

ENERGY Energy Efficiency & Renewable Energy



# Plastics Deconstruction and Redesign

April 3, 2023

## **Coralie Backlund**

**Technology Manager** 

1 | Bioenergy Technologies Office eere.energy.gov

# **Agenda Overview**

- Schedule for the Technology Area Review
- Reviewer Welcome
- Plastics Overview
- BETO Efforts



# Session 1: Plastics Deconstruction and Redesign

Monday April 3 – BOTTLE Consortium

Tuesday April 4 – FY19 Multi-topic and FY20 BOTTLE competitive awards

Wednesday April 5 – FY20 BOTTLE and FY21SUPR competitive awards



# Schedule for April 3, 2023

| 1:00 PM | 1:30 PM | 30 |         | Technology Area Introduction       | ВЕТО                 | Coralie Backlund                               |
|---------|---------|----|---------|------------------------------------|----------------------|------------------------------------------------|
| 1:30 PM | 2:00 PM | 30 | BOTTLE1 | Introduction & BOTTLE Overview     | BOTTLE<br>Consortium | Gregg Beckham                                  |
| 2:00 PM | 2:15 PM | 15 | BOTTLE2 | Analysis                           | BOTTLE<br>Consortium | Jason DesVeaux, Taylor Uekert                  |
| 2:15 PM | 2:45 PM | 30 | BOTTLE3 | Deconstruction                     | BOTTLE<br>Consortium | Yuriy Román-Leshkov, Taraka Dale               |
| 2:45 PM | 3:00 PM | 15 |         | Q&A                                |                      |                                                |
| 3:00 PM | 3:20 PM | 20 |         | Break                              | All                  | ·                                              |
| 3:20 PM | 3:35 PM | 15 | BOTTLE4 | Upcycling                          | BOTTLE<br>Consortium | Adam Guss                                      |
| 3:35 PM | 3:55 PM | 20 | BOTTLE5 | Redesign & Modeling                | BOTTLE<br>Consortium | Eugene Chen, Linda Broadbelt                   |
| 3:55 PM | 4:10 PM | 15 | BOTTLE6 | Characterization                   | BOTTLE<br>Consortium | Christopher Tassone, Meltem Urgun-<br>Demirtas |
| 4:10 PM | 4:25 PM | 15 |         | Q&A                                |                      |                                                |
| 4:25 PM | 4:40 PM | 15 | BOTTLE7 | Industry Projects & Engagement     | BOTTLE<br>Consortium | Kat Knauer                                     |
| 4:40 PM | 4:50 PM | 10 |         | Q&A                                |                      |                                                |
| 4:50 PM | 5:30 PM | 40 |         | Closed Door Comment Review Session | Reviewers            |                                                |



## **Reviewer Introductions**

| Name                 | Affiliation                                   |  |  |  |  |
|----------------------|-----------------------------------------------|--|--|--|--|
| Sharon Haynie        | Independent Consultant<br>- formerly Dupont - |  |  |  |  |
| Margaret<br>McCauley | EPA                                           |  |  |  |  |
| Michelle Seitz       | AAAS Fellow                                   |  |  |  |  |
| Wei Gao              | Dow                                           |  |  |  |  |
| Vera Schroeder       | Safar VC                                      |  |  |  |  |



# Plastics Strategy | BETO Specific Goals

- Support scale-up of sustainable aviation fuels and other biofuels with >70% reduction in GHG emissions relative to petroleum.
- Enable commercial production of 10+ renewable chemicals and materials with >70% GHG reduction relative to relevant petroleumderived counterparts
- Enable 1+ cost-effective and recyclable bio-based plastic that mitigates ≥50% GHG emissions relative to virgin resin or plastic intermediates.



## **Plastics Strategy | Motivation**



#### Climate

#### **Environmental Justice**

- Plastics contribute ~3% of global GHG emissions<sup>1</sup>
  - Improving the footprint of plastics is essential to decarbonize the industrial sector
- Recycling and making renewable plastics can reduce GHG emissions significantly<sup>2</sup>



#### Economy

- 95% of plastic waste is discarded, and the value of the material is lost<sup>3</sup>
- Transitioning from business as usual to green waste processing can add up to 730,000 jobs<sup>4</sup>

EERE is working to gain better understanding of impacts.

- Plastic-related GHG → climate change.<sup>1</sup>
   Effects of climate change are unequal.
- The US generates the most plastic waste of any country, and is one of the biggest coastal polluters<sup>5</sup>
- Net plastic exports go to developing countries<sup>6</sup>
- Irreversible environmental damage from plastic waste in the ocean is estimated to cost \$2.5 trillion a year<sup>7</sup>

#### Solutions

- Recycling plastics saves >50% of GHG emissions<sup>8</sup>
- Making recyclable-by-design or biodegradable plastics from renewables saves GHG and energy from production to end of life<sup>1</sup>
- These new industries require domestic labor, providing new jobs



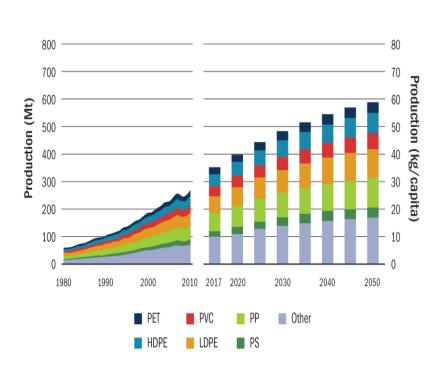
## **Plastics Strategy | Motivation**

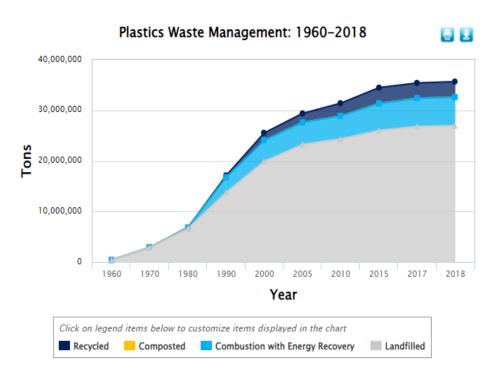
- Plastics are made from non-renewable feedstocks and are increasingly accumulating<sup>1</sup>
- Most plastic waste ends up in landfills and the environment<sup>2</sup>
- >2% of total energy consumption in the US is used to manufacture plastics, resins, and synthetic rubber
- Production of these materials generates roughly 3% of domestic GHG emissions

Plastic production uses 6% of global oil production → anticipated to be

20% by 2050<sup>1</sup>




<sup>1.</sup> Ellen MacArthur Foundation. 2016.


<sup>2.</sup> Gever et al. Science Advances .2017.

<sup>3.</sup> Zheng and Suh. Nature Climate Change. 2019.

## **Plastics Strategy | Motivation**

- Plastic waste presents many technical challenges
- Plastic production is projected to continue to increase substantially through 2050<sup>1-2</sup>
- Plastic recycling rates have plateaued<sup>3</sup>







# Plastics Strategy | Approach









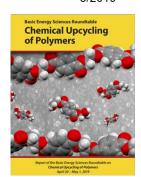


2019

2020

2021

2022


2023

5/2019

11/2019

1/2020

11/2020



Plastics Innovation Challenge Launched





The Strategy for Plastics Innovation (SPI) has been informed by workshops and roundtables across the U.S. Department of Energy (DOE) and the federal government.

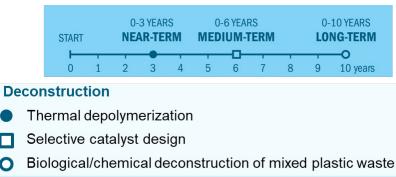
Outputs from those events are listed in the following DOE and stakeholder reports.

## **Plastics Strategy | Approach**

Strategy for Plastics Innovation | Department of Energy

## Vision

For the United States to lead the world in developing and deploying technologies that minimize plastic waste and promote energy-efficient and economic plastic and bioplastic design, production, reuse, and recycling.




## **Objectives/Metrics**

- Address end-of-life fate for >90% of plastics
- ≥50% energy savings relative to virgin material production
- Achieve ≥75% carbon utilization from waste plastics
- Develop cost-competitive recyclable-by-design plastic
- Design recycling strategies that mitigate ≥50% GHG emissions relative to virgin resin or plastic intermediates



# Plastics Strategy | Approach



#### **Upcycling**

- Upcycling of easily recyclable materials
- Couple deconstruction with selective upcycling
- Funnel deconstruction intermediates into valuable product

#### Recyclable by Design

- Organism design for novel plastic materials
- New chemistry for recyclable by design polymers
- Multi component product recyclability

#### **Scale and Deploy**

- Contaminant removal and effective sorting
- Improve physical recycling and recovery
- Advance biological systems for recycling technologies

| S |
|---|
| 9 |
| ĕ |
| ᆸ |
| S |
|   |

#### **Research Directions**

|           |                         | Challenges                                  | Thermal<br>Processes | Chemical<br>Processes | Biological<br>Processes | Physical<br>Recycling and<br>Recovery | Design for<br>Circularity |
|-----------|-------------------------|---------------------------------------------|----------------------|-----------------------|-------------------------|---------------------------------------|---------------------------|
|           |                         | Retain value                                | •                    | •                     | •                       | •                                     | •                         |
|           | uction                  | Feedstock heterogeneity                     |                      | •                     | •                       | •                                     |                           |
|           | Deconstruction          | Contaminant removal                         | •                    | •                     | •                       | •                                     |                           |
|           |                         | Multicomponent materials                    |                      | •                     | •                       |                                       | •                         |
|           | Upcycling               | Recover value                               |                      | •                     | •                       | •                                     | •                         |
| SPI Goals | Upcy                    | New material design                         |                      | •                     | •                       |                                       | •                         |
| SPI (     | Recyclable<br>by Design | Design for reuse                            |                      | •                     | •                       |                                       | •                         |
|           | Recyc<br>by De          | Compatibility with recycling infrastructure | •                    | •                     | •                       | •                                     | •                         |
|           | Scale and Deploy        | Life cycle assessment implications          | •                    | •                     | •                       | •                                     | •                         |
|           |                         | Management of distributed resource          | •                    | •                     | •                       | •                                     | •                         |
|           |                         | Circularity                                 | •                    | •                     | •                       | •                                     | •                         |
|           |                         | Scale of plastics challenge                 | •                    | •                     | •                       |                                       | •                         |



# Plastics Strategy | Engagement

Chemical

**Processes** 

#### **Thermal Processes**



**Current:** Multiple

of EFRCs

**EERE** 

**Biological Processes** 



Physical Recycling and Recovery



**Design for Circularity** 



**Current:** Plastics Pyrolysis, CUWP, ARPA-E Energy Recovery,

**Aspirational:** Routes **Aspirational:** High to high value carbon efficiency, low products from plastic energy thermal waste for majority of conversion of plastic commodity polymers waste to plastic oil

FOAs, Components

**Current:** BOTTLE Consortium, BER **FOA** 

carbon plastics.

bioprocesses to

deconstruct plastic

**Aspirational:** Low

**SBIRs** 

**Aspirational:** High recycling rates, same cycling of

**Current: BOTTLE** FOA, REMADE

Efficient sorting and commodity plastics

Current: REMADE.

**Aspirational:** Highly recyclable plastics with cost and utility parity versus conventional materials









## Plastics Strategy | Conversion Specific Goals

#### Deconstruction, valorization and understanding the fate of plastics

- Leverage current plastics waste as a feedstock
- Develop methods for processing mixed/contaminated plastics
- Develop deconstruction approaches for flexible plastic packaging
- Integration of experimental, computational, and data science tools
- Understand end-of-life impacts of plastic
- Analysis of valorization pathways and markets

#### Designing bio-plastics for recyclability

- Understand relationship between polymer structure and desired functionality
- Develop synthesis, breakdown, separation, and manufacturing approaches that can be integrated with existing infrastructure
- Improve chemical and biological technologies to convert alternative carbon feedstocks into monomers and polymers



## **Plastics Strategy | 2021 Reviewer Comments**

- A disciplined active management approach is required to focus on the most promising areas, including early-stage TRL projects to supply a pipeline of promising technologies, and sunsetting those that may not fulfill expectations.
- Introduce the concept of prototyping. Aim to identify products and technologies that can be put into the hands of "customers," where appropriate, to test at early and regular time points.
- Ensure the best use of industry/commercial/subject matter experts and robust industry advisory boards (IABs) from the onset of projects and throughout.
- The availability of feedstocks from plastic waste recycle/recovery is particularly uncertain, so it is worth considering how the technology area can influence this.
- Coordination and collaboration across government funding agencies (e.g., NSF/DOE EERE) and R&D development arms of agencies (e.g., DOT, EPA) would be an efficient use of taxpayer dollars



# Plastics Strategy | Funding Approach

|                               | FOA                      | АОР                        |
|-------------------------------|--------------------------|----------------------------|
| Selection Method              | Competitive              | Lab Call                   |
| Open to the Public            |                          | ×                          |
| National Lab Participant      | Only as Subrecipient     |                            |
| Go/No-Go Decision<br>Points   |                          |                            |
| Verifications                 | <b>✓</b>                 | ×                          |
| Award Modifications<br>Method | Contracting Officer (CO) | AOP Tool Change<br>Control |

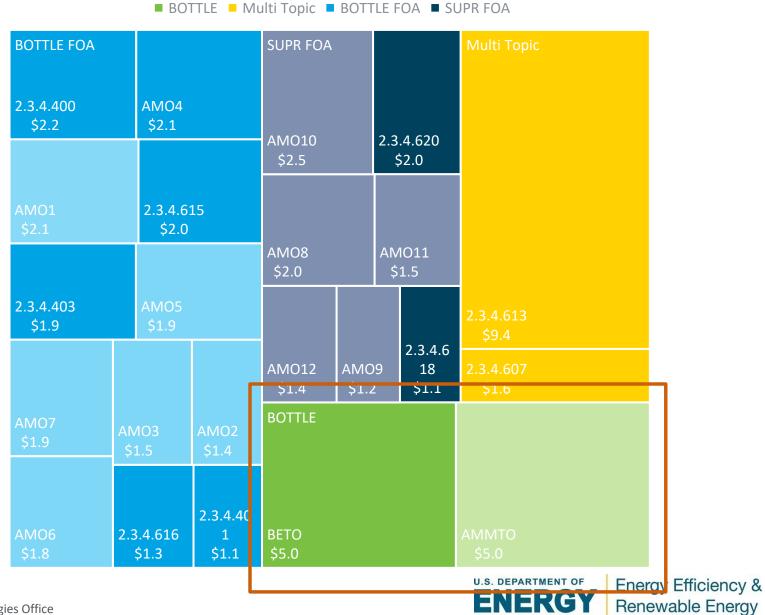
**FOA** = Funding Opportunity Announcement

**AOP** = Annual Operating Plan



## Plastics Strategy | Portfolio Development

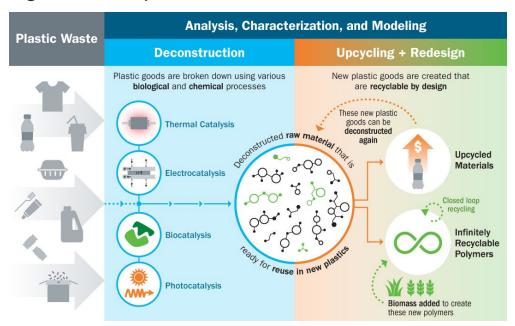
## Small Business Innovation Research (SBIR) Calls


- FY2020: Phase 1 Novel Utilization Strategies for Ocean Plastic Waste
- FY2020: Phase 2 Reshaping Plastic Design and Degradation for the Bioeconomy
- FY2021: Phase 1 compatibilizers of existing plastics
- FY2022: Phase 2 compatibilizers of existing plastics



## Plastics Strategy | Portfolio Development




## **Plastics Strategy | Current Portfolio**



## Plastics Strategy | BOTTLE Lab Call



- ≥50% energy savings relative to virgin material production
- ≥75% carbon utilization from waste plastics
- ≥ 2x economic incentive above price of reclaimed materials
- BOTTLE started with NREL, LANL, ORNL, CSU, MIT, MSU
- FY20 Lab Call invited national laboratory researchers to contribute to the Consortium's goals: Recipients: ANL, SLAC, & NU





## Schedule for April 3, 2023

| 1:00 PM | 1:30 PM     | 30    |         | Technology Area Introduction   | ВЕТО                                 | Coralie Backlund                   |            |
|---------|-------------|-------|---------|--------------------------------|--------------------------------------|------------------------------------|------------|
| 1:30 PM | 2:00 PM     | 30    | BOTTLE1 | Introduction & BOTTLE Overview | BOTTLE                               | Gregg Beckham                      |            |
|         |             |       | BOTTLET | Introduction & BOTTEL Overview | Consortium                           | Gregg Deckriam                     |            |
| 2:00 PM | 2:15 PM     | 15    |         | Analysis                       | BOTTLE                               | Jason DesVeaux, Taylor Uekert      |            |
|         |             |       | BOTTLE2 | 7 thatyoio                     | Consortium                           | ousen besteady, rayior seriest     |            |
| 2:15 PM | 2:45 PM     | 30    | BOTTLE3 | Deconstruction                 | BOTTLE                               | Yuriy Román-Leshkov, Taraka Dale   |            |
|         |             |       | DOTTLEO | Deconstruction                 | Consortium                           | Turry Norman Econicov, Turana Daic |            |
| 2:45 PM | 3:00 PM     | 15    |         | Q&A                            |                                      |                                    |            |
| 3:00 PM | 3:20 PM     | 20    |         | Break                          | All                                  |                                    |            |
| 3:20 PM | 3:35 PM     | 15    | BOTTLE4 | Unavalina                      | BOTTLE                               | Adam Guss                          |            |
|         |             |       | BOTTLE4 | Upcycling                      | Consortium                           | Additi Guss                        |            |
| 3:35 PM | 3:55 PM     | 20    | BOTTLE5 | Redesign & Modeling            | BOTTLE                               | Eugene Chen, Linda Broadbelt       |            |
|         |             |       | BOTTLLS | Tredesign & Modeling           | Consortium                           | Lugerie Orien, Linda Broadbeit     |            |
| 3:55 PM | 4:10 PM     | 15    | BOTTLE6 | Characterization               | BOTTLE                               | Christopher Tassone, Meltem Urgun- |            |
|         |             |       | BOTTLLO | Characterization               | Consortium                           | Demirtas                           |            |
| 4:10 PM | 4:25 PM     | 15    |         | Q&A                            |                                      |                                    |            |
| 4:25 PM | 1 4:40 PM 1 | PM 15 | 15      | BOTTLE7                        | TTLE7 Industry Projects & Engagement | BOTTLE                             | Kat Knauer |
|         |             |       | BOTTLET | Industry Frojects & Engagement | Consortium                           | Nat Miduel                         |            |
| 4:40 PM | 4:50 PM     | 10    |         | Q&A                            |                                      |                                    |            |
| 4:50 PM | 5:30 PM     | 40    |         | Closed Door Comment Review     | Reviewers                            |                                    |            |
|         |             |       |         | Session                        |                                      |                                    |            |

#### **Ground Rules**

**Presenters**: We will give you a 5 minute warning. When your time is up, we will verbally let you know. Please wrap up quickly.

**Reviewers:** Please ask questions during the Q&A period. Be considerate to allow all reviewers the opportunity to ask a question.

**General public**: We will field questions as time allows after the reviewers have asked questions.





ENERGY Energy Efficiency & Renewable Energy



# Plastics Deconstruction and Redesign

April 4, 2023

## **Coralie Backlund**

**Technology Manager** 

24 | Bioenergy Technologies Office

## **Plastics Strategy | Current Portfolio**



## Plastics Strategy | 2019 Multi-Topic FOA



- Renewable Energy from Suburban and Urban Waste
- Designing Highly Recyclable Plastics

#### Topic Area 6: Renewable Energy From Suburban and Urban Waste

- Congress issued specific direction: "establish a multi-university partnership
  to conduct research and enhance educational programs that improve
  alternative energy production derived from urban and suburban waste"
- The research component of applications must comprise roughly 80-90% of the proposed project budget, and 10-20% of the proposed budget should support the educational elements.

#### **Topic Area 8a:** Designing Highly Recyclable Plastics

- Novel biobased plastics that have improved performance attributes over incumbent plastic and can be cost effectively chemically recycled
- Plastics must be synthesized from biobased feedstocks
- Explore performance-advantaged plastics with superior end-of-life consideration



## Plastics Strategy | 2020 BOTTLE FOA



- Highly recyclable or biodegradable plastics
- Novel Methods for Deconstruction
- BOTTLE FOA
   BOTTLE Consortium collaborations

#### Topic Area 1: Highly recyclable or biodegradable plastics

- Recyclable through chemical, biological, or hybrid methods (50% monomer recovery)
- Ability to biodegrade in relevant conditions or compost in industrially-relevant conditions (60% in 180 days)
- Performance advantage (outperform traditional plastics for a specific application)

#### **Topic Area 2:** Novel Methods for Deconstruction

- 40% energy savings when compared to production of the same or similar product from virgin material
- Chemically recyclable, >35 % recovered monomers or intermediate chemicals

#### **Topic Area 3:** BOTTLE Consortium Collaborations



# Schedule for April 4, 2023

|          | DAY 2 Tuesday, April 4, 2023 |    |           |                                                                                                                              |                                           |                  |  |  |  |
|----------|------------------------------|----|-----------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------|--|--|--|
| 8:00 AM  | 8:30 AM                      | 30 |           | Registration, Breakfast                                                                                                      | All                                       |                  |  |  |  |
| 8:30 AM  | 8:45 AM                      | 15 |           | Technology Area Daily Intro                                                                                                  | ВЕТО                                      | Coralie Backlund |  |  |  |
| 8:45 AM  | 9:15 AM                      | 30 | 2.3.4.616 | Hybrid Approach to Repurpose<br>Plastics Using Novel Engineered<br>Processes (HARNESS)                                       | Battelle Memorial<br>Institute            | Kate Kucharzyk   |  |  |  |
| 9:15 AM  | 10:15 AM                     | 60 | 2.3.4.613 | Multi-University Center on Chemical Upcycling of Waste Plastics (CUWP)                                                       | University of Wiscon                      | George Huber     |  |  |  |
| 10:15 AM | 10:30 AM                     | 15 |           | Break                                                                                                                        | All                                       |                  |  |  |  |
| 10:30 AM | 11:00 AM                     | 30 | 2.3.4.607 | Resln: Responsible Innovation for Highly Recyclable Plastics                                                                 | Northwestern<br>University                | Linda Broadbelt  |  |  |  |
| 11:00 AM | 11:30 AM                     | 30 | 2.3.4.400 | Trojan Horse Repeat Sequences for<br>Triggered Chemical Recycling of<br>Polyesters for Films and Bottles                     | lowa State<br>University                  | Eric Cochran     |  |  |  |
| 11:30 AM | 12:00 PM                     | 30 | 2.3.4.401 | Upcycling PET via the VolCat Process                                                                                         | IBM                                       | Greg Breyta      |  |  |  |
| 12:00 PM | 1:00 PM                      | 60 |           | Lunch                                                                                                                        | All                                       |                  |  |  |  |
| 1:00 PM  | 1:30 PM                      | 30 | 2.3.4.403 | Designing Recyclable Biomass-<br>Based Polyesters                                                                            | University of<br>Wisconsin, Madison       | George Huber     |  |  |  |
| 1:30 PM  | 2:00 PM                      | 30 | 2.3.4.615 | Production of high-performance<br>biodegradable polyurethane products<br>made from algae precursors                          | University of<br>California, San<br>Diego | Michael Burkart  |  |  |  |
| 2:00 PM  | 2:30 PM                      | 30 | AMO.04    | Hybrid Chemical-Mechanical<br>Separation and Upcycling of Mixed<br>Plastic Waste                                             | Case Western                              | Mike Hore        |  |  |  |
| 2:30 PM  | 3:00 PM                      | 30 | AMO.06    | Circular Economy of Composites Enabled by TuFF Technology                                                                    | U Delaware                                | Joseph Deitzel   |  |  |  |
| 3:00 PM  | 3:20 PM                      | 20 |           | Break                                                                                                                        | All                                       |                  |  |  |  |
| 3:20 PM  | 3:50 PM                      | 30 | AMO.02    | Highly Recyclable Thermosets for<br>Lightweight Composites                                                                   | U of Akron                                | Junpeng Wang     |  |  |  |
| 3:50 PM  | 4:20 PM                      | 30 | AMO.03    | Modular Catalytic Reactors for Single-<br>Use Polyolefin Conversion to<br>Lubricating Oils from Upcycled<br>Plastics (LOUPs) | lowa State                                | Aaron Sadow      |  |  |  |
| 4:20 PM  | 5:00 PM                      | 40 |           | Closed Door Comment Review Session                                                                                           | Reviewers                                 |                  |  |  |  |

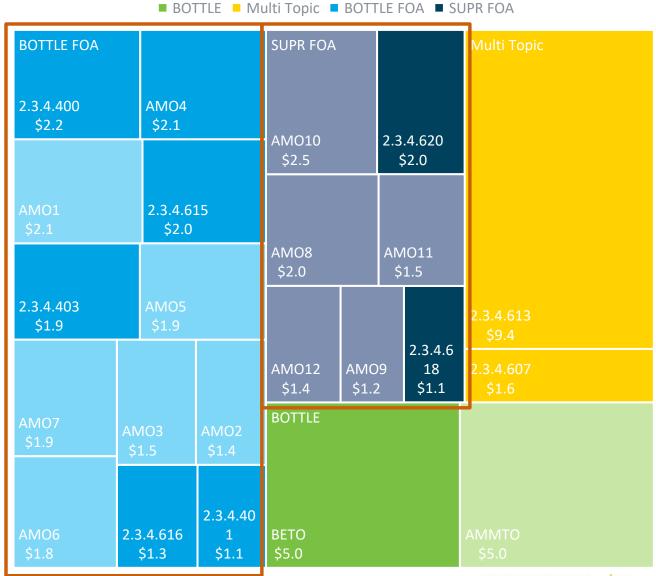




ENERGY Energy Efficiency & Renewable Energy



# Plastics Deconstruction and Redesign


April 5, 2023

## **Coralie Backlund**

**Technology Manager** 

29 | Bioenergy Technologies Office eere.energy.gov

## Plastics Strategy | Current Portfolio



## Plastics Strategy | 2020 BOTTLE FOA



- Highly recyclable or biodegradable plastics
- Novel Methods for Deconstruction
- BOTTLE FOA
   BOTTLE Consortium collaborations

### Topic Area 1: Highly recyclable or biodegradable plastics

- Recyclable through chemical, biological, or hybrid methods (50% monomer recovery)
- Ability to biodegrade in relevant conditions or compost in industrially-relevant conditions (60% in 180 days)
- Performance advantage (outperform traditional plastics for a specific application)

#### **Topic Area 2:** Novel Methods for Deconstruction

- 40% energy savings when compared to production of the same or similar product from virgin material
- Chemically recyclable, >35 % recovered monomers or intermediate chemicals

#### **Topic Area 3:** BOTTLE Consortium Collaborations



## Plastics Strategy | 2021 SUPR FOA



- Novel processes to upcycle films
- Design of films for infinite recyclability or biodegradability

#### Topic Area 1: Novel processes to upcycle films

- Valorization of conventional waste films into higher value products
- Methods to recover pure polymer resin from conventional multilayer packaging
- Approaches that improve the economics of same-cycling conventional films

### Topic Area 2: Design of films for infinite recyclability or biodegradability

- New substitute multilayer materials designed for recyclability or biodegradability
- Biodegradable substitute materials yielding benign degradation products
- Bio-based plastics capable of use in multi-layer package applications that are infinitely recyclable and/or biodegradable



# Schedule for April 5, 2023

|           | DAY 3 Wednesday, April 5, 2023 |    |           |                                                                              |               |                       |  |  |  |
|-----------|--------------------------------|----|-----------|------------------------------------------------------------------------------|---------------|-----------------------|--|--|--|
| 8:00 AM   | 8:30 AM                        | 30 |           | Registration, Breakfast                                                      | All           |                       |  |  |  |
| 8:30 AM   | 8:45 AM                        | 15 |           | Technology Area Daily Intro                                                  | BETO          | Coralie Backlund      |  |  |  |
| 8:45 AM   | 9:15 AM                        | 30 |           | Upscaling of non-recyclable plastic                                          |               |                       |  |  |  |
|           |                                |    | AMO.05    | waste into CarbonSmartTM                                                     | LanzaTech     | Ching Leang           |  |  |  |
|           |                                |    |           | monomers                                                                     |               |                       |  |  |  |
| 9:15 AM   | 9:45 AM                        | 30 | AMO.01    | Degradable Biocomposite                                                      | UCSD          | Jon Pokorski          |  |  |  |
|           |                                |    | 711110.01 | Thermoplastic Polyurethanes                                                  | 0000          | OTT OROTOR            |  |  |  |
| 9:45 AM   | 10:15 AM                       | 30 |           | Recyclable and Biodegradable                                                 |               |                       |  |  |  |
|           |                                |    | AMO.07    | Manufacturing and Processing of                                              | U Minnesota   | Paul Dauenhauer       |  |  |  |
|           |                                |    |           | Plastics and Polymers based on                                               |               |                       |  |  |  |
| 10:15 AM  | 10:30 AM                       | 15 |           | Renewable Branched Caprolactones  Break                                      | All           |                       |  |  |  |
|           | 10:50 AM                       | 20 |           |                                                                              | AII           | T T                   |  |  |  |
| 10:30 AM  | 10:50 AW                       | 20 | AMO.08    | A closed loop upcycling of single-use                                        | lowa State    | Vienglen Be           |  |  |  |
|           |                                |    | AIVIO.06  | plastic films to biodegradable polymers                                      | lowa State    | Xianglan Ba           |  |  |  |
| 10:50 AM  | 11:10 AM                       | 20 |           | Integrated Chemolytic Delamination                                           |               |                       |  |  |  |
| 10.50 AW  | 11.10 AW                       | 20 |           | and Plasma Carbonization for the                                             |               |                       |  |  |  |
|           |                                |    | AMO.09    | Upcycling of Single-Use Multi-layer                                          | U Mass Lowell | Hsi-Wu Wong           |  |  |  |
|           |                                |    |           | Plastic Films                                                                |               |                       |  |  |  |
| 11:10 AM  | 11:30 AM                       | 20 |           |                                                                              |               |                       |  |  |  |
|           |                                |    | AMO 10    | Catalytic Deconstruction of Plasma                                           |               |                       |  |  |  |
|           |                                |    | AMO.10    | treated Single-Use Plastics to Value-<br>added Chemicals and Novel Materials |               |                       |  |  |  |
|           |                                |    |           | added Chemicals and Novel Materials                                          | NC A&T        | Debasish Kuila        |  |  |  |
| 11:30 AM  | 11:50 AM                       | 20 |           | Process Intensified Modular Upcycling                                        |               |                       |  |  |  |
|           |                                |    | AMO.11    | of Plastic Films to Monomers by                                              |               |                       |  |  |  |
| 44.50.414 | 1.00.514                       | 70 |           | Microwave Catalysis                                                          | WVU           | Yuxin Wang            |  |  |  |
| 11:50 AM  | 1:00 PM                        | 70 |           | Lunch                                                                        | All           |                       |  |  |  |
| 1:00 PM   | 1:20 PM                        | 20 |           | All-Polyester Multilayer Plastics (All-                                      | MIOLA         | M. harrana d Daharana |  |  |  |
|           |                                |    | AMO.12    | Polyester MLPs): A Redesign for                                              | MI State      | Muhammad Rabnawaz     |  |  |  |
| 1:20 PM   | 1:40 PM                        | 20 | AIVIO. 12 | Inherently Recyclable Plastics Infinitely Recyclable and                     |               |                       |  |  |  |
| 1.20 FIVI | 1.40 FIVI                      | 20 | 2.3.4.618 | Biodegradable Films for Improved                                             | TDA           | Ally Robinson         |  |  |  |
|           |                                |    | 2.3.4.010 | Food Packaging                                                               | IDA           | Ally Robinson         |  |  |  |
| 1:40 PM   | 2:00 PM                        | 20 |           | Development of Infinitely Recyclable                                         |               |                       |  |  |  |
| 1.401 W   | 2.001 W                        | 20 |           | Single-Polymer Chemistry Bio-based                                           |               |                       |  |  |  |
|           |                                |    | 2.3.4.620 | Multilayer Films Using                                                       | Braskem       | Hadi Mohammadi        |  |  |  |
|           |                                |    |           | Ethylene/Carbon Monoxide                                                     |               |                       |  |  |  |
|           |                                |    |           | Copolymers                                                                   |               |                       |  |  |  |
| 2:00 PM   | 3:00 PM                        | 60 |           | Closed Door Comment Review                                                   |               |                       |  |  |  |
|           |                                |    |           | Session                                                                      |               |                       |  |  |  |

