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• A PV-dominant distribution grid is a cyber-physical system.

• Attackers can compromise the system by manipulate edge devices.

• Efforts that solely target at improving the cyber-layer security may not be adequate.

• How to defend a PV-dominant distribution grid against cyber attack?

Background



Project Goal
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This project aims to:

• provide an end-to-end monitoring framework of critical microgrid/distribution grid with inverter-
interfaced PV; 

• design a resilient control strategy that would function well under normal conditions and function 
safely during abnormal (attacked) conditions;

• develop and validate the performance of the monitoring capabilities in real-world testbed
configured based on realistic distribution system information.



Research Team

More to be added...
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Cyber-Security of 
Networked Cyber-Physical Systems (CPS)

Satchidanandan, Bharadwaj, and Panganamala R. Kumar. "Dynamic watermarking: Active defense of networked cyber–physical systems." Proceedings of the IEEE 105.2 (2016): 219-240.

Huang, Tong, et al. "Enabling secure peer-to-peer energy transactions through dynamic watermarking in electric distribution grids: Defending the distribution system against sophisticated cyberattacks with a provable guarantee." 
IEEE Electrification Magazine 9.3 (2021): 55-64.



Dynamical System

Actuator

Sensor

Sensor

Actuator

Actuator Sensor

Honest node

Malicious node

𝒛𝟏(𝒕) ≠ 𝒚𝟏(𝒕)

𝒛𝟐(𝒕) ≠ 𝒚𝟐(𝒕)

𝒛𝒑 𝒕 = 𝒚𝒑(𝒕)

𝑧$ 𝑡 ≢ 𝑦$(𝑡)

𝑧%(𝑡) ≢ 𝑦%(𝑡)

𝑧&(𝑡) ≡ 𝑦&(𝑡)

• Some sensors in the system could be malicious.
• The false measurements can cause damage to the system.

Ø Stuxnet (2010)

Cyber-Physical Systems (CPS) with malicious sensors
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Why is it called “Watermark” ?
Because it is “Indelible”

like a watermark on a sheet of paper.
It cannot be removed 

from the sensor measurement.

• Actuator can check if 
the private excitation 
comes back 
appropriately transformed 
in the measurements reported by 
the sensors.

The Dynamic Watermarking Method for Detecting Attacks
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Satchidanandan, Bharadwaj, and Panganamala R. Kumar. "Dynamic watermarking: Active defense of networked cyber–physical systems." Proceedings of the IEEE 105.2 (2016): 219-240.

Huang, Tong, et al. "Enabling secure peer-to-peer energy transactions through dynamic watermarking in electric distribution grids: Defending the distribution system against sophisticated cyberattacks with a provable guarantee." 
IEEE Electrification Magazine 9.3 (2021): 55-64.



• 𝑥 𝑡 + 1 = 𝑎𝑥 𝑡 + 𝑏𝑢 𝑡 + 𝑤(𝑡 + 1), where 𝑤 𝑡 ~𝑁(0, 𝜎-.) i.i.d.

• DW: 𝑢 𝑡 = 𝑢 𝑡 + 𝑒(𝑡) with 𝑒 𝑡 ~𝑁(0, 𝜎/.) i.i.d.

• Closed-loop system: 𝑥 𝑡 + 1 = 𝑎𝑥 𝑡 + 𝑏𝑢 𝑡 + 𝑏𝑒 𝑡 + 𝑤 𝑡 + 1

• Therefore,

𝑥 𝑡 + 1 − 𝑎𝑥 𝑡 − 𝑏𝑢 𝑡 − 𝑏𝑒 𝑡 = 𝑤 𝑡 + 1 ~𝑁(0, 𝜎-.)

𝑥 𝑡 + 1 − 𝑎𝑥 𝑡 − 𝑏𝑢 𝑡 = 𝑏𝑒 𝑡 + 𝑤 𝑡 + 1 ~𝑁(0, 𝑏.𝜎/. + 𝜎-.)

The Dynamic Watermarking Method: A SISO example
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Satchidanandan, Bharadwaj, and Panganamala R. Kumar. "Dynamic watermarking: Active defense of networked cyber–physical systems." Proceedings of the IEEE 105.2 (2016): 219-240.

Huang, Tong, et al. "Enabling secure peer-to-peer energy transactions through dynamic watermarking in electric distribution grids: Defending the distribution system against sophisticated cyberattacks with a provable guarantee." 
IEEE Electrification Magazine 9.3 (2021): 55-64.



• Two tests are conducted by actuator

• If either test fails, then there is malicious/abnormal sensor information
– System goes into safety mode: Halted, rebooted, manual  operation, etc

• Trade-off for setting detection threshold
– High threshold results in more Miss Alarms

– Low threshold results in more False Alarms

Test 1: 𝑙𝑖𝑚
1
𝑇 5

'()

*+,
𝑧 𝑡 + 1 − 𝑎𝑧 𝑡 − 𝑏𝑢 𝑡 − 𝑏𝑒 𝑡 - ?

= 𝜎!"

Test 2: 𝑙𝑖𝑚
1
𝑇 5

'()

*+,
𝑧 𝑡 + 1 − 𝑎𝑧 𝑡 − 𝑏𝑢 𝑡 - ?

= 𝑏"𝜎#
" + 𝜎!"

The Dynamic Watermarking Method: 
Two Tests for Detecting Attacks
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Key Idea:

• By injecting a private (small) signal at the 

controller, an indelible pattern can be 

imprinted into the measurement feeding to 

the generator control. 

Statistical Connection?

Power Grid

𝒆$(𝑘)

𝒚$ 𝑘 :

Huang, Satchidanandan, Kumar, and Xie, "An Online Detection Framework for Cyber Attacks on Automatic Generation Control," IEEE TPWRS (2018).

Dynamic Watermarking for Transmission Systems
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• Defending against cyber-attacks on automatic generation control
− Huang, Tong, et al. "An online detection framework for cyber attacks on automatic generation control." IEEE 

Transactions on Power Systems 33.6 (2018): 6816-6827.

• Defending against cyber-attacks on a prototype chemical process control systems
− Kim, Jaewon, Woo-Hyun Ko, and P. R. Kumar. "Cyber-security with dynamic watermarking for process control systems." 

2019 AIChE Annual Meeting. AIChE, 2019.

• Defending against cyber-attacks on a prototype autonomous vehicular systems
− Shangguan, Lantian, et al. "Dynamic watermarking for cybersecurity of autonomous vehicles." IEEE Transactions on 

Industrial Electronics (2022).

• Defending against cyber-attacks on a prototype two-rotor aerial vehicle control systems
− Kim, Jaewon, Woo-Hyun Ko, and P. R. Kumar. "Cyber-Security through Dynamic Watermarking for 2-rotor Aerial 

Vehicle Flight Control Systems." 2021 International Conference on Unmanned Aircraft Systems (ICUAS). IEEE, 2021.

Preliminary Success of the Dynamic Watermarking Method in 
other cyber-physical systems
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Cyber-Security of
Photovoltaic Power Distribution Systems



• PV-dominant distribution grids are cyber-physical systems

• Attackers can compromise the system by manipulating inverters at the edges

How to defend 

PV-dominant distribution grids 

against cyber attack?

Our focus: Cyber Physical Security in Solar-rich Distribution Grids



• Cyber-Attack Detection through Dynamic Watermarking based attack detector

• Detection algorithm:

– Use the system model if the model is given

– If the model is unknown, 

proper System Identification needed for overcoming the requirement to know the system model

• Experimental validation

• Corrective secondary control (cyber-resilient control)

Our focus: Cyber Physical Security in Solar-rich Distribution Grids
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Grid

Transformer DC/AC
Inverter PV Array

Inverter
Controller

𝒎𝒂 𝒌 + 𝒆[𝒌]

∑
𝒆[𝒌]

𝒎𝒂 𝒌

𝒊𝒈𝒓𝒊𝒅

𝒗𝒈𝒓𝒊𝒅

DW
generator

Cyber Shield
Attack Detector

𝑫𝑾𝑻𝑬𝑺𝑻_𝟏

𝑫𝑾𝑻𝑬𝑺𝑻_𝟐

Proposed 𝑫𝑾 scheme 𝑪𝒚𝒃𝒆𝒓 𝑺𝒉𝒊𝒆𝒍𝒅

Dynamic Watermarking-based Detection Algorithm



Critical need for Experimental Testing
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• Watermarking methodology is fundamentally based on stochastic considerations.

• There is no mathematical model for “noise”.

• Therefore, one needs to test by experimentation.

• Critical issue: 

Does the tiny watermark signal that is superimposed survive passage trough the “noise”?

• Also, how small can watermark be?

• Therefore, a defense methodology against cyber-attacks that fundamentally relies on 

stochastic considerations needs experimental validation, not validation by simulation.
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Defending against attacks on 
Two-Inverter Connected System



DC Source 1

DC Source 2

AC Source

Inverter 1
Inverter 2

Resistive load 2

Resistive load 1

Two inverter system Lab set-up

20



Inverter 1

Inverter 2

𝑹𝒍𝒐𝒂𝒅 1

𝑹𝒍𝒐𝒂𝒅 2

21

Two inverter system Lab set-up



Inverter Test Variances 
before attack 

Test Variances 
after attack 

1 298×10%& 619×10%&

2 259×10%& 259×10%&

𝒊𝒈𝒓𝒊𝒅 inv 1

𝒊𝒈𝒓𝒊𝒅 inv 2

𝒗𝒈𝒓𝒊𝒅 inv 2

𝒗𝒈𝒓𝒊𝒅 inv 1

𝑫𝑾𝑻𝑬𝑺𝑻_𝟏 for inverter 2 𝑫𝑾𝑻𝑬𝑺𝑻_𝟐 for inverter 2

𝑫𝑾𝑻𝑬𝑺𝑻_𝟏 for inverter 1

𝑫𝑾𝑻𝑬𝑺𝑻_𝟐 for inverter 1

22

Harmonics Injection Attack on Inverter 1



Inverter Test Variances 
before attack 

Test Variances 
after attack 

1 294×10%& 294×10%&

2 259×10%& 708×10%&

100%
90%

𝒊𝒈𝒓𝒊𝒅 inv 1

𝒊𝒈𝒓𝒊𝒅 inv 2

𝒗𝒈𝒓𝒊𝒅 inv 2

𝒗𝒈𝒓𝒊𝒅 inv 1

𝑫𝑾𝑻𝑬𝑺𝑻_𝟏 for inverter 2 𝑫𝑾𝑻𝑬𝑺𝑻_𝟐 for inverter 2

𝑫𝑾𝑻𝑬𝑺𝑻_𝟏 for inverter 1

𝑫𝑾𝑻𝑬𝑺𝑻_𝟐 for inverter 1

23

Amplitude Reduction Attack on Inverter 2



Multi-Inverter System LAB set-up:
Grid Tied PV System: Attack on Two Inverter Connected System

Not only detect cyber-attacks
but also, we can identify the attack location

Both simulation and experimental validation
on two inverter connected system

24
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Overcoming the requirement to 
know the system model



Overcoming the requirement to know the system model

Input and output data collection of a switching inverter

𝒇 𝒙 𝒌 −𝑵:𝒌 , 𝒖 𝒌 −𝑴:𝒌 , 𝑨𝑵, 𝑩𝑴 =
𝜶𝟎 . 𝒙 𝒌 + 𝜶𝟏 . 𝒙 𝒌 − 𝟏 + . . . +𝜶𝑵 . 𝒙 𝒌 −𝑵 +
𝜷𝟎 . 𝒖 𝒌 + 𝜷𝟏 . 𝒖 𝒌 − 𝟏 + . . . +𝜷𝑴 . 𝒙 𝒌 −𝑴

The form of the prediction model we identify it as follows: 

𝑥 is the system output 𝑖789:, 
𝑢 is the system input𝑚;, and 
𝐴<: = 𝛼= 𝛼> . . . 𝛼< ?, 𝐵@: = [

]
𝛽= 𝛽> . . .

𝛽@ ? are the parameters associated with the 
input and output of the prediction model. 

DC/AC
Inverter

Input: ma (modulation index)

Watermark e[k]

Output: 𝒊𝒈𝒓𝒊𝒅

Ø Generally, an accurate model of the 
system is unknown because of the non-
linearity of the system as well as the 
complexity of the connected power 
grid.

Ø Therefore, proper system identification 
methodology is essential not only for 
controlling the system but also for analyzing 
the effects of external disturbances and 
possible faults in the system.



DC/AC
Inverter

Input: ma (modulation index)

watermark

Output: 𝒊𝒈𝒓𝒊𝒅

𝒙 𝒌+ 𝟏 = 𝑨𝒙 𝒌 +𝑩𝒖[𝒌]

𝑰𝒈𝒓𝒊𝒅[𝑘 + 1] = 𝑎, K 𝑰𝒈𝒓𝒊𝒅 𝑘 + 𝑎- K 𝑰𝒈𝒓𝒊𝒅 𝑘 − 1 + 𝑎. K 𝑰𝒈𝒓𝒊𝒅 𝑘 − 2 + 𝑎/ K 𝑰𝒈𝒓𝒊𝒅 𝑘 − 3 +

𝑏, K 𝒎𝒂 𝑘 + 𝑏- K 𝒎𝒂 𝑘 − 1 + 𝑏. K 𝒎𝒂 𝑘 − 2 + 𝑏/ K 𝒎𝒂 𝑘 − 3

𝐴 = 𝑎, 𝑎- 𝑎. 𝑎/

𝐵 = [ 𝑏, 𝑏- 𝑏. 𝑏/ ]

27

System Identification of 
DC/AC Inverter System: Input 𝒎𝒂 / Output 𝒊𝒈𝒓𝒊𝒅
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System Identification
Output error of the identified model

On-line (real-time)
System Identification

Yellow: System ID
Blue: Actual system output



PV DC/DC
Converter

DC/AC
Inverter Output: 𝒊𝒈𝒓𝒊𝒅

watermark

Input: V_PV

𝒊𝒈𝒓𝒊𝒅 [𝑘 + 1] = 𝑎, B 𝒊𝒈𝒓𝒊𝒅 𝑘 + 𝑎- B 𝒊𝒈𝒓𝒊𝒅 𝑘 − 1 + 𝑎2 B 𝒊𝒈𝒓𝒊𝒅 𝑘 − 2 + 𝑎3 B 𝒊𝒈𝒓𝒊𝒅 𝑘 − 3 +

𝑏, B 𝒗𝒑𝒗 𝑘 + 𝑏- B 𝒗𝒑𝒗 𝑘 − 1 + 𝑏2 B 𝒗𝒑𝒗 𝑘 − 2 + 𝑏3 B 𝒗𝒑𝒗 𝑘 − 3

𝐴 = 𝑎, 𝑎- 𝑎2 𝑎3

𝐵 = [ 𝑏, 𝑏- 𝑏2 𝑏3 ]

System Identification of 
PV System: Input 𝒗𝒑𝒗 / Output 𝒊𝒈𝒓𝒊𝒅
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Hardware-in-the-loop experiments and
Commercial grid connected Inverter experiments



𝑻𝒚𝒑𝒉𝒐𝒐𝒏 𝑯𝑰𝑳
Multi-inverter	

Hardware	emulator
𝑫𝑾 𝑻𝒆𝒔𝒕𝒔 𝒐𝒏 𝒔𝒆𝒑𝒂𝒓𝒂𝒕𝒆 𝑫𝑺𝑷𝟏, 𝟐

for	inverter6	,and	the	attacked	inverter

𝑶𝒔𝒄𝒊𝒐𝒔𝒄𝒊𝒍𝒍𝒐𝒔𝒄𝒐𝒑𝒆
DW	Tests

𝑹𝒆𝒂𝒍 − 𝒕𝒊𝒎𝒆 𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏
𝒊𝒏Typhoon	HIL	Software

Grid-connected multi-inverter system in Typhoon HIL
Hardware setup

31



Grid-connected multi-inverter system in Typhoon HIL 

32



Time Delay attack on inverter 1

𝑫𝑾𝑻𝒆𝒔𝒕𝟏 (𝑰𝒏𝒗 𝟔)

𝑫𝑾 𝑻𝒆𝒔𝒕𝟐 (𝑰𝒏𝒗 𝟔)

𝑫𝑾𝑻𝒆𝒔𝒕𝟏 ( 𝑰𝒏𝒗 𝟏)

𝑫𝑾 𝑻𝒆𝒔𝒕𝟐 (𝑰𝒏𝒗 𝟏)

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆: 𝟏𝟓𝑨

𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆:𝒎𝒐𝒓𝒆 𝒕𝒉𝒂𝒏 𝟏𝟎𝟎𝑨

𝑻𝒊𝒎𝒆 𝑫𝒆𝒍𝒂𝒚 (Inv	1)

𝑵𝒐𝒓𝒎𝒂𝒍
𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 (Inv	6)
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Harmonics Injection attack on inverter 2

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

𝑫𝑾 𝑻𝒆𝒔𝒕𝟏 (𝑰𝒏𝒗 𝟔)

𝑫𝑾 𝑻𝒆𝒔𝒕𝟐 (𝑰𝒏𝒗 𝟔)

𝑫𝑾𝑻𝒆𝒔𝒕𝟏 ( 𝑰𝒏𝒗 𝟐)

𝑫𝑾 𝑻𝒆𝒔𝒕𝟐 (𝑰𝒏𝒗 𝟐)

𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆: 𝟏𝟓𝑨

𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆: 𝟏𝟕. 𝟓𝑨

𝑯𝒂𝒓𝒎𝒐𝒏𝒊𝒄𝒔
𝑰𝒏𝒋𝒆𝒄𝒕𝒊𝒐𝒏(Inv	2)

𝑵𝒐𝒓𝒎𝒂𝒍
𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 (Inv	6)
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Amplitude Reduction attack on inverter 3

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

𝑻𝒉𝒓𝒆𝒔𝒉𝒐𝒍𝒅

𝑫𝑾 𝑻𝒆𝒔𝒕𝟏 (𝑰𝒏𝒗 𝟔)

𝑫𝑾 𝑻𝒆𝒔𝒕𝟐 (𝑰𝒏𝒗 𝟔)

𝑫𝑾𝑻𝒆𝒔𝒕𝟏 ( 𝑰𝒏𝒗 𝟑)

𝑫𝑾 𝑻𝒆𝒔𝒕𝟐 (𝑰𝒏𝒗 𝟑)

𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆: 𝟏𝟓𝑨

𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆: 𝟏𝟔. 𝟗𝑨

𝑨𝒎𝒑𝒍𝒊𝒕𝒖𝒅𝒆
𝑹𝒆𝒅𝒖𝒄𝒕𝒊𝒐𝒏(Inv	3)

𝑵𝒐𝒓𝒎𝒂𝒍
𝒐𝒑𝒆𝒓𝒂𝒕𝒊𝒐𝒏 (Inv	6)
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Implementing on-line system identification on DSP

𝑺𝒆𝒑𝒂𝒓𝒂𝒕𝒆 𝑫𝑺𝑷𝟏, 𝟐
DSP1:	Online	System	ID	Algorithm
DSP2:	DW	Tests	Algorithm

𝑶𝒔𝒄𝒊𝒐𝒔𝒄𝒊𝒍𝒍𝒐𝒔𝒄𝒐𝒑𝒆
DW	Tests

𝑻𝒚𝒑𝒉𝒐𝒐𝒏 𝑯𝑰𝑳
Hardware	emulator

𝑹𝒆𝒂𝒍 − 𝒕𝒊𝒎𝒆 𝒔𝒊𝒎𝒖𝒍𝒂𝒕𝒊𝒐𝒏
𝒊𝒏Typhoon	HIL	Software

36



Commercial grid connected Inverter (SMA Sunny Boy 3.8-US) 



Commercial grid connected Inverter (SMA Sunny Boy 3.8-US) 
Hardware set-up in the Lab

Commercial Inverter 
(SMA Sunnyboy)

PV emulator

Grid

q Texas A&M team working on
q Implementing real-time/on-line

system identification on DSP

q Testing the DW method on a 
commercial SMA Sunny Boy 3.8-US 
PV grid connected inverter in the 
lab

38



Cyber-resilient control

39

• The distribution system to be studied can be stabilized 
in the presence of PV fluctuations.

• The protection and control scheme is shown to stabilize 
the system within a few minutes under unknown 
cyberattacks.

T. Huang, D. Wu, and M. Ilic, “Cyber-resilient Automatic Generation Control for Systems of Microgrids,” MIT working paper, to 
submit to IEEE Transactions on Smart Grid.

D. Wu, P. Bharadwaj, P. Rowles, and M. Ilic, “Cyber-Physical Secure Observer-Based Corrective Control under Compromised 
Sensor Measurements,” 2022 American Control Conference.



Corrective Secondary Control
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𝛿𝑉01
𝛿𝑓01

𝑉, 𝑓

Secondary 
Controller

𝑉234,
𝑓234

𝛿𝑉01
𝛿𝑓01

• Secondary control architecture
• Cyber vulnerability
• If cyber attack occurs, we switch to a corrective controller to achieve the 

control objectives

Corrective 
Controller



Secondary Control Design (No Attack)
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𝑥[𝑘 + 1] = 𝐴𝑥[𝑘] + 𝐵𝑢[𝑘]
𝑦[𝑘] = 𝐶𝑥[𝑘]𝐾$

𝐾 Observer

Reference 𝑦𝑢

K𝑥

+
−



Corrective Secondary Control Design
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𝑥[𝑘 + 1] = 𝐴𝑥[𝑘] + 𝐵𝑢[𝑘]
𝑦[𝑘] = 𝐶𝑥[𝑘]𝐾$

𝐾 Corrective 
Observer

Reference 𝑢

K𝑥

+
−

D. Wu, P. Bharadwaj, P. Rowles, and M. Ilic, “Cyber-Physical Secure Observer-Based Corrective Control under 
Compromised Sensor Measurements,” 2022 American Control Conference.



Obtain System Matrix
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𝑥[𝑘 + 1] = 𝐴𝑥[𝑘] + 𝐵𝑢[𝑘]
𝑦[𝑘] = 𝐶𝑥[𝑘]

𝛿𝑉56, 𝛿𝑓56 𝑉, 𝑓

• Corrective control design requires the system model
• We can identify A, B and C from input and output data
• Inject white noise to the Simulink model (Var(𝛿𝑉56) = Var(𝛿𝑓56) = 5)



Secondary Corrective Control
No Cyber Attack

Cyber attack occurs without the 
corrective control

Cyber attack occurs with the 
corrective control
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IIT RTDS Lab

• Setup and Configuration:
• Two NovaCor racks (processing unit), each with 4 licensed 

cores
• GTNETx2 card (communication unit) with SKT and DNP3 

protocols
• Four 16-channel output cards (GTAO)
• Digital panel I/O
• NovaCor Cubicle
• RSCAD software educational license
• Connected to the IIT network
• PMUs

• 4 SEL-351S relays
• 2 SEL-451 relays
• 4 SEL-751 relays
• Time Synchronization: SEL-2488 Satellite-Synchronized Network 

Clock
• Ethernet Switch: SEL-2730U Unmanaged 24-Port Ethernet Switch
• Rack Mount Computer: SEL-3355 Automation Controller
• Display and Analysis: SEL-5078-2 synchroWAVe Central
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IIT RTDS Lab
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Rack-Mount Computer

RTDS

RTDS

PMUSEL

PMUSEL

PMUSEL

PMUSEL

PMUSEL

PMUSEL

synchroWAVe 
Central

Visualization

SEL Gateway

GPS clock

.

.

.

.



CenterPoint Energy Solar Farm in Evansville, IN

• Two subsystems
• Oak Hill Solar Farm
• Volkman Solar Farm

• Oak Hill Solar Farm
• 2 MW solar field

• Volkman Solar Farm
• 2 MW solar field
• 1 MW battery storage

• Provides enough power to about
600 customers annually

47Evansville, IN



Oak Hill Solar Farm: A Summary

• 7,784 solar panels: 2 MW
• 350W
• 38.9V
• 9.00A

• Single 2.5 MW inverter
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Oak Hill Solar Farm



Volkman Solar Farm: A Summary

• 7,784 solar panels: 2 MW
• 350W
• 38.9V
• 9.00A
• Single 2.5 MW inverter

• 1 MW Battery
• 18 racks of 17 battery modules: 

306 modules
• 290AH
• Single 1.169 MW inverter

49
Volkman Solar Farm
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Summary
• Provide an end-to-end monitoring framework of cyber-physical systems for solar-rich power 

distribution grids

• Provide a general-purpose cyber-attack defense methodology through Dynamic Watermarking

• An online system identification for overcoming the requirement to know the system model

• Scaled-up experimentation on actual microgrid

Future / On-going works:

• Actual demonstration on CenterPoint Energy’s solar farm

• Experiment on commercial grid connected Inverter systems

• Technology transfer

• Application to other cyber-physical systems


