

ENERGY Energy Efficiency & Renewable Energy

Separations and Performance Advantaged Bioproducts

April 6, 2023

Coralie Backlund

Technology Manager

1 | Bioenergy Technologies Office eere.energy.gov

Agenda Overview

- Schedule for the Technology Area Review
- Reviewer Welcome
- Separations Overview
- Performance Advantaged Bioproducts Overview
- BETO Efforts

Session 2: Performance Advantaged Bioproducts

Thursday April 6 – Separations Consortium

Friday April 7 – FY21 Scale up | PABP Consortium | FY19 BEEPs | FY20 Multitopic

Schedule for April 6, 2023

DAY 4 Thursday, April 6, 2023						
8:00 AM	10:00 AM	120		Registration, Breakfast	All	
10:00 AM	10:30 AM	30		Technology Area Daily Intro	BETO	Coralie Backlund
10:30 AM	11:10 AM	40	SEP1.0	Overview, Project Management and Integration, & DEI		Lauren Valentino
11:10 AM	11:30 AM	20	SEP3.1	R&D-Guiding TEA and LCA		Jian Liu / Thathiana Benavides
11:30 AM	11:50 AM	20	SEP2.1	Adsorption Based ISPR for ABF products		Gregg Beckham
11:50 AM	1:00 PM	70		Lunch	All	
1:00 PM	1:20 PM	20	SEP2.7	Volatile Products Recovery		Phil Laible
1:20 PM	1:40 PM	20	SEP2.4	Diol Separations		Ramesh Bhave
1:40 PM	2:00 PM	20	SEP2.6	Enabling SAF production by Adsorptive Denitrogenation (ADN)		Miki Santosa
2:00 PM	2:20 PM	20	SEP3.2	Computational Studies Supporting Experimental Designs		Difan Zhang
2:20 PM	2:50 PM	30		Break	All	
2:50 PM	3:10 PM	20	SEP2.2	Co-optimization of Scalable Membrane Separation Processes and Materials		Meltem Urgun-Demirtas
3:10 PM	3:30 PM	20	SEP2.5	Electrochemical Separation Technologies to Extract Intermediate Organic Compounds		Yupo Lin
3:30 PM	3:50 PM	20	SEP2.3	Continuous Counter Current Chromatography		Gregg Beckham
3:50 PM	4:10 PM	20		Q&A		
4:10 PM	4:50 PM	40		Closed Door Comment Review Session	Reviewers	

Schedule for April 7, 2023

	DAY 5 Friday, April 7, 2023							
8:00 AM	8:30 AM	30		Registration, Breakfast	All			
8:30 AM	8:45 AM	15		Technology Area Daily Intro	BETO	Coralie Backlund		
8:45 AM	9:15 AM	30	2.3.4.210	High Solids In Situ Product Recovery; The Next Generation of Arrested Anaerobic Digestion Technology	Quasar Energy Group, LLC	Xumeng Ge		
9:15 AM	9:45 AM	30	2.3.4.212	Continuous Biobutanol Fermentation Integrated with Membrane Solvent Extraction	Archer Daniels Midland, Co. (ADM)	Jesse McVay		
9:45 AM	10:15 AM	30	2.4.2.200	Enabling Lignin Valorization with Liquid Liquid Chromatography	Lignolix, Inc	Eric Gottlieb		
10:15 AM	10:30 AM	15		Break	All			
10:30 AM	11:00 AM	30	2.5.1.200	Physical Property Data and Models in Support of Bioprocessing Separation Technologies for Organic Acids Separation	RAPID Manufacturing Institute	Ignasi Palou-Rivera		
11:00 AM	11:30 AM	30	2.5.1.500	Inverse biopolymer design through machine learning and molecular simulation	NREL	Brandon Knott		
11:30 AM	12:00 PM	30	2.3.4.501	Synthesis and Analysis of Performance- Advantaged Bioproducts	NREL	Gregg Beckham		
12:00 PM	1:00 PM	60		Lunch	All			
1:00 PM	1:30 PM	30	2.5.1.600	Identifying Performance Advantaged Biobased Chemicals Utilizing Bioprivileged Molecules	Iowa State University	Brent Shanks		
1:30 PM	2:00 PM	30	2.2.3.400	Upcycling of CFRP Waste: Viable Eco- friendly Chemical Recycling and Manufacturing of Novel Repairable and Recyclable Composites	Washington State University	Jinwen Zhang		
2:00 PM	2:30 PM	30	2.3.2.224	Bioconversion of Heterogeneous Polyester Wastes to High-Value Chemical Products	UMass Lowell	Margaret Sobkowicz-Klein		
2:30 PM	3:00 PM	30	2.3.2.219	Design and development of bio- advantaged vitrimers as closed-loop bioproducts	University of California, Berkeley	Jay Keasling		
3:00 PM	4:00 PM	60		Closed Door Comment Review Session				

Reviewer Introductions

Name	Affiliation			
Michael Mang	Danimer			
Vera Schroeder	Safar VC			
Alper Kiziltas	Amazon			
Debbie Mielewski	Dione Solutions			

Separations & PABP Strategy | BETO Specific Goals

- Support scale-up of sustainable aviation fuels and other biofuels with >70% reduction in GHG emissions relative to petroleum.
- Enable commercial production of 10+ renewable chemicals and materials with >70% GHG reduction relative to relevant petroleumderived counterparts
- Enable 1+ cost-effective and recyclable bio-based plastic that mitigates ≥50% GHG emissions relative to virgin resin or plastic intermediates.

Separations Strategy | Motivation

- Chemical separations account for up to 15% of total energy consumption in the United States.¹
- Separations account for up to 50-70% of processing costs for biofuels and bioproducts.^{2,3}
- Efficient separation and purification are key integration challenges for all technology pathways.⁴
- There is a need to raise technical maturity of biobased processes, including separations. Improving separations will positively affect the entire bioeconomy.⁵
- Additional research is needed to bridge the gap between small-scale and large-scale technologies.⁵
- Synergy of separations with conversion processes has the potential to reduce costs while maintaining high recovery rates and yields.⁶

^{1.} Sholl and Lively. "Seven chemical separations to change the world," Nature, 2016 532: 425-437.

^{2.} EERE. 2016. Strategic Plan for a Thriving and Sustainable Bioeconomy.

^{3.} Biddy et al. "The Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass." ACS Sustainable Chem. Eng. 2016 4: 3196-3211.

^{4.} EERE. 2019. Bioenergy Technologies Office 2019 R&D State of Technology.

^{5.} EERE. 2018. Moving Beyond Drop-In Replacements: Performance-Advantaged Biobased Chemicals

^{6.} EERE. 2020. Integrated Strategies to Enable Lower-Cost Biofuels.

PABP& Separations Strategy | Funding Approach

	FOA	AOP
Selection Method	Competitive	Lab Call
Open to the Public		×
National Lab Participant	Only as Subrecipient	
Go/No-Go Decision Points		
Verifications	✓	×
Award Modifications Method	Contracting Officer (CO)	AOP Tool Change Control

FOA = Funding Opportunity Announcement

AOP = Annual Operating Plan

Separations Strategy | Separations Consortium

- Address industrially relevant separations challenges in bioenergy
- Research approaches grounded in technoeconomic analysis
- High impact or broadly applicable separations techniques

Launched Separations Consortium in FY17, ~\$3.5M/year

- >Renewed in 2020
 - Established an Industry Advisory Board with regular interactions
 - Launched a lab-directed funding opportunity
 - Developed an easy-to-use <u>website</u> to encourage partnerships

Goals:

- Address industrially relevant separations challenges in bioenergy
- Research approaches grounded in technoeconomic analysis
- High impact or broadly applicable separations techniques
- Avoid developing separations processes that are not well suited for biofuel applications
- Capitalize on shared expertise, resources, and passion

Challenges:

How do we determine what the most promising separations opportunities are?

Separations Strategy | Separations Consortium

Sponsor **Bioenergy Technologies** Provides high-level decision, Office input, and resources. Project guidance Project leadership **Steering Committee Industry Advisory Board** Helps the Consortium Provides technical guidance, maintain an industry-relevant monitors progress and impact, focus, reviews results, and coordinates external provides feedback regarding communications, and manages Task 1 prioritization of research Consortium reporting and **Project Management and** projects. monthly calls. Integration Project work teams Task 2 Task 3 Task 4 Provide subject matter **Analysis and Computation** Diversity, Equity, and **Core Experimental Projects** expertise, leadership, and Inclusion accountability for subtasks.

Separations Strategy | 2021 Scale Up AOP

- Separations to Improve Arrested Anaerobic Digestion Process Development
- Separations to Enable Biomass Conversion

Topic 3a: Separations to Improve Arrested Anaerobic Digestion Process Development

 Develop efficient and cost-effective separations approaches to isolate and potentially upgrade organic acids and products of interest from digesters

Topic 3b: Separations to Enable Biomass Conversion

- Improve availability of data that will support separations development, as well as to develop supporting technologies to improve bioprocessing separations
- Collaborate with the Separations Consortium to address critical bioprocess separations challenges

PABP Strategy | Definitions

Drop-in Replacement: a bioderived compound that is chemically identical to its petroleum counterpart

Functional Replacement: a bio-derived compound that has a different chemical structure than a petroleum counter part, but performs the same function/has the same performance attributes

Performance Advantaged Bioproduct: a bio-derived compound that does not resemble an existing petroleum-derived compound in structure, function, or performance attributes. The bio-based compound offers novel functionality or improved performance attributes

PABP Strategy | Motivation

Product Design Benefits

- Biomass contains functionality not present in other feedstocks
- Opportunity to design and bring new products to market

Economic Benefits

- Increase value of domestic feedstock; revitalize rural economies
- Provide additional source of revenue for existing bioprocessing facilities

Environmental Benefits

- Potential for lower toxicity
- Reduced life cycle impact
- Reduced energy requirements

Bioproducts uniformly show emission reductions compared to their fossilderived counterparts

Life-Cycle Fossil Energy Consumption and Greenhouse Gas Emissions of Bioderived Chemicals and Their Conventional Counterparts – Felix Adom, Jennifer Dunn, Jeongwoo Han, and Norm Sather.

PABP Strategy | Conversion Specific Goals

Identifying strategic opportunities for direct renewable chemical replacement

- Identify products with near term deployment/impact
- Decision matrices for cost, performance, and life cycle impacts of the targeted renewable chemical
- Understand process advantages, market size, and supply chains that favor renewable chemicals

Exploring novel compounds that can be derived from renewable carbon

- Investigate benefits of biomass conversion that cannot be matched by fossil carbon
- Determine end-product performance needs and identify biomass products that offer improved performance
- Developing unique biochemical and catalytic conversion strategies to such end products.

Separations & PABP Strategy | Portfolio Development

Separations & PABP Strategy | Reviewer Feedback

- Consider other separations technologies, including reactive distillation, centrifugal enhanced heat transfer and extraction, and flash recovery from volatile pressurized extraction media
- Introduce the concept of prototyping. Aim to identify products and technologies that can be put into the hands of "customers," where appropriate, to test at early and regular time points.
- Ensure the best use of industry/commercial/subject matter experts and robust industry advisory boards (IABs) from the onset of projects and throughout.
- The availability of feedstocks from plastic waste recycle/recovery is particularly uncertain, so it is worth considering how the technology area can influence this. Coordination and collaboration across government funding agencies (e.g., National Science Foundation/DOE Office of Energy Efficiency and Renewable Energy) and R&D development arms of agencies (e.g., U.S. Department of Transportation, U.S. Environmental Protection Agency) would be an efficient use of taxpayer dollars

Renewable Energy

Separations & PABP Strategy | Current Portfolio

Schedule for April 6, 2023

DAY 4 Thursday, April 6, 2023						
8:00 AM	10:00 AM	120		Registration, Breakfast	All	
10:00 AM	10:30 AM	30		Technology Area Daily Intro	BETO	Coralie Backlund
10:30 AM	11:10 AM	40	SEP1.0	Overview, Project Management and Integration, & DEI		Lauren Valentino
11:10 AM	11:30 AM	20	SEP3.1	R&D-Guiding TEA and LCA		Jian Liu / Thathiana Benavides
11:30 AM	11:50 AM	20	SEP2.1	Adsorption Based ISPR for ABF products		Gregg Beckham
11:50 AM	1:00 PM	70		Lunch	All	
1:00 PM	1:20 PM	20	SEP2.7	Volatile Products Recovery		Phil Laible
1:20 PM	1:40 PM	20	SEP2.4	Diol Separations		Ramesh Bhave
1:40 PM	2:00 PM	20	SEP2.6	Enabling SAF production by Adsorptive Denitrogenation (ADN)		Miki Santosa
2:00 PM	2:20 PM	20	SEP3.2	Computational Studies Supporting Experimental Designs		Difan Zhang
2:20 PM	2:50 PM	30		Break	All	
2:50 PM	3:10 PM	20	SEP2.2	Co-optimization of Scalable Membrane Separation Processes and Materials		Meltem Urgun-Demirtas
3:10 PM	3:30 PM	20	SEP2.5	Electrochemical Separation Technologies to Extract Intermediate Organic Compounds		Yupo Lin
3:30 PM	3:50 PM	20	SEP2.3	Continuous Counter Current Chromatography		Gregg Beckham
3:50 PM	4:10 PM	20		Q&A		
4:10 PM	4:50 PM	40		Closed Door Comment Review Session	Reviewers	

Ground Rules

Presenters: We will give you a 5 minute warning. When your time is up, we will verbally let you know. Please wrap up quickly.

Reviewers: Please ask questions during the Q&A period. Be considerate to allow all reviewers the opportunity to ask a question.

General public: We will field questions as time allows after the reviewers have asked questions.

Separations and Performance Advantaged Bioproducts

April 7, 2023

Coralie Backlund

Technology Manager

23 | Bioenergy Technologies Office eere.energy.gov

Separations & PABP Strategy | Current Portfolio

Separations Strategy | 2021 Scale Up AOP

- Separations to Improve Arrested Anaerobic Digestion Process Development
- Separations to Enable Biomass Conversion

Topic 3a: Separations to Improve Arrested Anaerobic Digestion Process Development

 Develop efficient and cost-effective separations approaches to isolate and potentially upgrade organic acids and products of interest from digesters

Topic 3b: Separations to Enable Biomass Conversion

- Improve availability of data that will support separations development, as well as to develop supporting technologies to improve bioprocessing separations
- Collaborate with the Separations Consortium to address critical bioprocess separations challenges

PABP Strategy | 2020 PABP AOP

- Identifying strategic opportunities for direct renewable chemical replacement
- Exploring novel compounds that can be derived from renewable carbon

Funded in 2018 with an initial focus on *polymers* \rightarrow expanded to include *small molecule* PABPs

Renewed in 2020 as a consortium between machine learning and synthesis

Separations Strategy | 2018 BEEPs FOA

- Performance Advantaged Bioproduct Identification
- Performance Advantaged Bioproduct Production

Topic Area 3a: Performance Advantaged Bioproduct Identification

- Elucidating structure-function relationships for novel biobased compounds by using computational methods and/or high-throughput screening
- Identifying and publishing performance attributes unique to biobased compounds along with example compounds that display those attributes

PABP Strategy | 2019 Multi-Topic FOA

Multi Topic

- Impact of Storage and Handling on Biomass Characteristics
- Designing Novel Methods for Deconstruction and Upcycling of Plastics

Topic Area 2b: Impact of Storage and Handling on Biomass Characteristics

- Novel storage and handling approaches for management of physical and chemical characteristics of the biomass and resulting feedstock
- New technologies and/or analytical tools to relate properties of plant tissue components to performance in storage and handling, and intrinsic inorganic element content
- Strategy design for field research-scale approaches for evaluating the effect of biomass transport on segregation of biomass by tissue type and/or compaction of biomass

Topic Area 8b: Designing Novel Methods for Deconstructing and Upcycling Existing Plastics

- Biological, low-temperature (<300 C) chemical, or hybrid systems capable of:
 - Breaking plastics down into low molecular weight streams which are either consumable by an organism, or are easily separable
 - Breaking down plastics into intermediates for upgrading into high value products
 - Breaking down multiple plastic streams simultaneously or sequentially
 - Tolerating contaminants generally found in mixed plastic waste streams

Schedule for April 7, 2023

DAY 5 Friday, April 7, 2023							
8:00 AM	8:30 AM	30		Registration, Breakfast	All		
8:30 AM	8:45 AM	15		Technology Area Daily Intro	BETO	Coralie Backlund	
8:45 AM	9:15 AM	30	2.3.4.210	High Solids In Situ Product Recovery; The Next Generation of Arrested Anaerobic Digestion Technology	Quasar Energy Group, LLC	Xumeng Ge	
9:15 AM	9:45 AM	30	2.3.4.212	Continuous Biobutanol Fermentation Integrated with Membrane Solvent Extraction	Archer Daniels Midland, Co. (ADM)	Jesse McVay	
9:45 AM	10:15 AM	30	2.4.2.200	Enabling Lignin Valorization with Liquid Liquid Chromatography	Lignolix, Inc	Eric Gottlieb	
10:15 AM	10:30 AM	15		Break	All		
10:30 AM	11:00 AM	30	2.5.1.200	Physical Property Data and Models in Support of Bioprocessing Separation Technologies for Organic Acids Separation	RAPID Manufacturing Institute	Ignasi Palou-Rivera	
11:00 AM	11:30 AM	30	2.5.1.500	Inverse biopolymer design through machine learning and molecular simulation	NREL	Brandon Knott	
11:30 AM	12:00 PM	30	2.3.4.501	Synthesis and Analysis of Performance- Advantaged Bioproducts	NREL	Gregg Beckham	
12:00 PM	1:00 PM	60		Lunch	All		
1:00 PM	1:30 PM	30	2.5.1.600	Identifying Performance Advantaged Biobased Chemicals Utilizing Bioprivileged Molecules	Iowa State University	Brent Shanks	
1:30 PM	2:00 PM	30	2.2.3.400	Upcycling of CFRP Waste: Viable Eco- friendly Chemical Recycling and Manufacturing of Novel Repairable and Recyclable Composites	Washington State University	Jinwen Zhang	
2:00 PM	2:30 PM	30	2.3.2.224	Bioconversion of Heterogeneous Polyester Wastes to High-Value Chemical Products	UMass Lowell	Margaret Sobkowicz-Klein	
2:30 PM	3:00 PM	30	2.3.2.219	Design and development of bio- advantaged vitrimers as closed-loop bioproducts	University of California, Berkeley	Jay Keasling	
3:00 PM	4:00 PM	60		Closed Door Comment Review Session			

PABP & Separations | Ground Rules

Ground Rules

Presenters: We will give you a 5 minute warning. When your time is up, we will verbally let you know. Please wrap up quickly.

Reviewers: Please ask questions during the Q&A period. Be considerate to allow all reviewers the opportunity to ask a question.

General public: We will field questions as time allows after the reviewers have asked questions.

