

Systems Development and Integration – Emerging and Supporting Technologies April 3, 2023

Robert Natelson

Technology Manager

Introductions – BETO Systems Development and Integration

Jim Spaeth **Program Manager**

Remy Biron **Project Monitor**

Jessica Clark **Business Support**

Josh Messner **Technology Manager**

Bryce Finch Project Monitor

Andrew Zimmerman **Program Analyst**

Mark Shmorhun **Technology Manager**

Kelly Nguyen

Project Monitor

Sophia Becker

Project Monitor

Frank Fields

Project Monitor

Ben Simon Technology Manager

Robert Natelson **Technology Manager**

Umakanta Jena **Project Monitor**

U.S. DEPARTMENT OF

Ξ

NERGY

Jamie Meadows Project Monitor

Anthony Sorbera **Project Monitor**

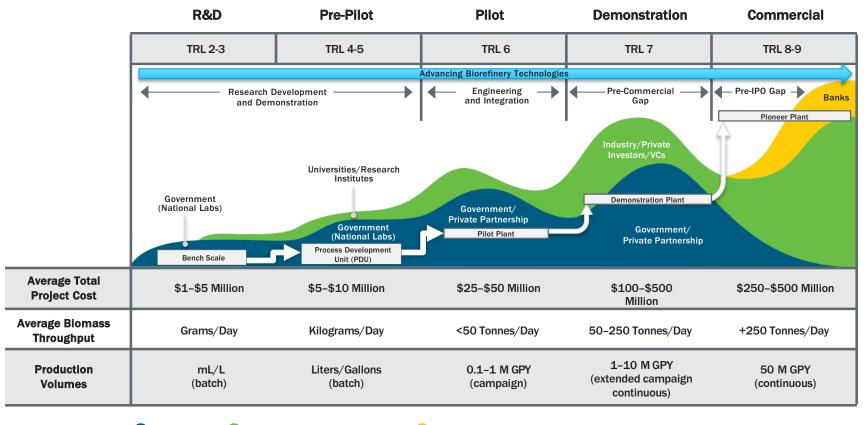
2 | Bioenergy Technologies Office

Reviewer Introductions – Emerging and Supporting Technologies

Dr. Gene Petersen, Retired

Dr. Corey Leclerc, Professor, Dean of Engineering, Department of Chemical Engineering, New Mexico Institute of Mining and Technology

Dr. Marie-Odile Fortier, Assistant Professor, Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas


Dr. Rishi Shukla, Archer Daniels Midland Company

Dr. Amit Goyal, Center of Excellence, Hydrogen/Low Carbon Fuels, DNV

BETO Strategy from R&D through Pioneer Refinery to Commercialization

Government Project Recipients and Partners Banks/Bonds/Institutional Investors

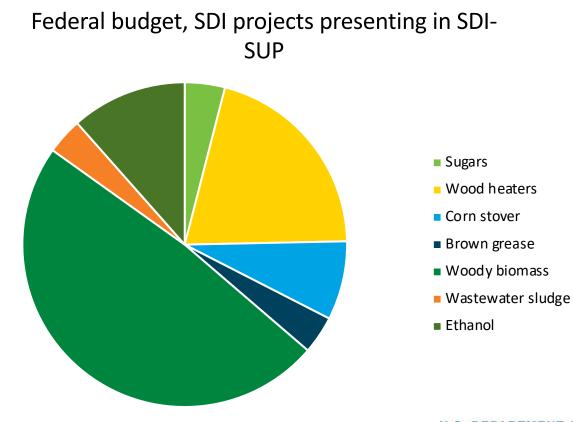
SDI Strategy – Goals and Targets

- SDI directly supports BETO's strategic goal to decarbonize the transportation sector through R,D, &D to produce cost-effective, sustainable aviation and other strategic fuels
 - By 2030, SDI aims to support scale-up of multiple biofuel production pathways with a focus on sustainable aviation fuels capable of >70%
 GHG reduction by enabling the construction and operation of at least 4 demonstration-scale integrated biorefineries

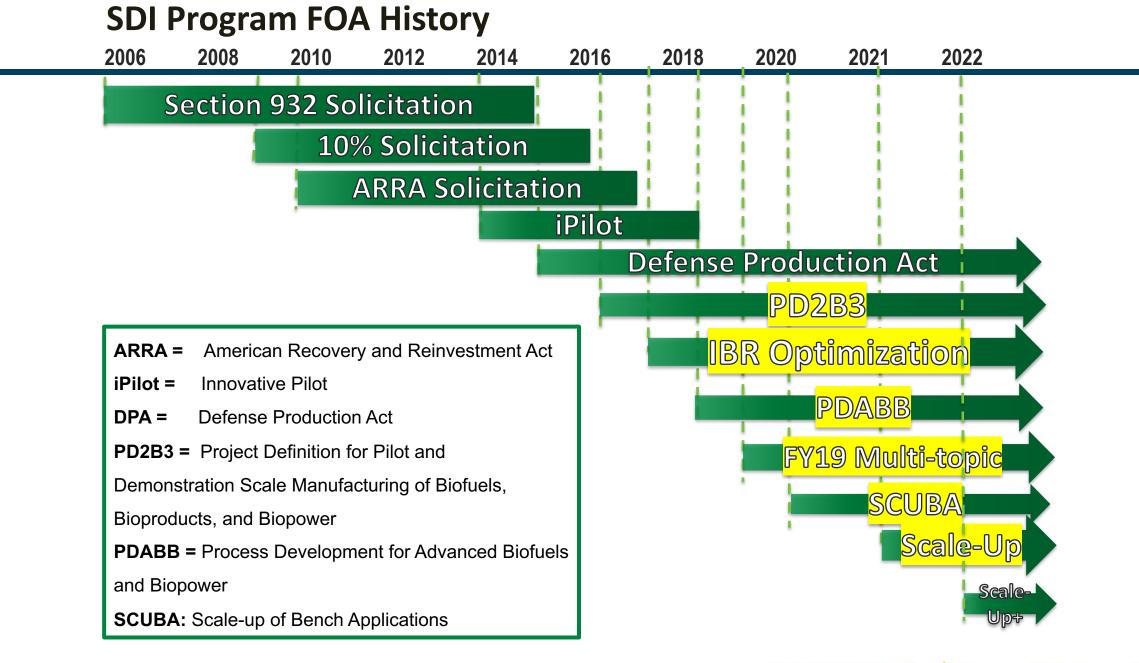
At least 4 demo-scale IBRs producing SAF and other strategic fuels

SDI Strategy

Strategic Goal: Enable the construction and operation of at least 4 demonstration-scale integrated biorefineries producing SAF and other hard-to-decarbonize transportation fuels (marine, rail) at >70% GHG reduction


Approaches:

- Selecting **"pre-pilot" scale projects that focus on critical unit operation priorities** brought forth by industry partners, National Labs, or other BETO subprograms
- Encouraging use of modeling, of unit operations or key integrations
- Providing feedback loops to BETO's other R&D subprograms
- Conducting feasibility studies and demonstrating technologies to significantly reduce GHG emissions from first generation ethanol facilities
- Prioritizing investments to demonstrate production using the 7 ASTM approved SAF pathways and enabling ASTM approval of new SAF routes in development
- Supporting R&D into **possible fuel improvements for SAF** such as molecules that reduce contrail formation, reduce emissions, or deliver higher energy densities
- Collaborating with interagency and international partners to investigate fuels for maritime sector
- Conducting technoeconomic feasibility studies on liquid biofuels for U.S. freight rail
- Engaging with **policymakers and industry stakeholders** to facilitate joint planning and investment in biofuel production and supporting infrastructure



SDI Strategy – Approach

- \$62 million Federal funding will be presented here in the SUP session
 - Majority of funding is tech using woody biomass

Energy Efficiency & Renewable Energy

SDI Program FOA History

Vanover WASH. ORE. IDAHO ORE. IDAHO Beno NEV. Stiff. Las Vegas Los 2 Hymna B.C.	WYO. NEBR. United Star Mo.	ONTARIO OULEUC OULEUC OULEUC N.B. OULEUC N.J. N.J. N.J. OULEUC N.J. N.J. N.J. OULEUC N.J. N.J. N.J. N.J. OULEUC N.J. N.J. OULEUC N.J. N.J. N.J. OULEUC N.J. N.J. N.J. OULEUC OULEUC N.J. N.J. N.J. D. OULEUC N.J. N.J. N.J. OULEUC OULEUC N.J. N.J. N.J. N.J. N.J. D. OULEUC N.J. N	Final	
NAL TECHNOLOGY ADINESS LEVEL (TRL)	FEEDSTOCK	CONVERSION TECHNOLOGY	Technical Reports	osti.gov
TRL 3: Bench Scale	Agricultural ResidueAlgae	All	Neporta	U.S. Department of Energy
TRL 4: Engineering Scale	Bio-Crude			Office of Scientific and Technical Information
TRL 5: Industrially Relevant Scale/ Pre-Pilot	Biogas	PRIMARY PRODUCT		
TRL 6: Pilot Scale	By-Product	All		Search 3+ million Department of Energy research results
TRL 6: Pilot Scale	Cellulosic Sugars			Search ST minion Department of chergy research results
TRL 8: Commercial Scale	Chemical Intermediate			
Modeling/Analysis	Corn Stover	FOA		
	Energy Crops			
	Ethanol	All		
TUS	Fats			
	Food Waste	STATE		
II 🗸	Greases			
	Industrial Off Cas			

https://www.energy.gov/eere/bioenergy/integrated-biorefineries

Energy Efficiency & Renewable Energy

SDI Strategy - FOA approach of projects at Peer Review

Scale , degree of integration, and opportunity for scale-up support	FY16:Demonstration scale orpilot scale production ofadvanced and/orcellulosic biofuels, orbiopower, includingaward structure forPhase 1 (Design) andPhase 2(Construction/Operation), with modeled matureMFSP of \$3/gge	<u>FY17:</u> Pre-pilot: High value products from integrated biorefinery waste streams Pre-pilot: Feedstock handling at	FY18: Pre-pilot: Production of drop-in renewable jet fuel or diesel fuel blendstocks, with modeled mature MFSP of \$3/gge	FY19: Pre-pilot: Hydocarbon biofuels with modeled mature MFSP of \$3/gge or optimized renewable jet fuel blendstocks	FY20: Pre- pilot: Hydrocarbo n biofuels with modeled mature MFSP of \$3/gge and 60% GHG reduction	FY21: Demonstrationscaleor pilot scaleproduction of SAF orother strategicbiofuels, includingaward structrure forPhase 1 (Design) andPhase 2(Construction/Operation), with modeledmature MFSP of\$2.75/gge and 70%GHG reductionPre-pilot: SAF orother strategicbiofuels
о gies О	ffice Fiscal Year of FOA	reactor inlet			U.S. DEPART	

Residential Wood Heat

- Congressional appropriations from FY19 to present
 "\$5,000,000 is to support development and testing of new
 domestic manufactured low-emission, high efficiency,
 residential wood heaters"
- 3 FOA's have been offered FY19-FY21
 - DE-FOA-0002029: FY19 BETO Multi-Topic Funding Opportunity Announcement
 - DE-FOA-0002203 FY20 Bioenergy Technologies FOA
 - DE-FOA-0002396 FY21 BETO Scale-up and Conversion FOA
- Objectives
 - Design to improve clean combustion
 - Automation
 - Power Generation
 - Catalyst Development
 - Retrofit devices

Energy Efficiency & Renewable Energy

- FY18 Process Development for Advanced Biofuels and Biopower (PDABB): DE-FOA-0001926
 - Topic Area 1: Drop-In Renewable Jet Fuel Blendstocks (Technology Holding; Applied Research Associates; Washington State University)
 - Minimum of 1 dry metric ton per day (pilot-scale)
 - Development of drop-in renewable jet blendstocks with high specific energy, price competitiveness, and acceptability by certification organizations such as ASTM
 - Must produce and test at least 100 gallons of renewable jet fuel

FY19 FOA

- FY19 BETO Multi-Topic FOA: DE-FOA-0002029
 - AOI 5: Optimization of Bio-Derived Jet Fuel Blend (University of Colorado; Vertimass; Purdue University)
 - Jet fuel with at least 4% net increase in energy content, with minimal aromatics without compromising seal swell requirement for O-rings
 - 2 gallons produced with ASTM tests for fuel suitability and operability

Agenda Overview – EAST Monday afternoon

• Pre-pilots: Optimized jet fuel and drop-in jet fuel

Start	End					
Time		WBS #	Title	Organization	Speaker	FOA
1:00 PM	1:30 PM		Technology Area Introduction - SDI	BETO	SDI Session Lead	
1:30 PM	2:00 PM	3.5.1.410	Cellulosic-Derived Advantage Jet Fuel	University of Colorado	J. Will Medlin	FY19 Pre-pilot - Optimized jet fuel
2:00 PM	2:30 PM	3.5.1.412	Production of renewable cycloalkanes from ethanol for blending with jet fuel to enhance energy density and material compatibility and reduce particulate emissions	Vertimass	John Hannon	FY19 Pre-pilot - Optimized jet fuel
2:30 PM	3:00 PM	3.5.1.408	Higher energy-content jet blending components derived from ethanol	Purdue University	Gozdem Kilaz	FY19 Pre-pilot - Optimized jet fuel
3:00 PM	3:20 PM		Break	All		
3:20 PM	3:50 PM	3.5.1.401	Novel Method for Biomass Conversion to Renewable Jet Fuel Blend	Technology Holding	Mukund Karanjikar	FY18 Pre-pilot - drop-in jet fuel
3:50 PM	4:20 PM	3.5.1.404	Drop-in Renewable Jet Fuel from Brown Grease via the Biofuels ISOCONVERSION Process	Applied Research Associates	Jeff Rine	FY18 Pre-pilot - drop-in jet fuel
4:20 PM	4:50 PM	3.5.1.402	Hybrid HEFA-HDCJ Process for the Production of Jet Fuel Blendstocks	Washington State University	Manuel Garcia-Perez	FY18 Pre-pilot - drop-in jet fuel
4:50 PM	5:30 PM		Closed Door Comment Review Session	Reviewers		
					U.S. DEPARTMENT OF	Energy Efficiency 8

ENERGY

Renewable Energy

Agenda Overview – EAST Tuesday morning

• Sunsetting and continuing pre-pilots, mostly direct liquefaction.

Start Time		J	Title		Speaker	FOA
8:00 AM	8:30 AM		Registration, Breakfast	All		
8:30 AM	8:45 AM		Technology Area Daily Intro	BETO		
8:45 AM	9:15 AM	3.1.1.010	Virtual engineering of low-temperature conversion	NREL	Ethan Young	AOP
9:15 AM	9:45 AM	3.1.1.002	Improved biomass feedstock materials handling and feeding engineering data sets, design methods, and modeling/simulation tools	Forest Concepts	Christopher Lanning	FY17 Pre-pilot - IBR feeding systems
9:45 AM	10:15 AM	3.5.1.304	Agricultural and Woody Biomass to Diesel Fuel with FT Intermediate	West Biofiles	Matthew Summers	FY18 Pre-pilot - drop-in diesel fuel
10:15 AM	10:30 AM		Break	All		
10:30 AM	11:00 AM	3.5.1.601	Nearcritical Fluids Treatment for Liquefaction and Extraction of Bio-Fuels		Ashwani Gupta	FY21 Pre-pilot
11:00 AM	11:30 AM	3.7.3.005	Scaling Up Biocrude Derived Anode Material (BDAM)	North Carolina State University	Sunkyu Park	FY20 Pre-pilot - ScUBA
11:30 AM	12:00 PM		Bio-crude Production and Upgrading to Renewable Diesel	Research Triangle Institute	Dave Dayton	FY18 Pre-pilot - drop-in diesel fuel
12:00 PM	1:00 PM		Lunch	All		

Energy Efficiency & Renewable Energy

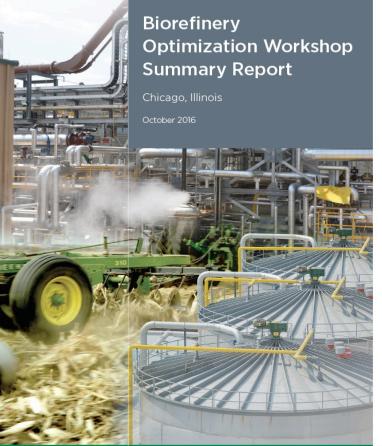
Agenda Overview – EAST Tuesday afternoon

• Sunsetting and continuing pre-pilots, and end uses

Start Time	End Time	WBS #	Title	Organization	Speaker	FOA
1:00 PM	1:30 PM	3.4.3.504	Microchannel Reactor for Ethanol to n- Butene Conversion	Oregon State University	Brian Paul	FY20 Pre-pilot - ScUBA
1:30 PM	2:00 PM	3.5.1.204	Integrated Reactive Catalytic Fast Pyrolysis System for Advanced Hydrocarbon Biofuels	Research Triangle Institute		FY19 Pre-pilot - Systems Reserch for Hydrocarbon Biofuels
2:00 PM	2:30 PM	3.4.3.305	for Biofuels and Bioproducts	Research Triangle Institute	\mathbf{H} is a vertice \mathbf{H} is a vertice \mathbf{H}	FY20 Pre-pilot - ScUBA
2:30 PM	3:00 PM	3.4.3.306	Bio Oil Co Processing with Refinery Streams - PNNL, NREL, LANL	NREL	Reinhard Seiser	АОР
3:00 PM	3:20 PM		Break	All		
3:20 PM	4:05 PM	3.1.4.014	Advancing the Development of Biofuels for the Maritime Sector – ORNL, NREL, PNNL, ANL	ORNL	Michael Kass	АОР
4:05 PM	4:35 PM	3.5.1.501	Multi-stream Integrated Biorefinery Enabled by Waste Processing	Texas A&M Agrilife Researc h	NIIS1e I Ja1	FY17 Pre-pilot - IBR co-products
4:35pm	5:15pm		Closed Door Comment Review Session	Reviewers		

Agenda Overview – EAST Wednesday

• Wood heaters


8:00	8:30		Registration, Breakfast	All		
AM	AM					
8:30 AM	8:45 AM			ВЕТО		
8:45 AM	9:15 AM	5.5.1.105	Advancing wood heater evaluation methodology for accelerating innovation - LBNL, BNL	BNL	Rebecca Trojanowski	АОР
9:15 AM	9:45 AM	5.5.1.102	Automated Wood Stove UFEC23	ISB Marketing	Guillaume Thibodeau-Fortin	FY19 Wood Heater
9:45 AM	10:15 AM	5.5.1.101	Swirl Stove: Swirling combustion for efficient wood burning	MF Fire	Paul LaPorte	FY19 Wood Heater
10:15 AM	10:30 AM			All		
10:30 AM	11:00 AM	5.5.1.103	Fire MAPS - Secure Performance Monitoring and User Alerts System (for wood burning stoves)	MF Fire	Paul LaPorte	FY19 Wood Heater
11:00 AM		5.5.1.106	Development of Forced-Air Combustion Systems with Automated Controls to Reduce Emissions from Cordwood Room Heaters in Everyday Use	Oregon State University	Nordica MacCarty	FY21 Wood heater
11:30 AM	12:00 PM	5.5.1.107	Clean Combustion Technology with Efficient and Autonomous Wood Heater Operation over the Full Cycle	The University of Alabama	Ajay Agrawal	FY21 Wood Heater
12:00 PM	1:00 PM			All		
1:00 PM	1 111		Simulation-Driven Design Optimization and Automation for Cordwood-Fueled Room Heaters	Ohio State University	Shawn Midlam-Mohler	FY20 Wood Heater
1:30 PM	2:00 PM	3.5.2.604	Advanced Low-Emission Residential Fluid-Bed Biomass Combustor	NTRE Tech	Bartev Sakadjian	FY20 Wood Heater
2:00 PM	2:40 PM		Closed Door Comment Review Session	Reviewers		

Energy Efficiency & Renewable Energy

SDI Strategy – Engagement through Workshops

- SDI-EAST will hear from 2 projects (Forest Concepts and Texas A&M AgriLife Research) from the FY17 FOA, which was designed with input from a 2016 workshop
 - Feedstock and solid materials handling
 - Co-product and waste stream monetization

Energy Efficiency & Renewable Energy

SDI Strategy – Engagement through RFIs

 SDI-EAST will hear several projects from an organization (Research Triangle Institute) that responded to the FY16 RFI on Biofuels and Bioproducts Process Pilot Verification Capabilities

https://www.energy.gov/eere/bioenergy/articles/biofuels-andbioproducts-process-pilot-verification-capabilities-rfi

Energy Efficiency & Renewable Energy

SDI Strategy – Engagement through Advisory Boards

- Multi-lab AOP projects utilize Advisory Boards
 - Advanced the Development of Biofuels for the Marine Sector ORNL, NREL, PNNL, ANL
 - External Advisory Board of 4 energy companies, 2 industry experts, 3 shipping/engine companies, 4 government/professional/trade/nonprofits, 1 shipping port/terminal, and 5 biofuel companies
 - Bio-oil Co-processing with Refinery Streams NREL, PNNL, LANL
 - Industrial Advisory Board of 8 energy companies, 1 biofuel company, 4 catalyst companies, 2 government policy agencies, and 2 universities

SDI Progress in addressing Transportation Decarbonization

 The multi-agency U.S. National Blueprint for Transportation Decarbonization clearly scoped the best long-term opportunities for biofuels

1 icon represents limited long-term opportunity 2 icons represents large long-term opportunity 3 icons represents greatest long-term opportunity	BATTERY/ELECTRIC	(C) HYDROGEN	SUSTAINABLE LIQUID FUELS
Light Duty Vehicles (49%)*		-	TBD
Medium, Short-Haul Heavy Trucks & Buses (~14%)		۲	đ
Long-Haul Heavy Trucks (~7%)		000	
Off-road (10%)		۲	
Rail (2%)		00	66
Maritime (3%)		()	66
Aviation (11%)		۲	
Pipelines (4%)		TBD	TBD
Additional Opportunities	Stationary battery use Grid support (managed EV charging)	Heavy industries Grid support Feedstock for chemicals and fuels	Decarbonize plastics/chemicals Bio-products
RD&D Priorities	 National battery strategy Charging infrastructure Grid integration Battery recycling 	Electrolyzer costs Fuel cell durability and cost Clean hydrogen infrastructure	Multiple cost-effective drop-in sustainable fuels Reduce ethanol carbon intensity Bioenergy scale-up
* All omissions charge are for 2010		t Includes hydrogen fer emmer	is and mothanal

* All emissions shares are for 2019

Includes hydrogen for ammonia and methanol

Figure B. Summary of vehicle improvement strategies and technology solutions for different travel modes that are needed to reach a net-zero economy in 2050 (more details provided in Section 5).

https://www.energy.gov/eere/us-nationalblueprint-transportation-decarbonization-jointstrategy-transform-transportation

Energy Efficiency & Renewable Energy

21 | Bioenergy Technologies Office

SDI Strategy – SAF

- Sustainable Aviation Fuel (SAF) Grand Challenge
 - Government-wide effort for enabling SAF

2030: 3 billion gallons per year SAF 2050: ~35 billion gallons per year SAF

https://www.energy.gov/eere/bioenergy/articles/sustainable-aviation-fuelgrand-challenge-roadmap-flight-plan-sustainable

Energy Efficiency & Renewable Energy

SDI Progress - Maritime Fuels

- Maritime transport is 1% of U.S. GHG emissions and rising globally
- Hard to electrify >8 billion GGE fuels used in the U.S.
 maritime sector
- Tuesday afternoon in the SDI-EAST session, you will hear from the AOP "Advancing the Development of Biofuels for the Maritime

Sector – ORNL, NREL, PNNL, ANL"

- BETO participating in Mission Innovation: Zero-Emissions Shipping
 - Goal: at least 5% of the global deep-sea fleet capable of running on zeroemission fuels by 2030
- FY22 Scale-Up+ FOA selections included maritime biofuels project

SDI Progress – Freight Rail

- Renewable diesel and biodiesel considered near-term solutions for decarbonizing freight rail
- SDI started funding a new AOP "Rail Feasibility Study ANL, ORNL, PNNL"
 - The outcome of the project will be a report assessing different biofuels types as near-term bioenergy solutions for freight rail
- SDI discussions with rail agency
- SDI interfacing with VTO's new Decarbonization of Off-road, Rail, Marine, and Aviation program
- 4 billion GGE diesel fuel used in rail transportation in the U.S.
 - <u>https://afdc.energy.gov/data/10661</u>

Legacy locomotive diesel in the freight rail fleet will remain for decades

SDI Progress - Descoping Biofuels R&D for Cars and Trucks

 In light of shifts in market, policy, and funding, DOE ended the Co-Optimization of Fuels & Engines (Co-Optima) after 6 years of support from Vehicle Technologies Office and BETO

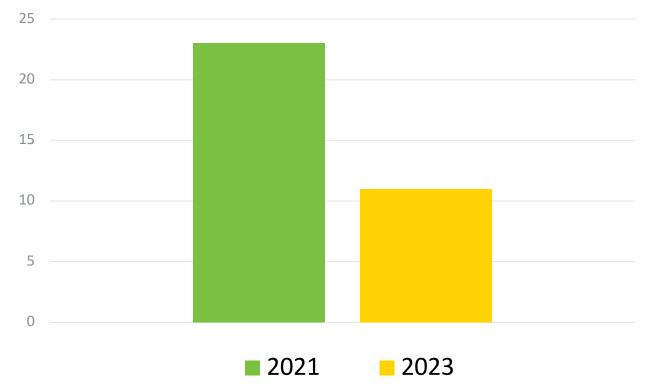
Major Foundational Discoveries and Impacts of Co-Optima

Established central engine and fuel hypotheses to guide research activity

Developed engine efficiency merit function for turbocharge Spark Ignition combustion

Evaluated thousands of molecules and mixtures through tiered screening to identify 10-15 most promising blendstocks each for diesel and gasoline fuels

Advanced understanding of chemical kinetics, particular their effects on autoignition and soot formation


Uncovered new insights into fuel molecular structure-property relationships to predict fuel properties and identify new blendstock candidates

Assessed interplay of candidate blendstocks with multiple combustion approaches

SDI Progress - Active Management

- SDI's FOA/AOP funding proportion has shifted more and more to FOAs
- FOAs use language encouraging cooperation with National Labs Number of National Lab AOPs in SDI portfolio

Former Conversion FOA projects, with their tech now in SDI FOA projects presenting this week

2011	2013	2015	2017		2019	2021	
F		FOA "Catalytic Upgrad emical Intermediates" -Virent	FY18, 19, 20 SDI: Research Triangle Institute				
	-Researc		FY16				
	Biosyntheti	Conversion FOA "Innov c Pathways to Advance -Novozymes Texas A&M University	e Biofuels"			o (w/ Virent) FY21 SDI: D3Max (w/ Novozymes)	
		ersion FOA "Bio-oil Sta and Commodization" as Technology Institut	bilization	FY17 SI		AgriLife Research	
	FY14 Conversion FOA "Biolo and Chemical Upgrading		_			: Gas Technology Institute	
	Advanced Biofuels and Produ -Vertimass				FY19 9	SDI: Vertimass	
		-Texas A&M U -American Pro	-		U.S. DEPART		Efficiency &
chnologies Office				FY1	6 SDI: AVAPCO		le Energy

Room Rules

- 20-minute presentations (one exception for a four-lab AOP)
- 10 minutes Q&A
 - Lead Reviewer first, then open to all of Review panel, then open to general audience
- We must stay on time

