Component and Rig Tests: 250 -10,000 gallons Engine Tests: upto 225,000 gallons

Summary

- Meets ASTM D7566 Table 1 requirement as a blend with jet A as well as HEFA
- Higher energy content (2.4% higher gravimetric and 4.5% volumetric)
- Promising renewable jet fuel blend
- Valuable intermediate / co-product
- High level of industrial and DOD interest
- Highly favorable full spectrum characterization for blending
- Potential to replace aromatics
- Potentially reduced engine maintenance

Quad Chart Overview

Timeline 10/01/2018 03/31/2023 			Project Goal Demonstrate techno-economic feasibility of producing high energy density renewable jet fuel blend
	FY22 Costed	Total Award	 End of Project Milestone 1. Production of 10 gallon finished fuel blend 2. complete a non-location specific basic engineering package (BEP) for the renewable jet fuel engineering scale (1 dry metric tonne per day biomass feedstock) process 3. Detailed fuel characterization profile Funding Mechanism
DOE Funding	\$607668.69	\$2,499,999	
Project Cost Share	\$147,870.69	\$625,001	FOA: DE-FOA-0001926 Topic Area 1: Drop-in renewable jet fuel blendstocks, FOA year: 2018
TRL at Project Start: 3 TRL at Project End: 4			 Project Partners Princeton University Naval Airfare Warfare Center, Weapons Division