DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

High pH/High Alkalinity Cultivation for Direct Atmospheric Air Capture and Algae

Bioproducts - HiDAC -Robin Gerlach Center for Biofilm Engineering Montana State University

Advanced Algal Systems

⁵N (atom %)

DE-EE0009273

April 04, 2023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview: Effective algal biomass cultivation with Direct Air Capture (DAC) will drastically increase location flexibility by decoupling from high concentration CO_2 sources.

<u>Goals</u>:

- (i) Efficient DAC during raceway cultivation resulting in increased carbon utilization from 15 to 18 g/m²/d AFDW (with a stretch goal of 21 g/m²/d AFDW).
- (ii) Improved and more consistent biomass composition for fuel, foam and other high-value product generation through microbiome engineering and improved cultivation strategies.
- (iii) Development of **flexible design and operation strategies** allowing for changes in the product spectrum to accommodate the needs of customers **for** valuable algae **fuels and products.**

The project addresses the following **MYP Milestone**:

20AA25 Advanced Algal Systems

By 2024, develop technologies that **increase** the mature modeled **value of cultivated algae biomass by 25% over the 2019 SOT baseline** minimum biomass selling price through incorporation of valuable coproducts and/or services

and the following Multi-Year-Plan (MYP) barriers:

- Aft-A Biomass Availability and Cost
- Aft-B Sustainable Algae Production
- Aft-G Algal Feedstock Material Properties

HE UNIVERSITY f North Carolina t Chapel Hill

Quad Chart Overview

Timeline

- 10/1/2020
- 9/30/2024

	FY22 Costed	Total Award	(rea prod En
DOE Funding	(10/01/2021 – 9/30/2022) \$704,711.64	(negotiated total federal share) \$2,000,000.00	alga utili. ove
Project Cost Share *	\$178,433.68	\$511,124	Fu DE- and FY2
			Pro

Project Goal (HiDAC)

To increase areal algal biomass productivity and biomass quality during DAC-based open raceway cultivation while maintaining or improving economic competitiveness through technical improvements ctor design, growth and conversion) and the duction of high value products.

d of Project Milestone

ach an areal productivity of 18 g/m²/d AFDW of al biomass based on atmospheric CO_2 zation, which would be an improvement of 20% r the baseline

nding Mechanism

FOA-0002203, Topic Area 3 Algae Bioproducts CO₂ Direct-Air-Capture Efficiency (ABCDE), 020

ject Partners*

Montana State **University - Bozeman** University of Toledo

University of North Carolina at Chapel Hill

*Only fill out if applicable. MSU
Center for Biofilm Engineering

MSU
Center for Biofilm Engineering

MSU
Center for Biofilm Engineering

Guiding Question

Can we economically increase areal algal biomass productivity and biomass quality during DAC*-based open raceway cultivation?

- through technical improvements (growth and conversion)
- through strategic improvements (product spectrum and flexibility)

*DAC – Direct Air Capture (of CO_2)

MSU

 Center for Biofilm Engineering

OMARIO

MSU

 Center for Biofilm Engineering

MSU

 Center for Biofilm Engineering

MSU
Center for Biofilm Engineering

13

Belt-and-cleat 30L raceway tanks

Sridhar Viamajala

5

Project work **started late in FY 2021** hence **no peer review comments yet**. SOPO was revised through discussions during the verification process in April 2021.

Top Challenges

- Belt-and-Cleat mixing is in its infancy
- Microbiomes are there, they have been shown to be important in many biological systems (e.g., digestive systems), interactions in algal cultures are challenging to observe
- Creating algae polyols with similar reactivity to traditional polyols for polymer synthesis

Risk Analysis and Mitigation –

overlapping (and redundant) expertise and capabilities

e.g.,

- Sonoco, Ford, and Clemson
 - Product Manufacturing, Testing
- Toledo and Clemson
 - Toledo and Clemson could both do **conversion**, can both **produce foams**
- MSU and Toledo
 - Both have cultivation expertise
 - Toledo is expanding microbiological expertise and building molecular expertise
- UNC, Toledo, and MSU
 - TEA/LCA expertise

Risk Analysis and Mitigation (cont'd) –

Multiple strategies to achieve improvements in productivity

e.g.,

- New raceway designs, mixing, and re-carbonization strategies
- Microbiome improvements
- Cultivation media improvements

Go/No-Go decision points are SMART, build on the **baseline of 15** g/m²/d AFDW and are critical to reach the EPG.

GNG1 – Verification. April 16, 2021

GNG2 - Improved DAC and carbon utilization resulting in algal biomass **areal productivity** increase by Chlorella sorokiniana strain SLA-04 by **10% over baseline (16.5 g/m²/d AFDW)**. March 31, 2023

EPG - Reach an **areal productivity of 18 g/m²/d AFDW** of algal biomass based on atmospheric CO_2 utilization, which would be an **improvement of 20% over the baseline**. September 30, 2024 <u>Stretch goal: 21 g/m²/d AFDW</u>

A <u>combination of experiments and modeling</u> is being used to determine CO_2 mass transfer rate, algal growth potential/rate, media recycling potential, effect of microbiome, potential for foam, biocarbon and biochar utilization, prospective facility design and product spectrum.

Communication

- <u>Monthly All-Hands Meetings, PM C. Sterner attends regularly</u>, maintains awareness of other projects & DOE/BETO goals
- <u>Monthly PI Meetings</u>
- Weekly Meetings Gerlach-Viamajala
- Subgroup meetings on demand
- Weekly or more frequent meetings at participating institutions
- Ad-hoc meetings as necessary
- <u>MS Teams/SharePoint based file exchange & communication</u> on secure site
- Interaction and regular communication with belt-and-cleat pond operator

Communication with other projects & entities

- JGI
- FICUS (EMSL)
- NSF

2-Progress and Outcomes

Project work started late in FY 2021 – so about 1.5 years of laboratory work. Project is mostly on schedule [a few (CoVID-related) delivery and personnel challenges].

Important Technical Accomplishments

- Belt-and-Cleat prototypes built and used (30L)
- Improved mass transfer modeling and comparisons
- Developed connections to larger scale belt-and-cleat pond operator
- Demonstrated that there are differences between day-and-night in activity of the algal microbiome
- Can recycle high alkalinity medium multiple times (12 times so far)
- Made foams from algal oil
- Completed initial analyses demonstrating quantitatively that utilizing as little as 31% of algal lipids/pyrolysis oil for polyurethane production can increase revenue potential by 10%

Key Milestones

Pond operation and media composition

Demonstrated through measurements that sufficient CO₂ can be transferred into cleat-and-belt-mixed ponds to enable an algal biomass areal productivity increase by **20% over baseline (i.e., to 18 g/m²/d AFDW)**

Compared belt-and-cleat-mixed ponds to paddlewheel-mixed ponds at equivalent fluid velocities (goal is based on equivalent **energy usage** – this **is proving to be challenging**)

GNG2 Improved DAC and carbon utilization resulting in algal biomass areal productivity increase by Chlorella sorokiniana strain SLA-04 by **10% over baseline (i.e. 16.5 g/m²/d AFDW)** --- March 31, 2023

Microbiome Engineering

Screened effect of **>15 bacterial isolates** on growth of axenic SLA-04 cultures under high pH/high alkalinity (Hp+HA) conditions – **did not find a clear effect**

Taxonomic characterization of microbiome of SLA-04 cultures cultivated under high pH/high alkalinity (Hp+HA) conditions – see differences in activity between HA and LA & day and night

Key Milestones (cont'd)

In silico metabolic models built for bacterial cultures and calibrated using experimental data - use of KBase, conversations with JGI on how to better handle auxotrophy

Future: In silico metabolic models of consortium level (algal-bacterial) interactions will be built and calibrated. Goal is to predict and test strategies to improve culture robustness and productivity through optimized interactions (e.g., C- and N-exchange).

Higher Value Products from Algae

Synthesized bio-oil from pyrolysis of algae biomass grown in raceway ponds **used oil to produce PU foams** *Future:*

Biocarbon electrode synthesis and testing and Biochar-based composites

Key Milestones (cont'd)

Techno-Economic Assessment (TEA) and Life-Cycle Assessment (LCA)

TEA and LCA for high pH/high alkalinity cultivation system, outlining designs that will enable **increased algal biomass revenue potential by 10% over the baseline of \$300 per ton of algal biomass** at a productivity of 15 g/m²/d AFDW

Future:

Develop flexible facility design and strategic operations to limit weather- and market-based financial risk by developing capital- & financial risk assessment-focused investment tools

Incorporate seasonal and cultivation strategy-dependent production risks into dynamic systems modeling, and **development of novel risk mitigation strategies** (seasonal, strain specific production risks, temperature & irradiance variations, and market price volatility, etc.)

Project Overview & Approach

2- Progress and Outcomes (cont'd) CO₂ Mass Transfer into Ponds

Sridhar Viamajala

MSU
Center for Biofilm Engineering

Project Overview & Approach

2- Progress and Outcomes (cont'd) Metabolic Modeling of Algal Microbiome

MSU

 Center for Biofilm Engineering

2- Progress and Outcomes (cont'd) KEGG annotation - the MAGs encode for (almost) complete vitamin **B** synthetic pathways

Sridhar; Gerlach, Robin; Wiedenheft, Blake

and structure-based annotation

eveal metabolic potential of *Chlorella* sp. SLA-04. Algal Research 69: 102943. DOI:

.0.1016/j.algal.2022.102943

sequence, phylogenetic analysis,

. Genome

Ross P.; Viamajala,

Carlson,

Hannah M.; (2023)

Ganus/Spacios	Complete B vitamin synthetic pathways (KEGG)							
Genus/Species	B1	B2	B3	B5	B6	B7	B9	B12
Brevundimonas	NO	NO	NO	NO	NO	NO	YES	NO
Microbacterium sp001620065	NO	YES	NO	NO	YES	NO	NO	NO
Paracoccus sp000967825	NO	NO	NO	NO	NO	YES	NO	YES
Enterovigra rhinocerotis	NO	NO	NO	NO	NO	NO	NO	NO
Microbacterium	NO	YES	NO	NO	YES	NO	NO	NO
Methylobacterium	NO	YES	NO	NO	NO	YES	YES	YES
Mesorhizobium	NO	NO	NO	NO	NO	NO	NO	YES
Aeromicrobium sp001423335	NO	NO	NO	NO	YES	NO	NO	YES
SLA-04	NO	NO	NO	NO	NO	NO	NO	NO
Thiamine - B1 Ribot Pyridoxal-P - B6 Biotir	Riboflavin - B2 Biotin - B7		Nicotinic acid - B3 Tetrahydrofolate - B9			Pantothenate - B5 Cobalamin - B12		

Goemann, Calvin L.C., Wilkinson, Royce, Henriques, William; Bui, Huyen; Goemann, available SLA-04 genome

Bacterial community may provide B vitamins for SLA-04 growth

MSU

 Center for Biofilm Engineering

Isaac Miller

30

MSU Center for Biofilm Engineering

31

32

2- Progress and Outcomes (cont'd) Characterization of active bacteria in SLA-04 culture using BONCAT

Phycosome activity during the diel cycle

<u>Salinarimonas</u>:

halotolerant; compatible solute production

Rhizobiales:

known for association with plant growth, nitrogen fixation

Miller et al. unpublished

35

2- Progress and Outcomes (cont'd) Metabolic Modeling of Algal Microbiome

Pyrolytic Fractionation

Two step pyrolysis

- First step at T ~ 300–320 °C
 - Bio-oils from degradation of proteins and carbohydrates
- Second step at T \sim 420–430 °C
 - Triglycerides to fatty acids
 - Free of N, water, short-chain organic acids, and other carbohydrate degradation products.

Sridhar Viamajala

f 💿 🕑

Polyurethane Foam Production

(Left to Right) 0, 10, 30, 50% Polyol Replacement with **Pyrolysis Oils**

Srikanth Pilla

R s

50% polyol replacement with (1) raw algae oil and (2,3) algal polyol

TOPICS -MAGAZINE - COLLECTIONS - VIDEOS JOBS (Q.

EPA Green Chemistry Challenge Awards announced

Winners recognized for developing greener products and processes by Sam Lemonick June 15, 2021

non-isocyanate polyurethane (NIPU) foam

Clemson University researchers work on a biobased polyurethane foam. The research won a 2021 EPA Green Chemistry Challenge Award.

2021 EPA Green Chemistry Award https://www.epa.gov/greenchemistry/green-chemistry-challenge-2021-academic-award

MSU

 Center for Biofilm Engineering

3 - Impact

- Demonstrated ability to recarbonize high pH/high alkalinity medium
- Ability to recycle high pH/high alkalinity medium repeatedly
- Microbiome/microbiome activity changes between low/high alkalinity & day/night
- Foams have been produced from algal oil

 Overall, we are providing data demonstrating that the economics of algal production facilities can be improved (and that modelling can be used to predict best strategy based on needs (e.g., low revenue potential fuels for transportation vs. higher value/higher volume products such as foams vs. high(est) value products (e.g., dyes, electrode materials, etc.))

Summary

- Fabricated small belt-and-cleat ponds
- Demonstrated that we can effectively recarbonize Hp/HA medium to support >18 g/m²/d productivities
- Demonstrated that we can recycle Hp/HA medium (at least 12 times)
- There are differences in microbiome/ microbiome activity
- Have metabolic models for in silico experiments
- Can convert algal biomass into fuels and polyols, which can be used to produce foams using isocyanate- and non-isocyanate-based pathways
- TEA to support economic improvements by selecting competitive product spectra (e.g., foams & fuels)

Plans for Future Work

- Work on other high value products (biocarbon, biochar)
- Identify specific algal microbiome interactions and understand why Hp/HA SLA-04 cultures seem to be so robust and productive
- Identify and address challenges that might be arising through repeated media recycling
- Continue TEA/LCA work to develop strategies to increase revenue and lower MBSP/MFSP

MSU
Center for Biofilm Engineering

Additional Slides

(Not a template slide – for information purposes only)

- The following slides are to be included in your submission for evaluation purposes, but <u>will **not**</u> <u>be part of your oral presentation</u> –
- You may refer to them during the Q&A period if they are helpful to you in explaining certain points.

Responses to Previous Reviewers' Comments

 N/A, Project work started late in 2021 hence no peer review comments yet. SOPO was revised through discussions during the verification process in April 2021

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.

Publications, Patents, Presentations, Awards, and Commercialization

- Nancy Chen, Srikanth Pilla, A comprehensive review on transforming lignocellulosic materials into biocarbon and its utilization for composites applications., Composites Part C: Open Access, Volume 7, 2022, 100225, ISSN 2666-6820, <u>https://doi.org/10.1016/j.jcomc.2021.100225</u>
- Numerous publications in various stages of preparation

Note: This slide is for the use of the Peer Reviewers only – it is not to be presented as part of your oral presentation. These Additional Slides will be included in the copy of your presentation that will be made available to the Reviewers.

48

Mountains & Minds

MSU
Center for Biofilm Engineering

2021 EPA Green Chemistry Award

https://www.epa.gov/greenchemistry/green-chemistrychallenge-2021-academic-award

Nonisocyanate polyurethane (NIPU) foam

A team led by Professor Srikanth Pilla of Clemson University is being recognized for creating the first lignin-based non-isocyanate polyurethane (NIPU) foam. This new technology replaces traditional polyurethane foams, one of the most commonly used plastics in the industry. Traditional polyurethane foams are typically manufactured from diisocyanates, a known carcinogen that has significant health and safety effects in its manufacturing.

Summary of Technology:

While the lignin-based NIPU foams have the same mechanical properties as traditional polyurethane foams, they are specifically designed for chemical recycling at their end of life. Clemson University's innovation uses lignin directly to bypass fractionation and purification steps that typically complicate a sustainable application. The Clemson team first created a reactive, carbonated lignin precursor by using organic carbonates as a reagent. The application of organic carbonates creates a unique opportunity to break down the polymer structure and regenerate the lignin by creating "molecular zippers." These zippers break down the structure of the foam and recover the lignin. Recycled lignin can be readily used to create a new NIPU foam. The sustainability of the process is also enhanced by the ability to recycle the catalyst (e.g., potassium carbonate) used in multiple synthetic steps. The true innovation of this chemistry lies in the formation of reactive precursors using non-toxic and 100 percent biobased reagents. In the past, lignin has been made into a reactive precursor using oxypropylation with propylene oxide and added diisocyanates to mimic the synthesis of conventional polyurethane foams. With the lignin-based NIPU foams, the curing agent is derived from environmentally friendly vegetable oils.

Dipl.-Ing. Robin Gerlach (Ph.D.)

- Professor of Chemical and Biological Engineering
- Center for Biofilm Engineering
- **Thermal Biology Institute**
- **Energy Research Institute**
- Office: 314 Cobleigh Hall
- Phone: 406-994-1840
- FAX: 406-994-6098
- E-mail: robin g@montana.edu

http://www.biofilm.montana.edu/people/faculty/gerlach-robin.html

OCALL

O OMER