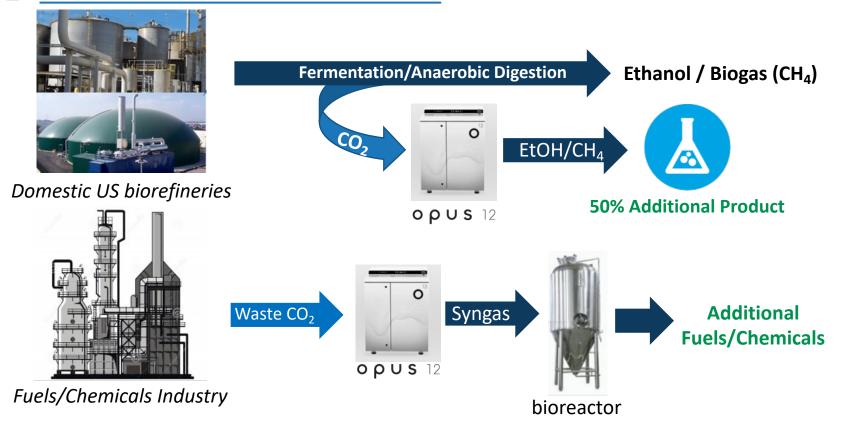


DOE BETO 2023 Project Peer Review CCB DFAs: Rapid Prototyping of High-Throughput Systems for CO2 Reduction Electrocatalyst Synthesis w/Opus 12 (Twelve) 2.5.4.707

> April 7, 2023 Catalytic Upgrading Frederick Baddour NREL

Project Overview

Project Goal: Derisk the commercialization of CO₂ electrolysis by supporting MEA scale-up through the *development of high-throughput synthesis methods* for high-performance nanocatalyst production

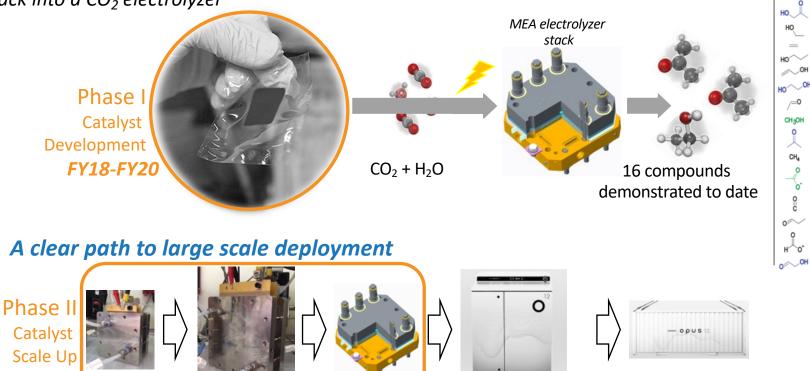

Approach: To couple unique national lab *millifluidic synthesis & characterization, with industrial device fabrication and catalytic evaluation* to accelerate the commercialization of tunable, industrial-scale CO₂ electrolyzers

Research Progress & Outcomes

- *Translated* state-of-the art batch electrocatalyst syntheses to continuous flow millifluidic methods
- Increased scale of nanocatalyst synthesis to 7.5 g particles (30 g catalyst) per day in a single channel
- *Maintained catalyst performance* upon translation to high-throughput synthesis
- *Facilitated performance testing* of MEAs at >750 cm² compared to previous 25 cm² (40x scale up)

Impact: Reduced commercialization risk by *developing high-throughput methods* that (1) are capable of *satisfying commercial catalyst demand*, (2) *maintain catalyst performance*, and (3) *enabled large-scale MEA performance* evaluation.

🔀 Overview – Revenue from Waste



*Twelve's platform technology for CO*₂ *conversion could increase profitability across the bioenergy sector*

Overview – The Twelve Platform

100cm²

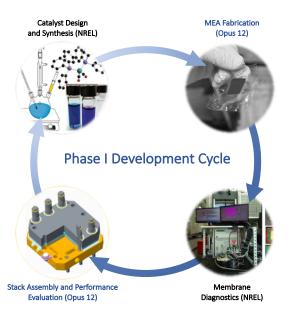
Core Technology: Uniquely formulated membrane-electrode assembly (MEA) converts a water electrolyzer stack into a CO₂ electrolyzer

5 kW CO₂Electrolyzer

Stack of 100 cm²

FY21-FY22 25cm²

Bioenergy Technologies Office |

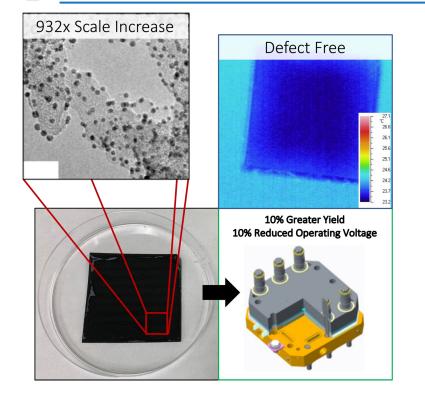

Scale up to MW

systems

Project Overview – Phase I Approach

Challenges with commercially available technology addressed in Phase I

- Poor uniformity and large size of commercial catalyst particles limits metal utilization
- Low loading of commercial catalyst requires additional MEAs to reach performance targets
- Defect detection in MEAs is critical for stack operation and non-trivia

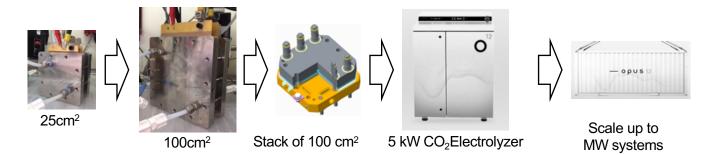


Approach – Phase I (FY18-FY22)

- **Developed synthetic platform** to optimize and evaluate material candidates that meet the physical properties identified by Twelve
- **Optimized supporting methodologies** to increase catalyst loading without reducing lifetime due to sintering
- Determination of best practices for MEA diagnostics
- Link synthesis, fabrication, diagnostic, and catalytic testing to **develop structure-performance** relationships to accelerate material discovery

Technical approach applied unique consortia capabilities to industry specified needs

Rroject Overview – Phase I Outcomes



- **Developed synthetic methods** to prepare quantities of nanoparticle with physical properties specified by *Twelve* in quantities suitable to fabricate >3 25cm² MEAs
- Developed effective supporting methodologies to retain particle size and morphology at increased loadings
- **Performance feedback** enabled the preparation of catalysts with *higher performance than commercially available analogues*
 - 23% lower current efficiency decay rate
 - 6.2% lower operating voltage at 500 mA/cm²
 - >12% CO current efficiency compared to gen. 1

Phase I established technical basis for incorporating nanocatalysts into Twelve's MEA platform

1 – Approach to Phase II: Challenge of Scale

Scaling to 100 cm² MEAs and beyond requires further scaling of synthetic methods beyond existing batch methods

Translating from batch methods to millifluidics can offer higher throughput without impacting physical properties

- Increased concentration to *reduce solvent use*
- Reduced reaction time to *increase throughput*
- Inline supporting for controlled NP anchoring

Inability to produce catalyst at scales commensurate with electrolyzer scale-up poses <u>a significant commercialization risk</u>

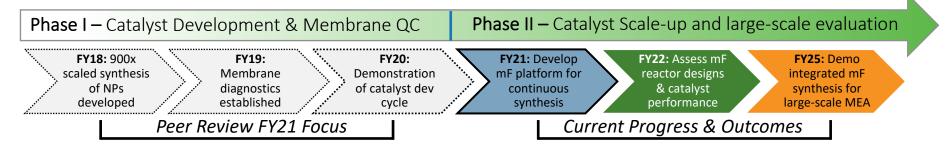
Bioenergy Technologies Office

1 – Approach: Integrated Synthesis, Characterization, Evaluation

Project is the second phase of a directed funding partnership between NREL and Twelve

ChemCatBio DFO with Twelve			
NREL: Task 1	Twelve: Task 2		
Synthesis and Design	MEA Assembly and Testing		
 Synthesis and characterization of metal nanoparticle (NP) catalysts NP scale-up methodology development NP supporting procedure development 	 Determination of material and physical property requirements Membrane electrode assembly (MEA) fabrication MEA performance testing 		

- **Monthly meetings** between tasks to ensure efforts remain relevant to industrial partner and adapt to changes in needs
- **Proprietary samples tracked and isolated** to prevent information leakage
- Data transmitted only through **DataHub and FedRAMP compliant services**

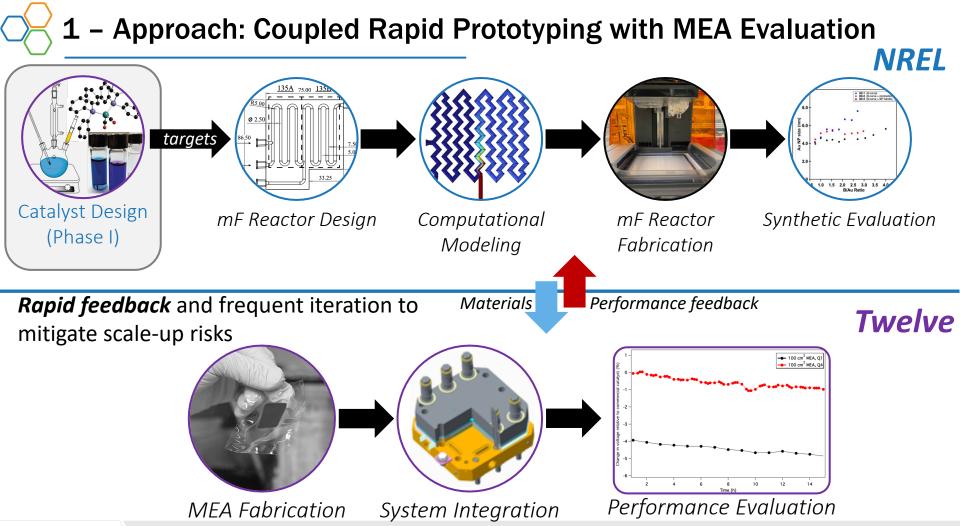

1 – Approach: Integrated Synthesis, Characterization, Evaluation

Project is the second phase of a directed funding partnership between NREL and Twelve

	ChemCatBio DFO with Twelve		
	NREL: Task 1	Twelve: Task 2	
Syn	thesis and Design	MEA Assembly and Te	sting
chai nan • NP s dev • NP s	thesis and racterization of metal oparticle (NP) catalysts scale-up methodology elopment supporting procedure elopment	 Determination of material and physical property requirements Membrane electrode assembly (MEA) fabrication MEA performance testing 	
	Enabling Te	chnologies	
	CatCost (2	.6.3.500)	
ChemCatBio Interfaces	ACSC (2.5	5.4.304)	
	Synthesis and charEstimation of manual	acterization support ufacturing costs	

• Estimation of materials costs

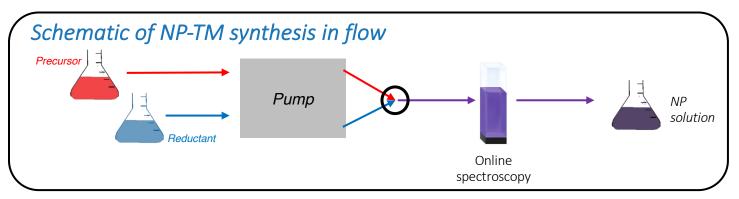
1 – Approach: Research Plan



Phase I – Designing a Better Catalyst

- **Developed synthetic methods** to prepare quantities of nanoparticle with physical properties specified by Twelve in quantities suitable to fabricate 25cm² MEAs
- *Developed effective supporting methodologies* to retain particle size and morphology at increased loadings
- *Performance feedback* enabled the preparation of catalysts with *higher performance than commercially available analogues; (slower FE decay; lower operating voltage; greater CO FE compared to gen. 1)*

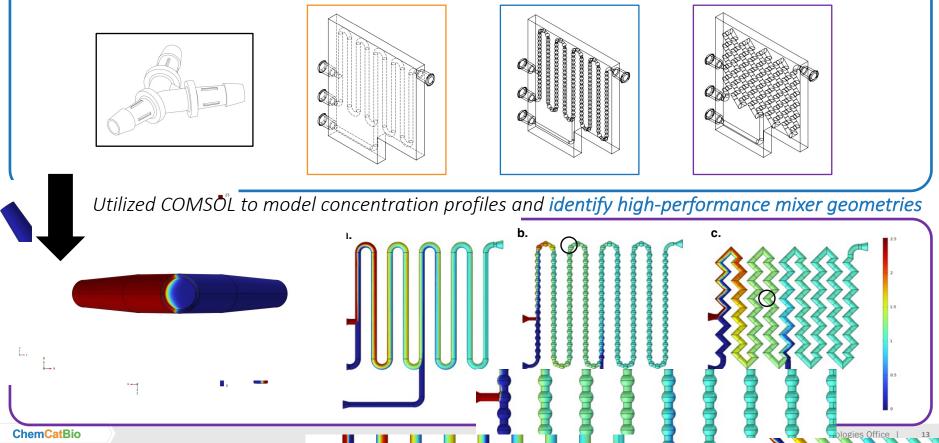
Phase II – Development of Scalable Methods


- *Design and fabricate mF reactors* utilizing rapid, additive-manufacturing techniques
- Developed approach for NP synthesis in continuous flow while maintaining critical properties of Phase I materials
- *Evaluated impact of mF reactor* on catalyst properties and synthesis throughput
- *Demonstrated end-to-end process* for NP synthesis, supporting, MEA fabrication, and performance evaluation

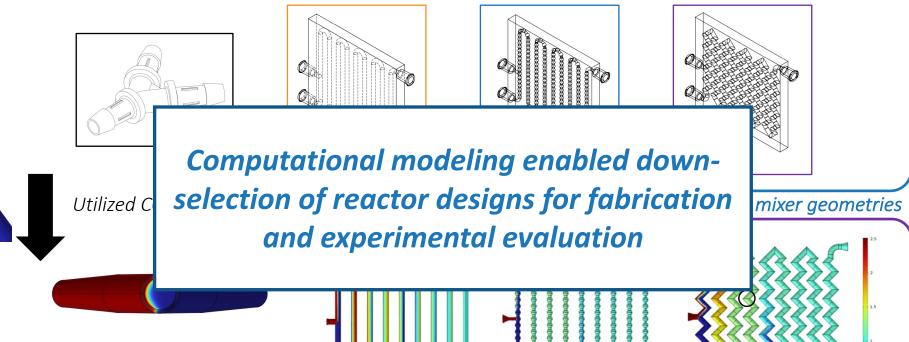
ChemCatBio

2 – Progress: Designing an Open-Source Synthetic Platform

Target: Design continuous flow approach for high-throughput catalyst synthesis


Challenge: Translating from batch methods to high-throughput methods needs to maintain critical catalyst physical properties (i.e., shape, size, performance)

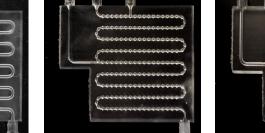
Approach: Prototyping of mF elements with SLA 3D printing to rapidly assess performance and viability


2 – Progress: mF Reactor Design

Drafted mF mixers in CAD software informed by literature with diverse internal architectures

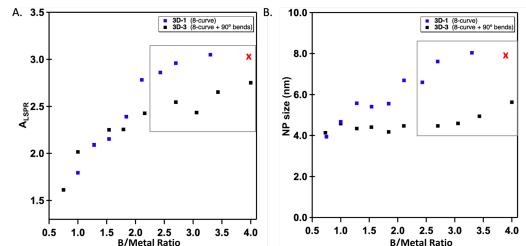
2 – Progress: mF Reactor Design

Drafted mF mixers in CAD software informed by literature with diverse internal architectures



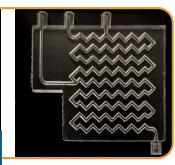
ologies Office_I

2 – Progress: Experimental mF Reactor Evaluation



Evaluate

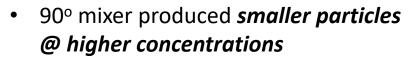
3D Print

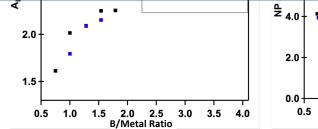

Process

- Nodal mixer eliminated due to reproducibility challenges
- 90° mixer produced *smaller particles @ higher concentrations*

ChemCatBio

2 – Progress: Experimental mF Reactor Evaluation

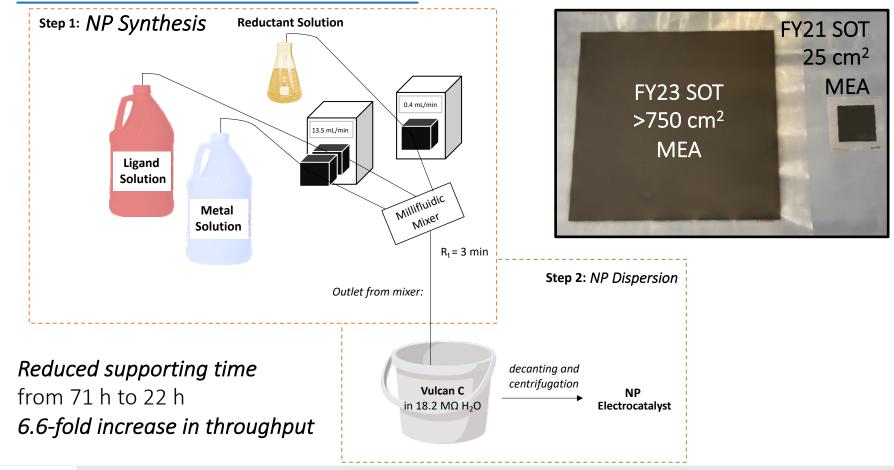




3D Print

Nodal mixer eli reproducibility

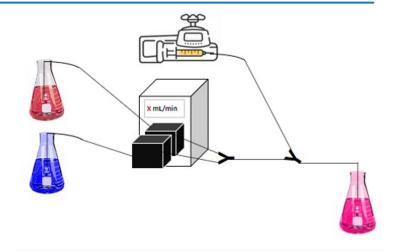

Computational modeling results consistent with experimental evaluation and 90° mixer selected for process optimization



2.0

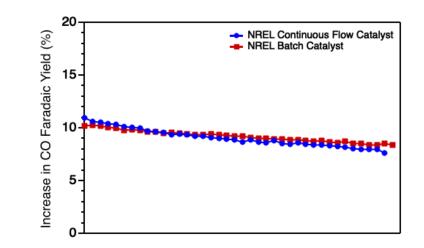
0.5

2 – Progress: Integrated Testing



ChemCatBio

•


•

2 – Progress: Performance Results

- NP catalysts prepared by continuous flow were successfully integrated into 100 cm² MEAs
- Faradaic efficiency was *near parity with batch* prepared catalysts
- 6.6–fold increase in throughput
- *Maintained particle size* and dispersity control
- *Reduced supporting time* from 71 h to 22 h

Catalyst	Millifluidic mixing element	NP throughput (mg h ⁻¹)	Supporting duration (h)
Y-NP/C	Y-junction	54	70 h
⊿-NP/C	Right-angle	357	21.5 h

3 – Impact

Unique capabilities within ChemCatBio enabled fundamental evaluation of commercially relevant catalysts

"Through this project, Twelve was able to explore the effect of carbon-supported metal catalyst size and loading on CO_2 electroreduction performance. Catalysts synthesized and tested through the project are not commercially available, so exploring these effects would have been difficult if not for the support of ChemCatBio..." – Twelve

Direct industrial partnership leads to clear commercialization potential of jointly developed technologies

- Target metrics, materials, and scales directly address barriers to commercialization
- Transitioning from Phase I (catalyst development) to Phase II (materials scale-up) demonstrates continued industrial interest

3 – Impact: Improving the economic viability of the electrolyzer stack & Reducing Scale-Up Risk

Development of advanced synthetic methods

- Precious metal cathode catalyst is a *major cost contributor* to electrolyzer fabrication
- Increasing uniformity and decreasing size *reduces MEA cost*
- Smaller particles may enable higher loading *minimizing MEAs required per stack*

Electrocatalyst Scale-up and Manufacturing

- Near-term electrolyzer scale-up targets require significant catalyst scale-up
- Inability do satisfy catalyst demand *poses significant deployment risk*
- Development of *material agnostic scale-up* methods reduces risk as catalyst needs change

Achievement of Phase I performance metrics led to continued partner engagement and follow-on funding for scale-up activities in Phase II

"...The increased performance of CO_2 electroreduction with new catalysts demonstrates the potential for further improvement with more work in this area and Twelve plans to dedicate more resources to catalyst development in the future as a result of the project." – *Twelve*

- Translated state-of-the art batch electrocatalyst syntheses to continuous flow millifluidic methods
- Increased scale of nanocatalyst synthesis to > 7.5 g particles (30 g catalyst) per day in a single channel
- Maintained catalyst performance upon translation to high-throughput synthesis
- Facilitated performance testing of MEAs at >750 cm² compared to previous 25 cm² (40x scale up)

ChemCatBio

Quad Chart Overview

Timeline

- Project Start: 10/1/2020 (FY21)
- Project End: 09/30/2022 (FY22)
- Status: CLOSED

	FY22 Costed	Total Award FY21-FY22
DOE Funding	(10/01/2021 – 9/30/2022) \$204,638	\$375k
Project Cost Share	\$86k	\$86k

TRL at Project Start: 3 TRL at Project End: 4

Project Goal

The primary goal of this project is to implement stereolithographic (SLA) 3D printing to rapidly prototype advanced millifluidics (mF) elements to develop a versatile mF synthesis platform for the preparation of nanostructured CO_2 electroreduction catalysts at throughputs greater than 10 g per day. This production capability will enable the systematic evaluation of catalyst properties and ink preparations for MEAs on the scale of $600 - 1500 \text{ cm}^2$.

End of Project Milestone

Design a high-throughput millifluidic system capable of producing ≥ 10/g day of carbon-supported NP catalysts and demonstrate their incorporation into a large-scale MEA system (> 600 cm²) compared to the 25 cm² MEAs fabricated and evaluated in FY21. *Twelve* will fabricate large-scale MEAs with the material supplied in Q3 and evaluate the impact of synthesis reactor geometry optimization on performance and longevity of the prepared catalysts. This final catalyst synthesis/performance feedback loop of the fully realized high-throughput system will serve as the basis for a feasibility assessment of an integrated continuous flow NP-TM/C catalysts synthesis and adsorption methodology for supporting commercial MEA fabrication.

Funding Mechanism

FY21 ChemCatBio Directed Funding Opportunity

Project Partners

• Twelve

ChemCatBio

This research was supported by the DOE Bioenergy Technology Office under Contract no. DE-AC36-08-G028308 with the National Renewable Energy Laboratory

This work was performed in collaboration with the Chemical Catalysis for Bioenergy Consortium (ChemCatBio, CCB), a member of the Energy Materials Network (EMN)

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIOENERGY TECHNOLOGIES OFFICE

NREL

- Susan Habas
- Brittney Petel
- Guido Bender
- Bryan Pivovar
- Kenneth Neyerlin
- Courtney Downes

Twelve

- Kendra Kuhl
- Ziyang Huo
- Yueshen Wu
- Jennifer Imbrogno
- Aya Buckley
- Sichao Ma

-twelve

Twelve/NREL DFO: Informed by 2021 Peer Review

"CO₂ electrolysis to products is a tall order, with many hurdles. This project attacks one of the key problems of resistance of the cell, often due to poor electrode structure and performance."

We agree with the reviewer and hope to address additional hurdles through the development of catalyst scale-up methodologies

"Overall, the project management is very good, with appropriate feed forward/feedback of information to facilitate iterative development.

We have sought to maintain this level of organization within Phase II when implementing a feedback loop for continuous flow synthesis and catalyst evaluation

"The use of 3D printing, where appropriate, could help reduce fabrication costs."

This is aligned well with FY21–FY22 efforts that included the development 3D printing methodologies for rapidly prototyping and evaluating millifluidic reactor designs for highthroughput synthesis

Publications, Patents, Presentations, Awards, and Commercialization

Publications

- B. E. Petel, K. M. Van Allsburg, F. G. Baddour, "Cost-Responsive Optimization of Nickel Nanoparticle Synthesis" Advanced Sustainable Systems, **2023**, accepted.
- B. E. Petel, A. Yung, Y. Wu, Z. Huo, S. E. Habas, F. G. Baddour "Design and Optimization of a High-Throughput Millifluidic Reactor System for Nanoparticles with Morphology Control for CO₂ Electrolysis" **2023**, *in prep*.

Presentations

- F. G. Baddour, FY21 BETO Project Peer Review, March 2021, Virtual Meeting.
- F. G. Baddour, FY19 BETO Project Peer Review, March 2019, Denver, CO.

<u>Patents</u>

- Fluidic Systems and Methods for the Manufacture of Nanoparticles, Application No. 63/313,011
- Fluidic Systems and Methods for the Manufacture of Nanoparticles, Application No. 18/173,317 February 2023