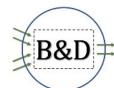
Development of high value bioproducts and enhancement of direct-air capture efficiency with a marine algae biofuel production system


MoleculeWork

Zackary Johnson

April 2023 Algae Platform Review

DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

This presentation does not contain any proprietary, confidential, or otherwise restricted information

WBS 1.3.4.010

Project Overview

This team was spun out of the MAGIC-C (WBS 1.3.2.440) consortium, and represents a similar group with one new member (MW) who brings specialized DAC experience

Our focus here is to build on substantial team experience associated with outdoor algae cultivation, CO_2 conversion, and TEA/LCA of algae biofuels to develop and test approaches to generate CO_2 from DAC for algae use, while simultaneously improving economics through cultivation improvements and co-product development

Success means improved algae biofuel economics and reduced environmental impact

FOA: DE-FOA-0002203 Algae Bioproducts and CO2 Direct-Air-Capture Efficiency (ABCDE)

1- Approach

Project Goal

To demonstrate high-performance algae cultivation using carbon sourced from DAC coupled with stable DIC production to generate fuel and high-value co-products at a commercially relevant scale, and then to deliver techno-economic and life-cycle assessments that illustrate the associated economic and environmental benefits at commercial scale.

Our 3 specific goals are:

- -increase the revenue of the algae biomass while ensuring that fuel specifications are met
- -Increase productivity over baseline levels while using carbon supplied by DAC
- -increase the percentage of carbon supplied by DAC while still reducing the costs associated with supplying CO₂

FOA Goals: Projects will, by the end of the research, deliver techno-economic analyses utilizing data generated from the R&D that show lower potential algal biomass costs and increased potential revenue from the incorporation of DAC with production of valuable algae products

forging a sustainable future

2 – Approach (Technical)

Components (by Task Number)

- 2) Strain Assessment and Cultivation will (1) demonstrate biochemical characteristics of marine microalgae that have demonstrated value that exceed current algae biomass uses (focusing on collagen and whey replacements) and to (2) demonstrate design and operational characteristics of microalgae cultivation that enhance productivity compared to base cases (Duke)
- **3) DAC CO₂ and Conversion** will demonstrate cost effective direct air capture of CO₂ and subsequent conversion to HCO₃ towards broader increased efficiency of algae growth (reduced CO₂ losses and increased growth/yield) (MW/UCSC)
- *Demonstration* will translate laboratory results in (1) production of strains with high value co-products outside (2) algae growth/yield on DAC and converted CO₂ (i.e. coupled system) (3) operational changes outside to enhance productivity (Duke)
- 5) TEA/LCA will ground experimental data from various scales into a larger commercialization and biofuel development effort towards identifying the processes and factors that affect costs and environmental impacts (B&D)

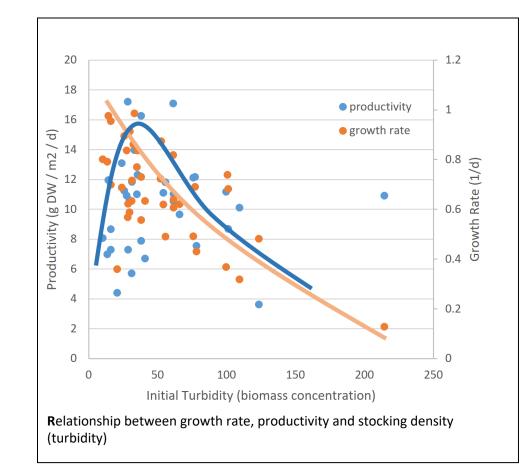
1 - Approach (Major Tasks)

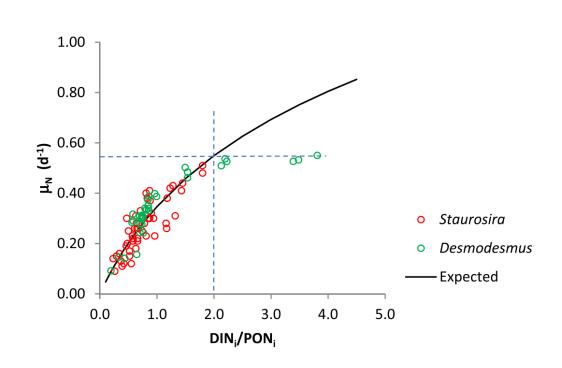
- Task 1: Verification
- Task 2: Strain assessment (Cultivation) Co-product screening, data/modeling for pond operation/capital redesign → co-products; ↑ economics from lower cost/higher value
 - Risk / management: no co-product, no desirable response / multiple strains & down selection
- Task 3: DAC CO₂ & conversion CO₂ to HCO₃ using CaCO₃ → uncoupled from pipe/ reduced CO₂ use
 - Risk / management: poor performance / design & iterate
- Task 4: Demonstration integrated system, industrially relevant scale → translation to industry
 - Risk / management: scale-up does not translate / multiple scales & strains
- Task 5: TEA/LCA & System Modeling → economics/sustainability
 - Risk / management: limited risk

Relevance and Impact

Topic Area 3 Metrics	How addressed in this project					
Algal biomass revenue potential	 EPA/DHA co-production – \$400,000/tonne Collagen peptide co-production – \$40,000/tonne Whey protein replacement co-production – \$1,800/tonne 					
Algal biomass quality	 Biochemical characterization for all co-products 					
Algae areal productivity	 Modification of cultivation procedures: "stocking density" Modification of cultivation infrastructure design: ↑O₂ degassing; ↓ CAPEX / OPEX 					
DAC CO ₂ delivered and utilized by algal system	<u> </u>					
Cost of CO ₂	 Novel membrane based DAC and DIC = \$52/tonne CO₂ 					

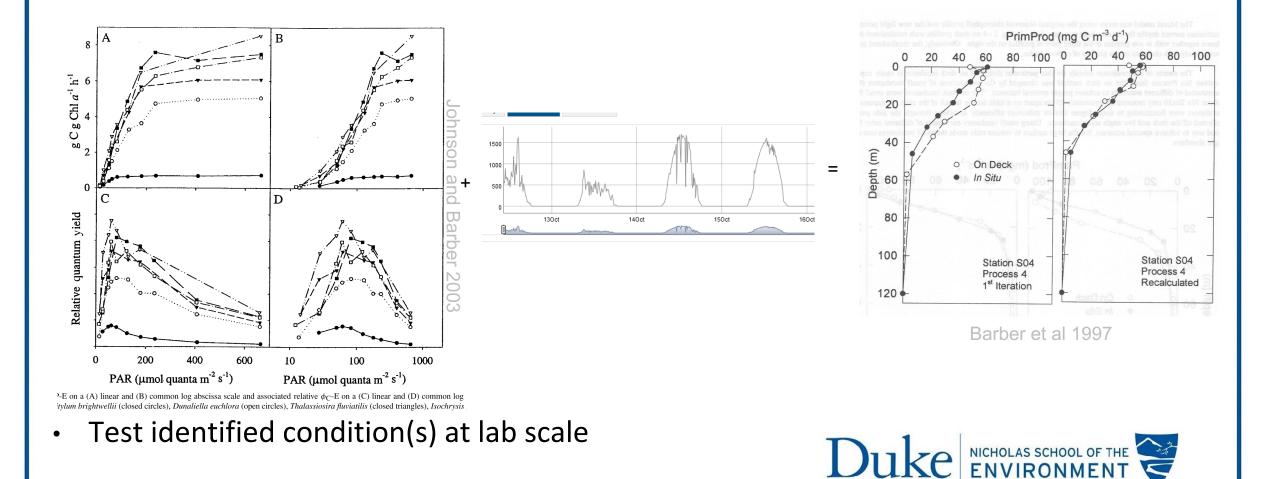
2 - Progress and Outcomes


Task 2: Strain assessment: ID of strains with high value co-products


StrainID	Species	Origin	Outdoor	≥18g/m²/d	EPA	Collagen	Whey
Ocy3	Oocystis sp.	MAGIC	×				
S002	Oocystis sp.	MAGIC	×				
Pico	Picochlorum cereli	SOT (Exxon)		×			
C985	Tetraselmis sp.	MAGIC	×		×		
C018	Nannochloropsis sp.	MAGIC	×	×	×		
H1117	Chlorella sp.	MAGIC	×		×		
D046	Desmodesmus sp.	MAGIC	×				
C046	Desmodesmus sp.	MAGIC	×	×			
UTEX646	Phaeodactylum tricornutum	SOT (UTEX)					
C417	Nannochloropsis oceanica	MAGIC / USDA	×	×	×		
NREL39-A8	Picochlorum renovo	SOT					
DOE1116	Porphyridium cruentum	SOT		×			
CCMP819	Stichococcus minor	SOT (CCMP)		×			
CCMP2329	Picochlorum oklahomenisis	SOT (CCMP)		×			
DOE0152.z	Scenedesmus rubescens	SOT (CCMP)		×			

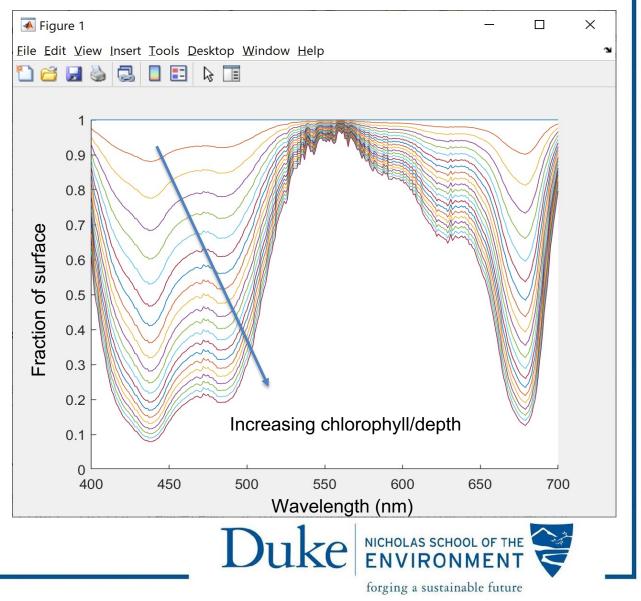
Screening protocols developed and ongoing \rightarrow ~2/3 done

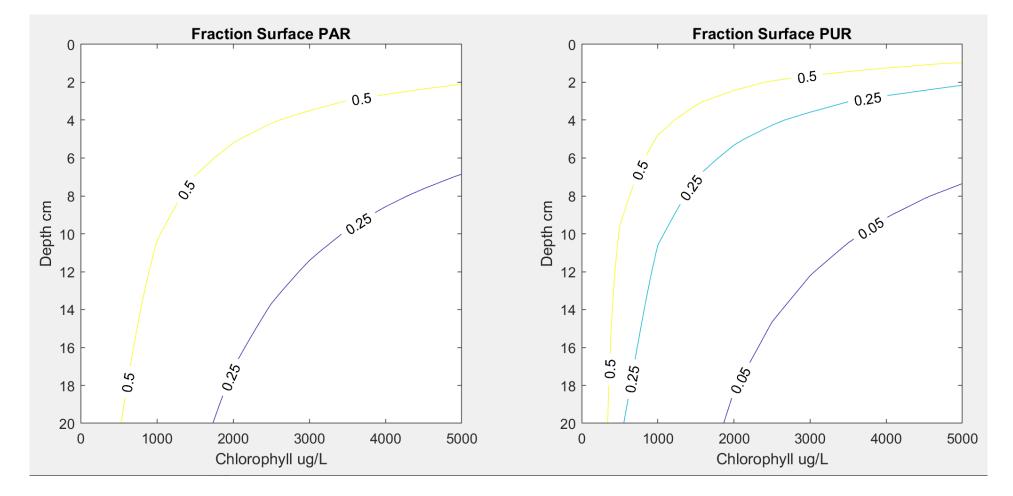
Task 2 (part 2): Stocking Density Influences Performance


Fig. 5. Doubling rate of PON, μ_N (d⁻¹), as a function of the fertilizer ratio, DIN_i/PON_i, on E 2 for *Staurosira* (\bigcirc) and *Desmodesmus* (\bigcirc), compared to the expected doubling rate if DIN is converted to PON, based on Eq. (3). The dashed lines indicate values used for t Base Case.

Empirically derived results for a few strains – need a mechanistic understanding to generalize

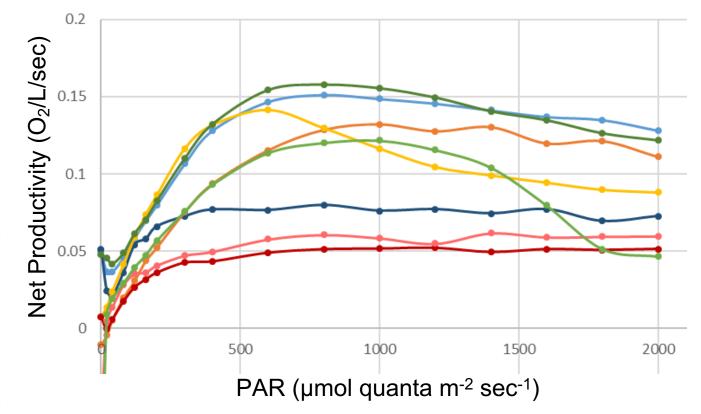
Mechanistically Optimizing "Stocking Density"


• Mechanistic Model: Photosynthesis-Irradiance curves + Light = Predicted Productivity


forging a sustainable future

Steps towards mechanistic production model

- Measure high resolution spectral absorption (see supplemental)
- Propagate light field using custom model (in MATLAB, right)
- (Next slide) report relative to surface for: range of chlorophyll (biomass) range of depths (cm)


Model output: light field for any depth at any stocking density

H1117 (Chlorella) grown at 800 µmol Q m² sec⁻¹

Photosynthetic performance for various strains

Progress

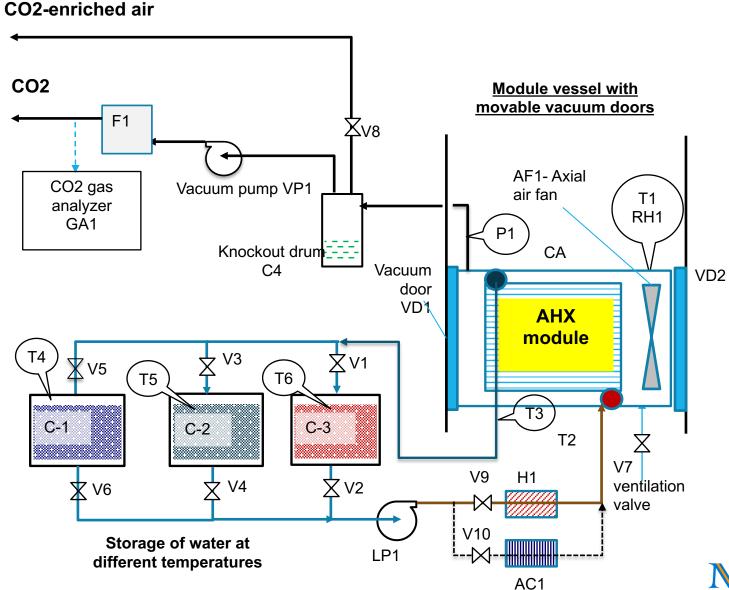
- Spectrally resolved light in ponds (last slide)
- Productivity related to light (this slide)

Next steps

 Integrated model and explore optimal solutions (i.e. depth, stocking) for a range of species

Task 3 - Development of compact and efficient DAC units for micro-algal cultivation

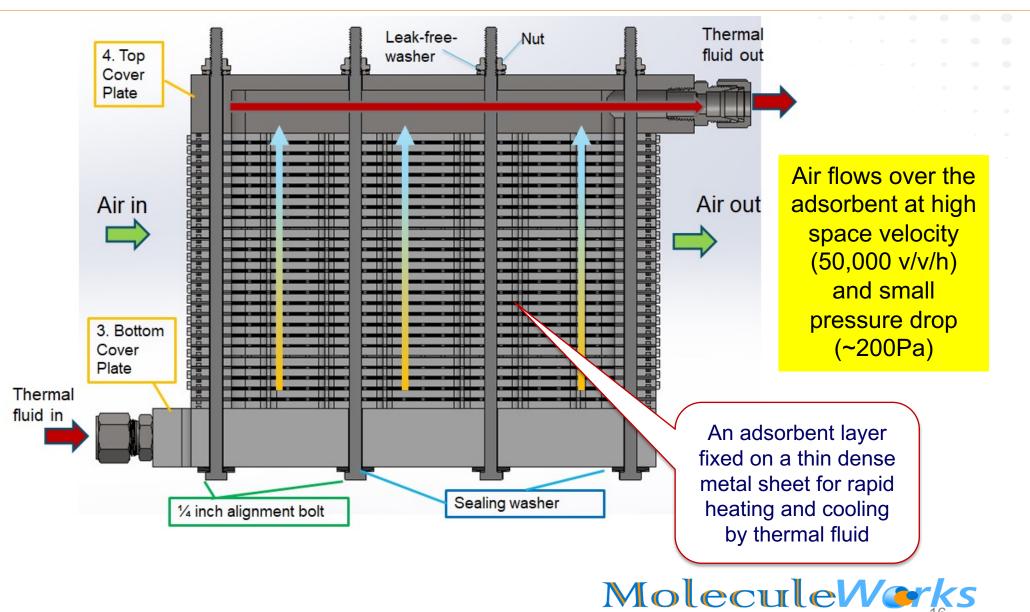
Wei Liu Molecule Works Inc.



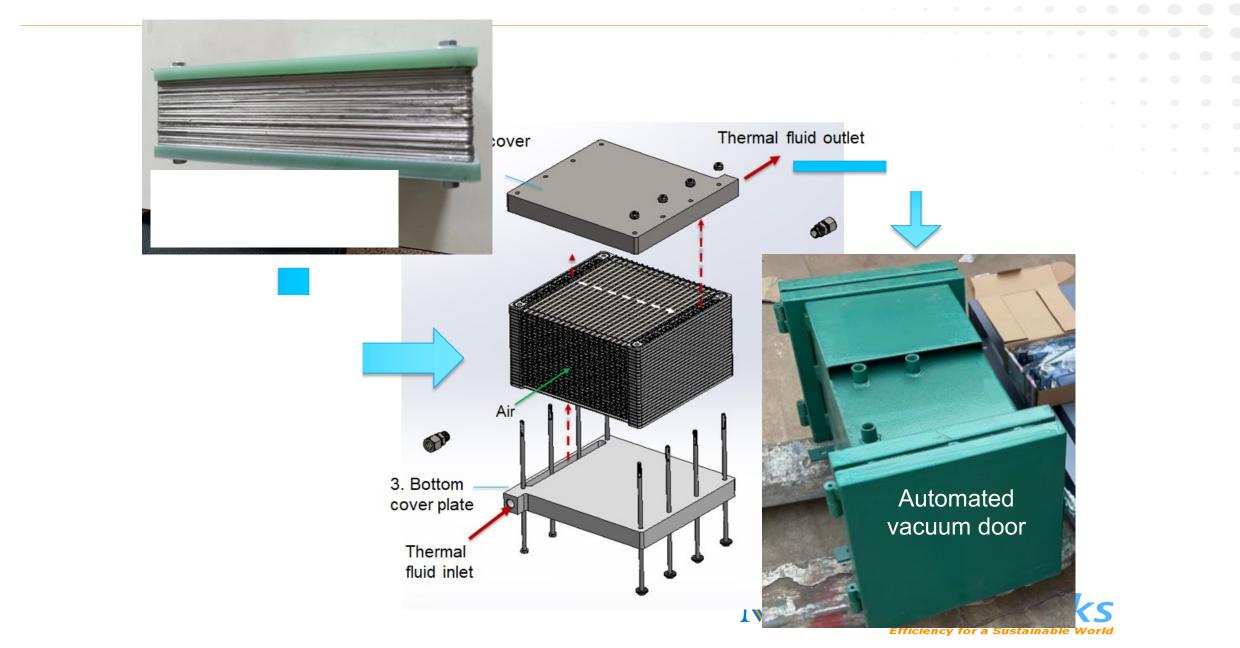
DAC CO₂ skid for producing CO₂ at 25 g (DW algae) /day

- First prototype testing system to be used at Duke for on-site CO₂ production has been designed and built with all the controls and auxiliary equipment
 - Computer-controlled for un-attended operation
 - Design CO_2 productivity of 1 kg/day (~300 scfm of air flow)
- 2. Delivery of Gen 0 of adsorption and heat exchanger (AHX) module the core piece of equipment for the testing system has been delayed due to supply and logistical issues:
 - MoleculeWorks' proprietary designs
 - Several components are custom-designed and fabricated
 - All the parts are now ready for assembly of the module
- 3. The Gen 0 AHX module assembly and system debugging tests take about two months, and the milestone delivery will likely be delayed about one quarter.
- 4. Inhouse testing skid with manual operation has been built to develop Gen 1 AHX module as improvement to the Gen 0 module

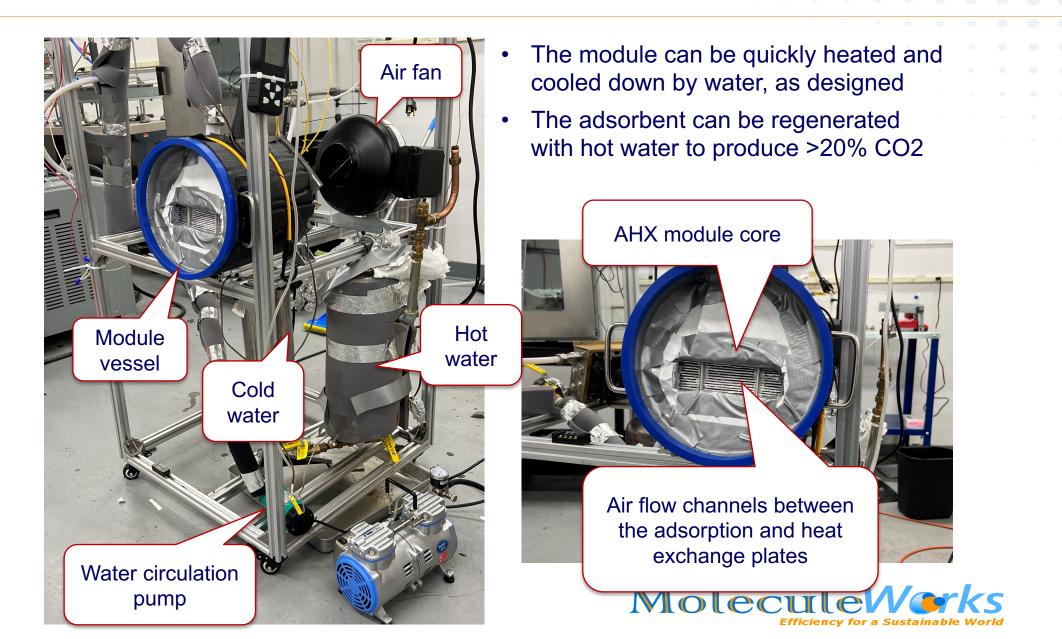
Process flow diagram of the DAC lab prototype unit based on selective CO₂ adsorption under ambient air conditions



- 1. Periodic switch between capture and regeneration operation
- 2. CO₂-enriched air is produced by heating the AHX module and sweeping desorbed CO₂ with air
- 3. Pure CO₂ is produced by heating the module and pulling desorbed CO₂ with vacuum pump
- 4. Hot and cold water are used for respective heating and cooling
 - 5. Low-temperature and low-pressure system
- 6. No environmental emissions
- 7. MoleculeWorks AHX module enables CO₂ capture at high productivity and low energy consumption



MoleculeWorks AHX module –Gen 0 design

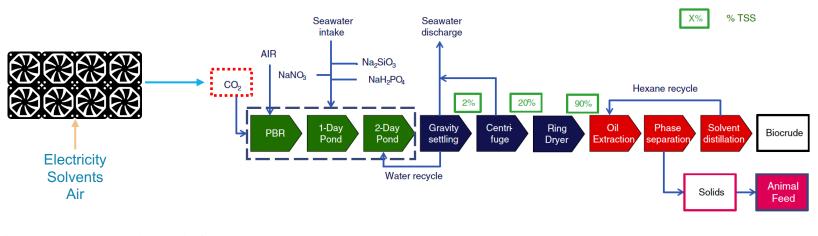

Cut-open view of the module along the thermal fluid outlet slot centerline

Fabrication of Gen 0 AHX module and vessel

Testing skid of Gen 1 AHX module (manual operation) – it's functional!

Task 5: TEA/LCA

Modified Integrated Cultivation


٠

100-ha Algae Production Facility

.15

Parking Lot

Water

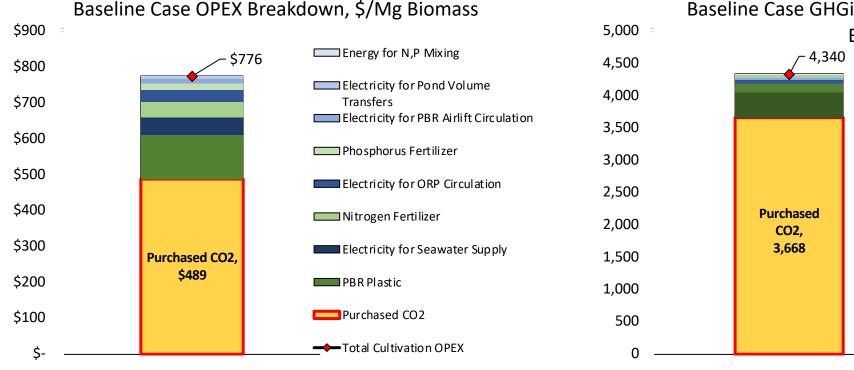
Updating model inputs to match CO₂ stream from Direct Air Capture

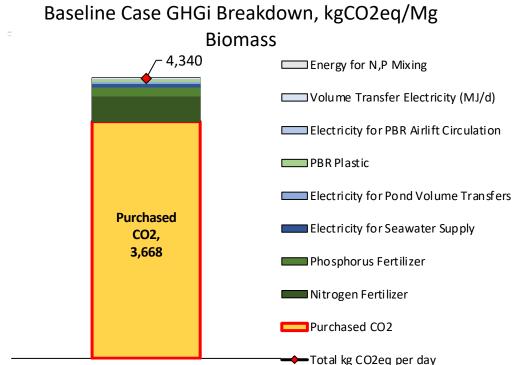
Lab & Offices Reservoir 583 PBRs Upper I-Day Pond Terrace Secondary Settling Tank Main 5-Pond Terrace Lower 4-Pond Terrace 131 Processing Area Road

Optimization of DAC / conversion

Assess potential for improvement in Emissions/Cost with DAC CO₂

Scenario	GHGi (tCO2/tDW)	Biocrude MFSP (\$/GGE)
50% CO2 from CaCO3, 50% CO2 from DAC	2.19	\$ 13.11
50% Conventional CO2, 50% CO2 from DAC	4.02	\$ 15.30
75% Conventional CO2, 25% CO2 from DAC	4.81	\$ 15.90
Baseline Case	5.54	\$ 16.51

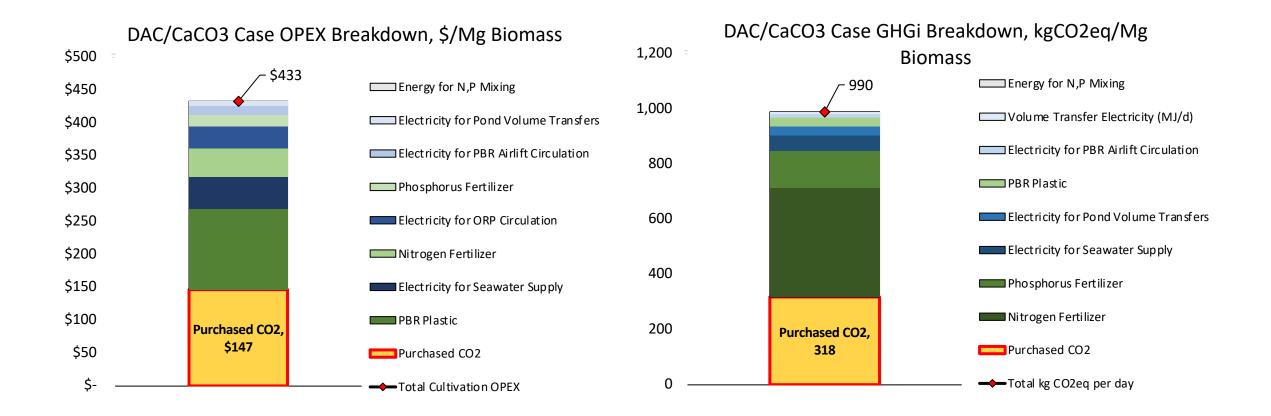

Assuming baseline case yields achieved Conventional CO₂ at \$200/t CO_{2e} CO₂ from DAC at \$100/t CO_{2e} CO_2 from $CaCO_3$ at \$17/t CO_{2e}


To be updated by Task 2 & 3 data

Task 5: TEA/LCA - Ongoing

Techno-Economic Analysis and Life Cycle Assessment

- Target large portions of operational cost and emissions volume
 - Opportunity to reduce daily cost w/ DAC operation rather than piped CO₂, reduce emissions profile with DAC CO₂
- CO₂ is the largest contributor to OPEX and GHGi in baseline case



Task 5: TEA/LCA

Techno-Economic Analysis and Life Cycle Assessment

• CO₂ from DAC and CaCO₃ case shows substantial improvements in OPEX and GHGi

3 - Impacts

- Economics of algae biofuels
 - Demonstration of reduced capex and opex makes algae-derived biofuels more economically feasible
 - Demonstration of enhanced co-product value lowers the price of biofuel
- CO₂ limits siting of economically feasible algae biofuel production
 - Demonstration of conversion of CO₂ to HCO₃ provides a CO₂ "integrator", expanding locations
 - Demonstration of uncoupling of CO₂ production (DAC) and algae greatly expands locations
- Results disseminated through peer-reviewed publications and other public presentations

forging a sustainable future

MAGIC-ABCDE Summary

		-					
Task / Subtask	Q1	Q2	Q3	Q4	Q5	Q6	
Budget Period	BP1			BP2			
1 – Validation							
1.1 Validation	DP						Complete
2 – Strain Assessment and Cultivation							
2.1 strains screened for collagen/whey		m			DP		Strains acquired, screening ongoing
2.2 stocking density lab tests				m			Initial lab work done; testing of model outputs ongoing
2.3 modeling of cultivation re-design					DP		Model components complete; integrated model testing ongoing
3 –DAC CO ₂ and conversion							
3.1 DAC CO ₂ for lab testing			MS	DP			Lab unit complete
3.2 DAC CO ₂ for ~1000 L scale					MS	m	Ongoing
3.3 CO ₂ conversion system						m	Beta version complete; lab tests complete
4 – Demonstration							
4.1 algae on DAC+converted CO_2 in lab						DP	TBD
4.2 ~5000 L collagen/whey strains							
4.3 ~1000 L DAC+conversion in ponds							
4.4 ~1000 L modified cultivation design							
4.5 ~1000 L optimized stocking density							
5 – TEA/LCA							
5.1 modified integrated cultivation					_	DP	TBD
5.2 optimization of DAC / conv.						DP	TBD
5.3 geospatial extension			m				TBD
5.4 integration of large scale (4.2-4.5)							
Project Gantt Chart Task/sub task summary. Co	olored a	areas ii	ndicate	primar	y activ	ity peri	
MS=SMART milestones, m=milestones.							

forging a sustainable future

MAGIC-ABCDE (EE0009278) - Quad Chart Overview

Timeline (approved period)

- October 1, 2020
- December 31, 2022

	FY22 Costed	Total Award	ger gro TEA			
DOE Funding	\$54,086	\$1,967,473	imp En			
			Der at i imp Fu			
Project Cost Share	\$29,592	\$546,378 (22%)	DE- Cap			
TRL at Project Start: 2						

TRL at Project End: 5

Project Goals

Strain assessment of key algae strains - identify strains with valuable co-products; measure/model marine microalgae to optimize cultivation and minimize costs DAC / CO₂ conversion – demonstration of DAC & conversion of CO_2 to bicarbonate at multiple scales egrated system – demonstration of coupled DIC neration (ultimately from industrial CO_2) + algae owth A/LCA – translation of laboratory and field findings to n plant design, TEA/LCA of findings to quantify pacts on environment and economics nd of Project Milestone monstrate enhanced algal growth on high DIC water industrially relevant scale with a system that has proved environmental impact and economics unding Mechanism -FOA-0002203, Algae Bioproducts and CO₂ Direct-Airpture Efficiency, 2020 roject Partners **B&D** Engineering B&D Molecule Works, LLC NICHOLAS SCHOOL OF THE

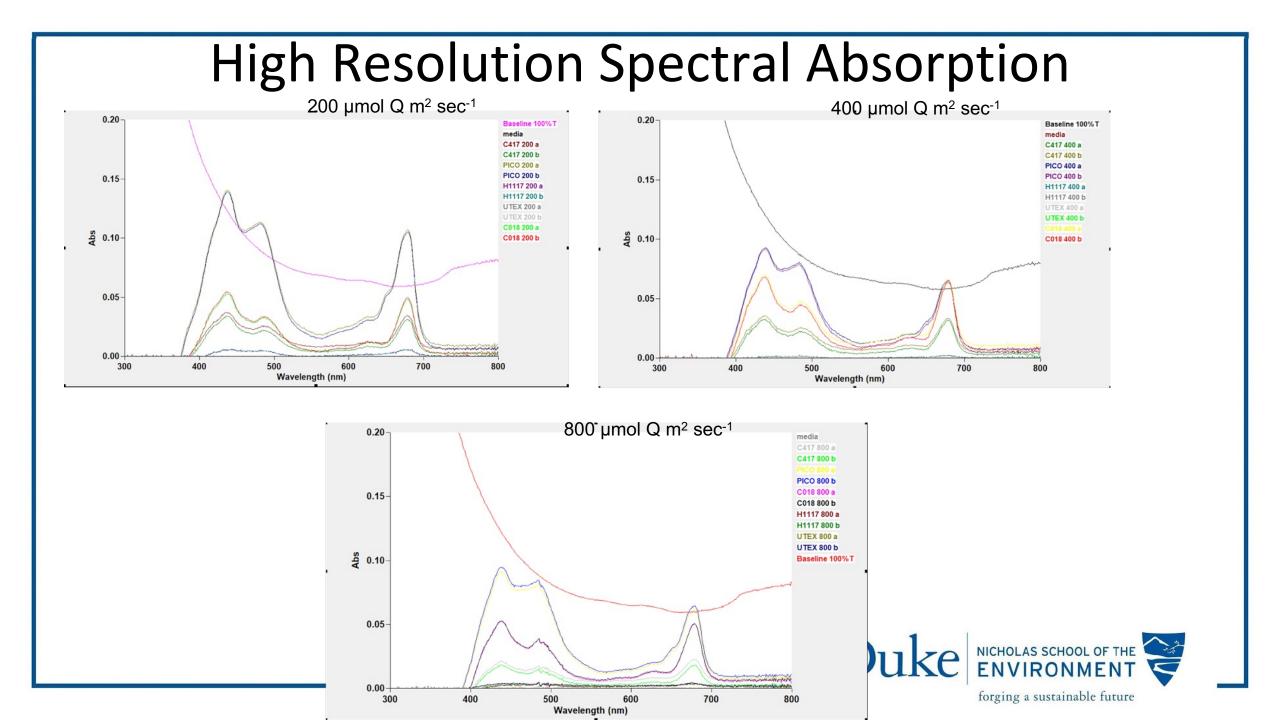
forging a sustainable future

ENVIRONMENT

Thank you

Zackary Johnson: <u>zij@duke.edu</u> http://www.duke.edu/~zij http://www.ml.duke.edu/webcam/algae/

We're a team!



EERE #DE-EE0009278

Additional Slides

Publications

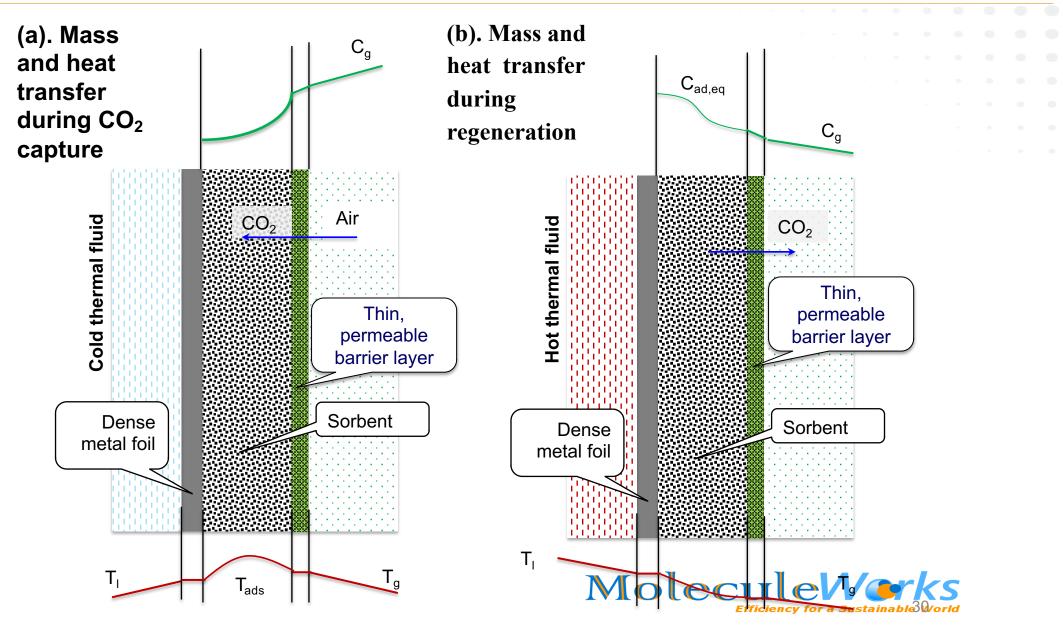
Doo SS, Kealoha A, Andersson A, Cohen AL, Hicks TL, Johnson ZI, Long MH, McElhany P, Mollica N, Shamberger KEF, Silbiger NJ, Takeshita Y, Busch DS (2020). The challenges of detecting and attributing ocean acidification impacts on marine ecosystems. ICES Journal of Marine Science. DOI: https://doi.org/10.1093/icesjms/fsaa094

Loftus SE, Hunt DE, Johnson ZI (2020). Reused cultivation water from a self-inhibiting alga does not inhibit other algae but alters their microbiomes. Algal Research 51: 102067. DOI: <u>https://doi.org/10.1016/j.algal.2020.102067</u>

Hall ER, Wickes L, Burnett LE, Scott GI, Hernandez D, Yates KK, Barbero L, Reimer JJ, Baalousha M, Mintz J, Cai W-J, Craig JK, DeVoe MR, Fisher WS, Hathaway TK, Jewett EB, Johnson Z, Keener P, Mordecai RS, Noakes S, Phillips C, Sandifer PA, Schnetzer A, Styron J (2020). "Acidification in the U.S. Southeast: Causes, Potential Consequences and the Role of the Southeast Ocean and Coastal Acidification Network." Frontiers in Marine Science 7. https://doi.org/10.3389/fmars.2020.00548

Marra JF, Barber RT, Barber E, Bidigare RR, Chamberlin WS, Goericke R, Hargreaves BR, Hiscock M, Iturriaga R, Johnson ZI, Kiefer DA, Kinkade C, Knudson C, Lance V, Langdon C, Lee Z-P, Perry MJ, Smith WO, Vaillancourt R, Zoffoli L (2020). A database of ocean primary productivity from the 14C method. Limnology and Oceanography Letters. <u>https://doi.org/10.1002/lol2.10175</u>

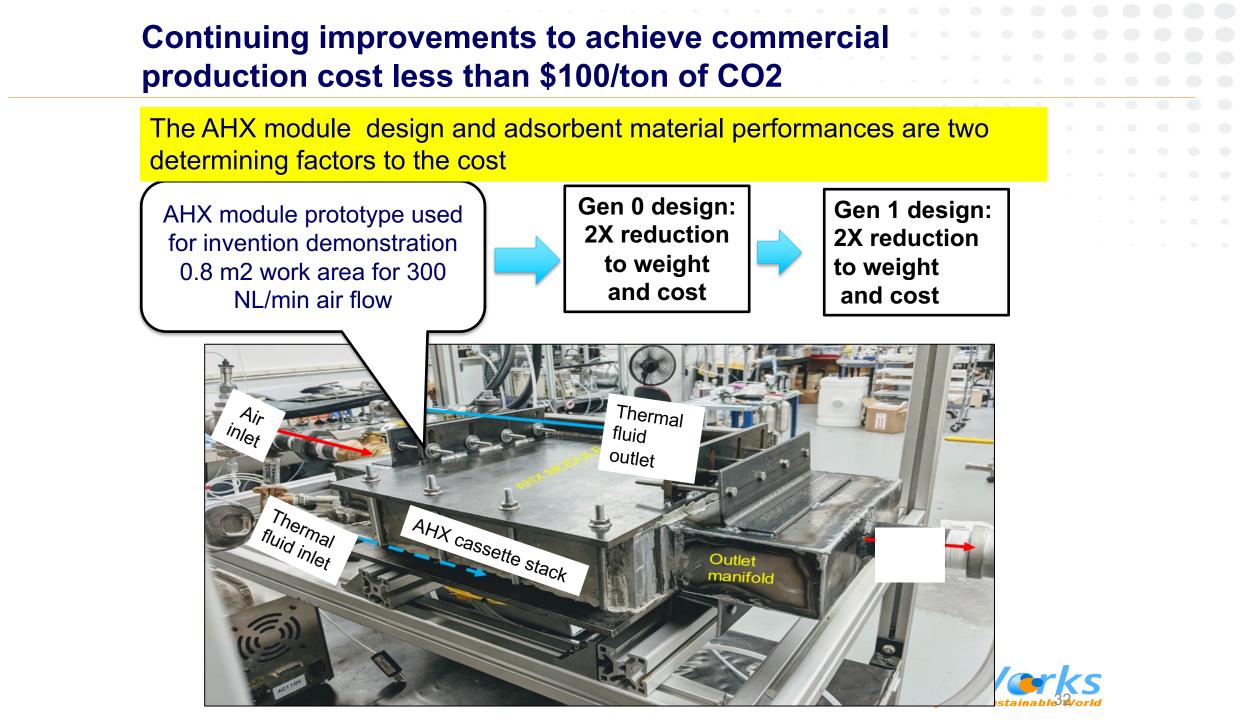
Patents, Awards, and Commercialization


No patents have yet been applied for based on the work supported by DOE.

Algae Biomass Organization Mid-Career Award: PI - Zackary Johnson

All primary results from this project are being published in the open, peer-reviewed literature. The publications from this project – cited above – provide a comprehensive and detailed analysis of commercialization potential. This information will be available to anyone with access to the open literature.

Working principle of adsorption/heat exchange (AHX) design for rapid CO₂ capture and regeneration



AHX technology innovations and impacts

- 1. Utilize low-pressure and low-temperature equipment
- 2. Enable high CO2 productivity via rapid adsorption and regeneration operation
- 3. Utilize low-quality heat for regeneration of saturated sorbent and release of CO2
- 4. Allow large volume of air to pass through the adsorption channel at low pressure drops
- 5. No volatile solvents involved.
- 6. No or minimal water consumption-

Reduction of capital costs Reduction of operating costs

