DOE Bioenergy Technologies Office (BETO)

2023 Project Peer Review

Enhanced Algae Productivity in CO₂ Direct Air Capture

April 4, 2023
Technology Area Session

David Hazlebeck
Global Algae Innovations

Global Algae Innovations Algae Solutions to Global Dilemmas

Project Overview – Goals

- Develop improved strains and cultivation methods for open raceways with all CO₂ supplied via direct air capture
 - 17.8 to 18.9 g/m²d annual average productivity with 35% to 45% lipid content in outdoor cultivation based on quarterly trials
 - Public toolkit for new strain evolution method
 - Public genomic and transcriptomic data sets on wild-type and improved strains
 - Cultivation methods consistent with overall process that achieves
 - \$2.50/gallon of gasoline equivalent (GGE) for biofuel intermediate at 5,000-acres
 - 90% GHG reduction for biofuel relative to petroleum fuels
 - 85% reduction in water use relative to soy protein

Project Overview – Context and History

Multiple prior directed evolution projects with several universities

- Achieved remarkable improvements in productivity in indoor photobioreactors
- Has not yet translated to similar levels of improvement in outdoor cultivation
- Has not yet been done with strains under direct air capture cultivation conditions

Genetic basis of phenotype improvements is very complicated

- Limited data sets available for wild-type vs improved strains with higher productivity
- Many contributing factors, so need broad data set to get full picture

Over 100 ways to increase productivity through cultivation methods

- Many are too expensive or to energy intensive, such as most closed photobioreactors
- All advances must be constrained through detailed techno-economic analysis (TEA)
- Planning 20 patent applications this year on cultivation advances from other projects

Approach

TEA constrained

- Update TEA throughout for decision making and analysis of improved cultivation method

High performance starting strain

- Global Algae's improved Nitzschia inconspicua
- High productivity under direct air capture cultivation conditions
- High lipid content in outdoor cultivation
- Robust outdoor growth with no culture crashes
- Wide range for pH, temperature, salinity, and dissolved oxygen tolerance

Quarterly productivity trials and milestones

- Thermal control to match Paso Robles area (where the process scale-up is underway)
- Best strain and cultivation conditions to-date
- Generate annual productivity and regular data on progress toward overall goals

Approach - continued

New directed evolution approach

- Based on extensive prior experience with universities and national laboratories
- Focus on improvement in outdoor open raceways
- Genomic and transcriptomic data for starting and improved strains
- Cryogenic storage of improved strains
- Budget period 2 four individual traits; incremental milestones for each trait
- Budget period 3 trait stacking; incremental milestones for productivity and lipid content

New cultivation method

- Based on observation of previously untapped cultivation productivity with a cultivation method
- Budget period 2:
 - Nine key variables, 7 week of testing on each
 - 3 weeks optimization, 2 week comparison with control
 - 2 week margin for weather or unanticipated issues
- Budget period 3: Optimization through combinations of the nine key variables

Approach – Testing in Outdoor, Open Raceways

Approach – Challenges and Risk Management

Key Technical Challenges

- Translating strain trait improvements to outdoor cultivation
- Trait stacking
- Optimization of many variables for the improved cultivation methods
- Thermal control in raceways to simulate temperature climate

Risk	Mitigation	
Translation laboratory strain improvements to outdoor cultivation	A main focus of the project with numerous mitigations that will be tested and reported on when the new stain evolution method is published	
Inadequate thermal control	Early design support tests to verify control can be achieved	
Cultivation improvements are not economical	Updated TEA maintained throughout the project for evaluation of results and decision-making on changes in approach	
Trait stacking cannot be achieved	Work from both directions on the improved stains; maintain pressure for the prior improvement while trait stacking	

Progress and Outcomes - Overview

Project currently in equipment installation and checkout phase

Verification results

- Baseline productivity of 15.6 g/m²d with 37% lipid content in Kauai, adjusted: 14.8 g/m²d
- Solid basis for new strain evolution approach and cultivation methods
- TEA projects cost and life cycle targets will be met by successful technical results
- Risk management and mitigation approaches are adequate

Equipment design, procurement installation

- Systems 90% installed and partially checked out
- Waiting on final equipment due to arrive in April

Preliminary testing with older systems

- Promising initial results on cultivation methods with direct air capture
- 3 patent applications anticipated this year prepared based on initial results

Progress and Outcomes – TEA Summary

Production Cost (2023 \$)

System	Capital (\$/mt)*	Operating (\$/mt)**	Total (\$/mt)
Laboratory	10	0	10
Nutrients	58	150	207
CO2 supply	10	30	40
Cultivation	310	47	356
Harvesting	94	40	134
Drying & Extraction	89	120	219
Fractionation	171	151	322
Total	705	537	1242

Product Selling Price (2023 \$)

Market	Fraction (% AFDW)	Selling Price (\$/mt)	Composite (\$/mt)
Biofuel	17%	825	140
Polymer	17%	2300	390
Omega-3 feed	6%	4200	250
Glycerin	5%	1100	60
Protein Conc.	12%	1800	220
Aquafeed meal	43%	800	340
Total	100%		1400

^{**} Solar electricity estimated at \$0.30/kWh

^{*} Capital charge factor of 13.27% based on minimum internal rate of return of 8%

Progress and Outcomes – Products

Progress and Outcomes – Robotic system upgrade

Doubled throughput and added

Impact

- Higher productivity and lipid content will accelerate commercialization of algal biofuels by improving economics and life cycle
- Quarterly productivity data will support BETO state of technology analyses
- New directed evolution toolkit for strain improvement that is more applicable to outdoor, open raceway cultivation
- New cultivation method for improved productivity and lipid content
- Genomic and transcriptomic data sets on improved strains versus wild-types

Summary

Accelerate commercialization

- Improved strains and cultivation methods for higher productivity and lipid content
- Temperature profiles match scale-up location
- Improved strains and methods will be used immediately at multi-acre scale

New toolkits and data to support algae industry and research

- New directed evolution method that generates strains with improved productivity in outdoor, open raceway cultivation
- Genomic and transcriptomic data sets on wild-type and strains with improved traits

Status

- Equipment design, procurement, installation and checkout nearly complete
- Test program will start in late spring or early summer
- Preliminary testing has resulted in plans for 3 patent applications

QUAD Chart Overview

Timeline

BP2 start date: April 2022

Project end date: June 2025

	FY22 Costed	Total Award
DOE Funding	\$245,000	\$3,200,000
Project Cost Share	\$61,000	\$800,000

TRL at Project Start: 3

TRL at Project End: 5

Project Goal

Develop improved strains and cultivation methods that increase the productivity by at least 20% with all CO_2 supplied by direct air capture and at least 35% lipid content. Measure productivity quarterly in triplicate, two-week tests.

End of Project Milestones

- 20-25% increase in productivity (target, stretch)
- 35-45% in lipid content (target, stretch)
- Public genomic and transcriptomic data sets
- Public toolkit for new strain evolution method
- \$2.50/GGE biofuel intermediate at 5000-ac
- 90% GHG reduction relative to petroleum
- 85% water use reduction relative to soy protein

Funding Mechanism

FY21 Feedstock Technologies and Algae FOA

Project Partners:

Hamilton Robotics

Additional Slides

Responses to Previous Reviewers' Comments

- Not previously reviewed
- Go/No-Go Review Verification
 - Baseline data: 15.6 g/m²d productivity with 37% lipid
 - Adjusted to 14.8 g/m²d for San Luis Obispo County (greater temperature variation but higher solar)
 - Extensive review of new directed evolution approach and basis for likely translation to improved productivity in outdoor, open raceways
 - Extensive review of cultivation method improvement approach

Publications, Patents, Presentations, Awards, and Commercialization

- None to date
- Planning 3 patents from preliminary results
- Plan to utilize improved strains and cultivation methods in two separate scale-up projects beginning later this year

