DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review Microalgae Commodities Production with a Direct Air Capture Process

DE-FOA-0002203; Topic Area 3: Algae Bioproducts and CO₂ Direct-Air-Capture Efficiency Award Number: DE-EE0009276; WBS# 1.3.4.006

MicroBio Engineering: John Benemann (PI), Braden Crowe (Presenter), Aubrey Davis, Kirk Moses, Maria Reyna, Derek Manheim

Cyanotech Corp.: Ryan Latta, Julia Gerber, Charley O' Kelly, Glenn Jensen

Global Thermostat LLC.: Eric Ping, Miles Sakwa-Novak, Stephanie Didas, Zach Foltz

PNNL: Michael Huesemann, Scott Edmundson, Song Gao, Charles Hibbeln, Ray Cabreriza

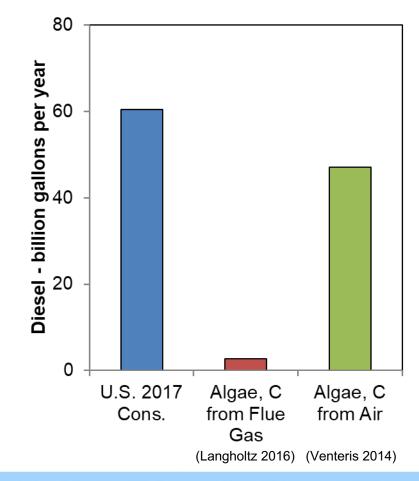
April 4, 2023 Advanced Algal Systems

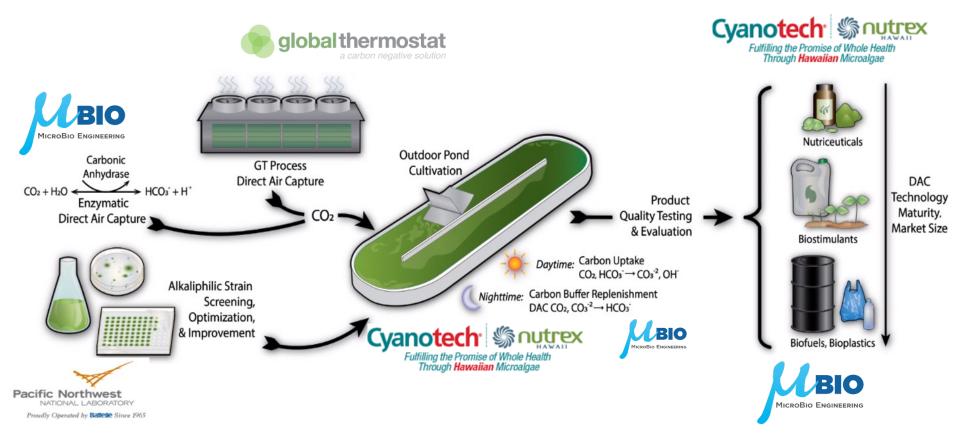
Proudly Operated by Battelle Since 1965

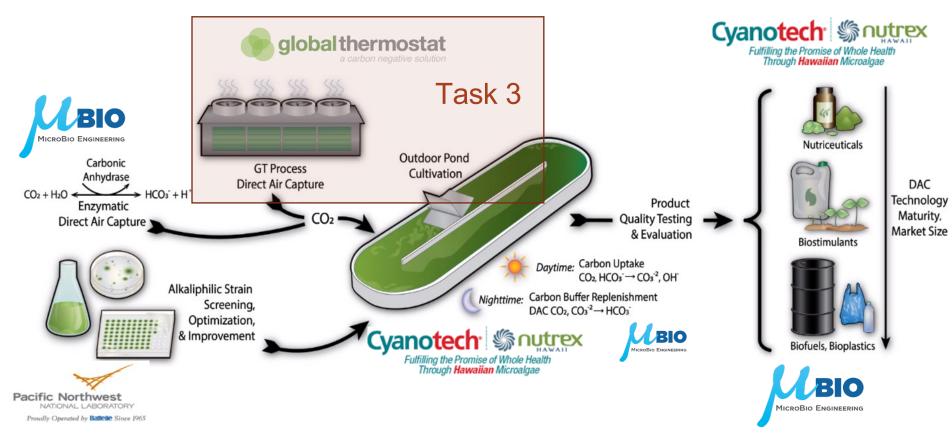
This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

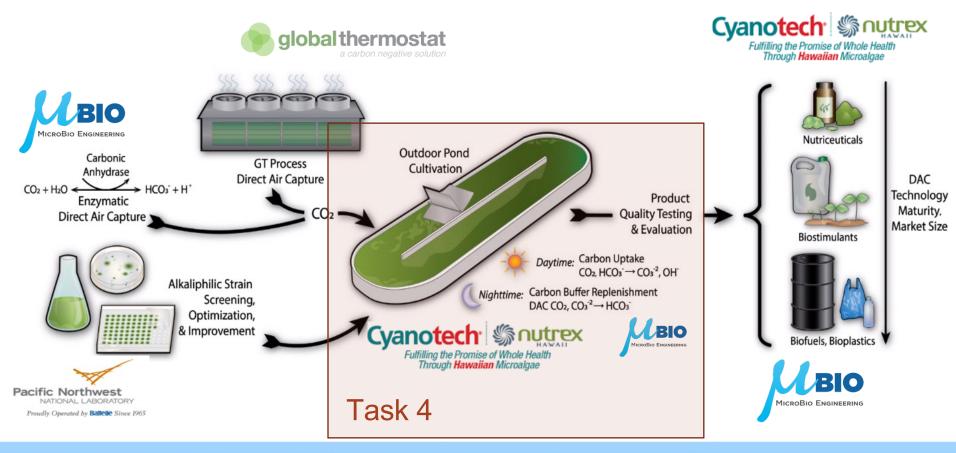
Goal

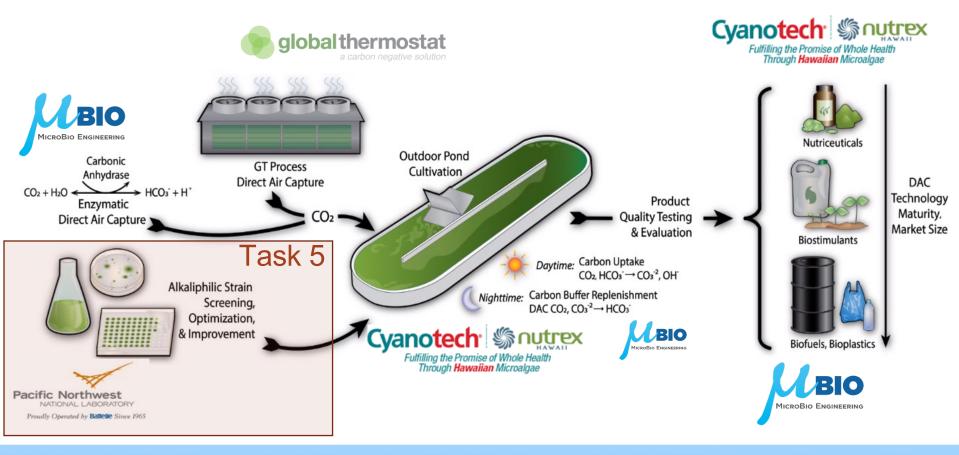

Demonstrate cultivation on air-derived CO_2 as an alternative to merchant and/or fossil-derived CO_2 supply

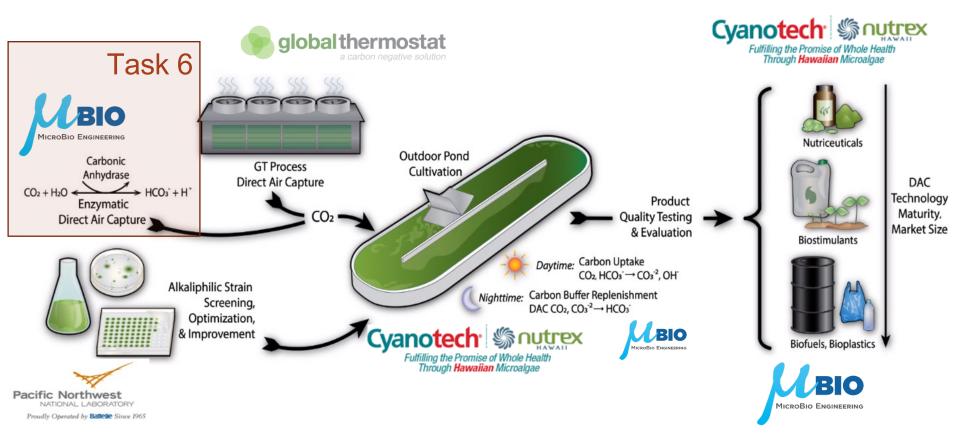

Motivation

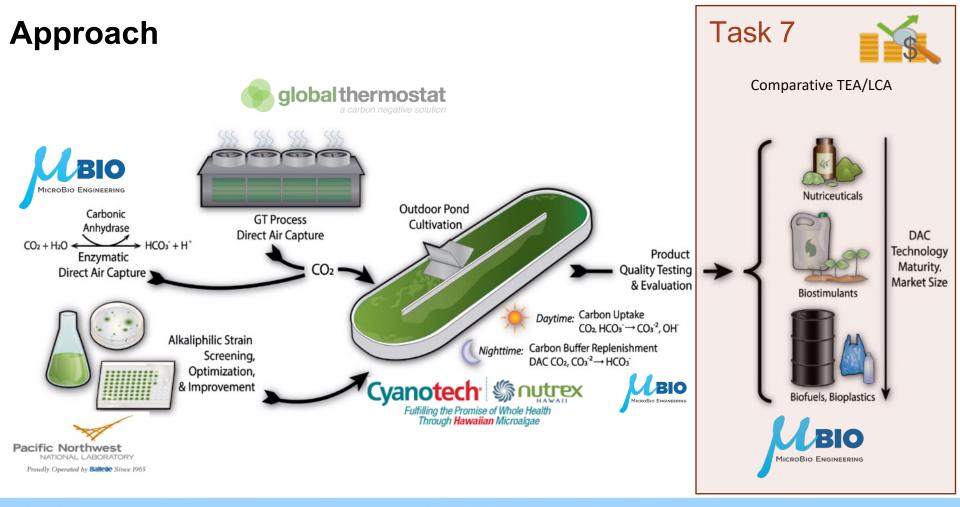

Current domestic algal production is reliant on merchant-sourced CO₂

Flue-gas CO₂ sources limit production of algal derived commodities such as biofuels

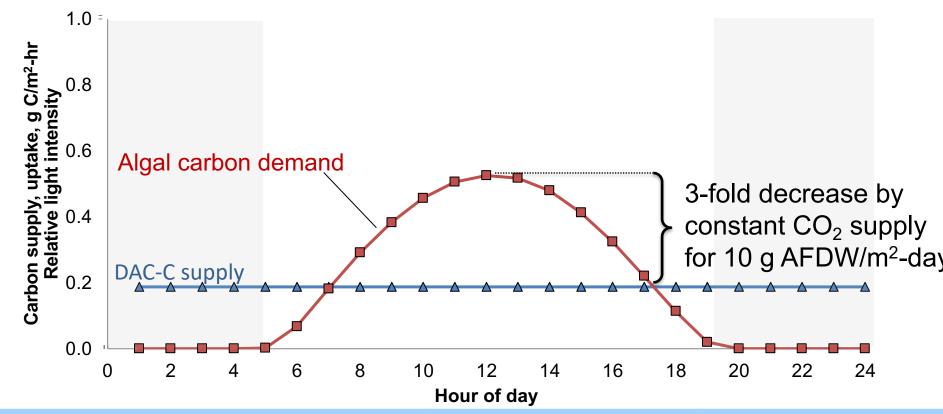

Local capture and utilization of air-CO₂ expands resource potential 10-fold







Task 1 and 2: Verification and Project management

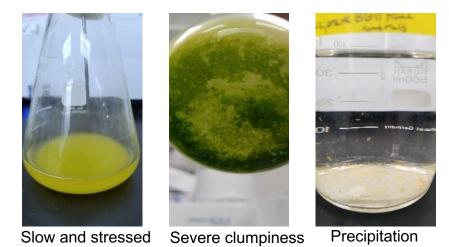


Approach: Advancing the state-of-the-art

Current State of the Art	Project Innovation	BETO Relevance
Merchant CO ₂ used in research and industrial cultivation	CO ₂ from GT-DAC or enzyme-facilitated in-pond transfer	Expand resource potential 10-fold
Cultivation trials conducted at pH 7-8 with high CO ₂ outgassing losses (low CUE)	Develop strain screening framework to understand CUE, pest management, productivity tradeoffs	Reduce gap between research (low CUE) and n th plant TEA/LCA assumptions (>75% CUE)
No domestic <i>Chlorella</i> production	Establish domestic Chlorella supply	Increase domestic manufacturer; develop pathways to commodities

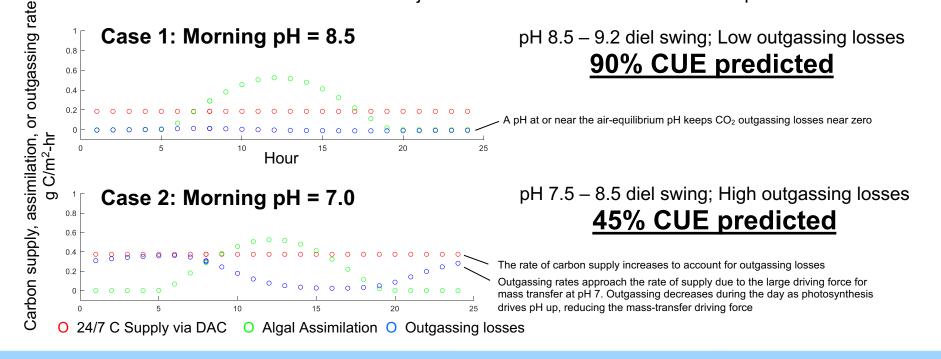
Approach: Direct air capture (DAC) CO_2 supply scale is based on <u>daily</u>, rather than peak hourly, algal CO_2 demand

Approach: In-pond DAC-CO₂ storage requires tradeoffs between growth, carbon utilization efficiency (CUE), and cost


Buffering capacity: Sufficient alkalinity required to store CO₂ injected overnight; high alkalinity increases costs, GHG footprint, and requires operation at elevated pH

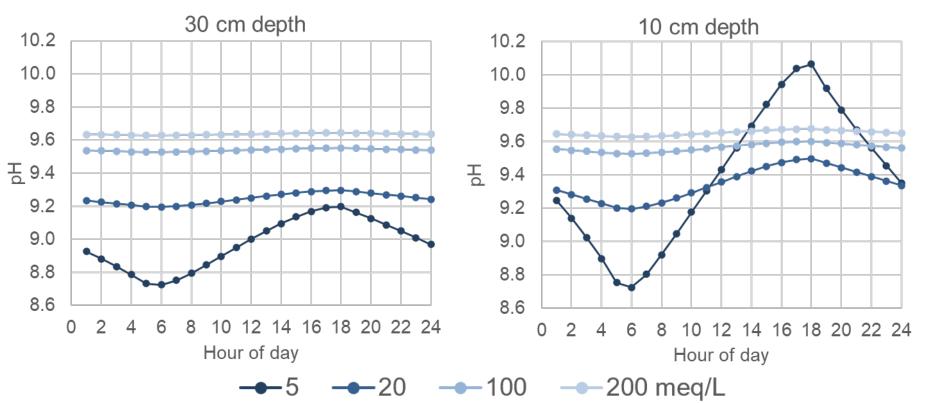
CUE: Operating at a pH below air-equilibrium incurs outgassing losses. High CUE needed to reduce costs and GHG footprint.

Growth: Strain tolerance to alkaline conditions varies; pest management techniques must be compatible with operating conditions

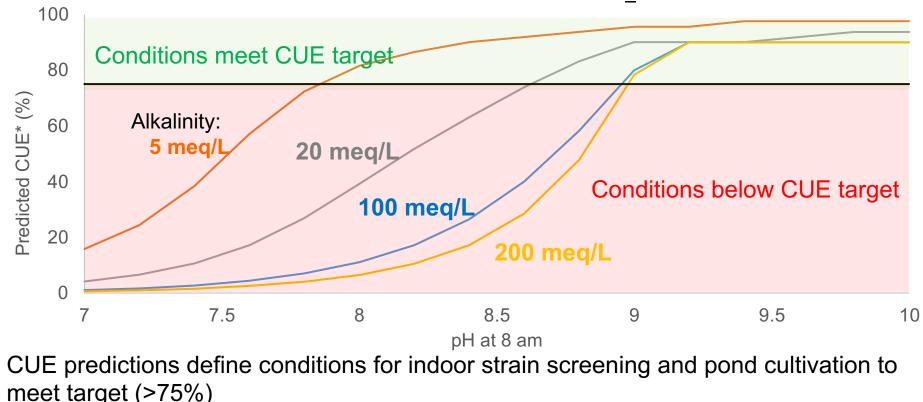

$$J_{CO_2}[=] \frac{g C}{m^2 - day} = k_L * \left(P_{CO2}^{air} * H - C_{CO2}^{bulk}(x = \delta) \right)$$

When $C_{CO2}^{bulk}(x = \delta) > P_{CO2}^{air} * H$:

• Net CO₂ 'outgassing' rate

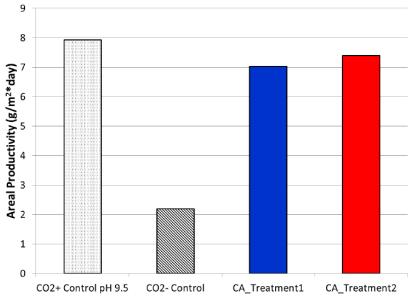


Approach: Tradeoffs between pH, alkalinity, productivity and depth explored via a carbon-flux model – **outgassing is key**


Dissolved Inorganic Carbon (@time = i+1) = Initial – Outgassing Losses + DAC-C supplied – Assimilated – Injection losses + C absorbed from atmosphere – Blowdown losses

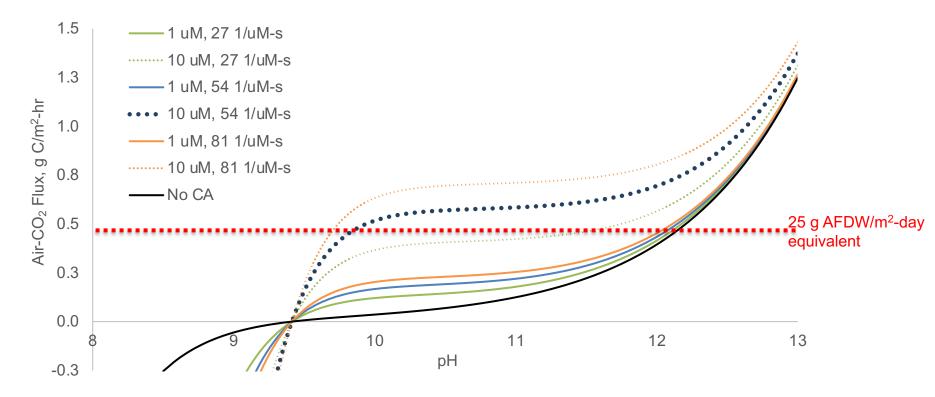
Approach: Pond depth and alkalinity dictate carbon storage capacity and diel pH swing

Approach: Combinations of alkalinity, pH, depth, and productivity represent 'operating points' for constant CO₂ supply by DAC


*90% CO₂ injection efficiency assumed; 10 g AFDW/m²-day productivity level; 30 cm depth, blowdown not included

Approach: Enzyme-enhanced transfer explored as alternative to GT DAC

- Proof-of concept for increasing air-CO₂ flux via exogenous CA addition demonstrated in previous joint MBE-PNNL AlgaeAirFix project
- Chemically enhanced (high pH) air-CO₂ flux explored in MBE-PNNL-Qualitas Health AirCAP project.


Conclusions:

- pH 11+ is required to meet target rate.
- Increasing turbulence in outdoor ponds also did not increase flux

Endogenous CA production hypothesized to increase air-CO₂ flux in oceanographic literature and is explored herein

Approach: 10 fold flux enhancement needed for 25 g AFDW/m²day; 10 μ M enzyme at 54/ μ M-s gets there at pH<10



Approach: Management

P.I.: Dr. John Benemann Mr. Crowe: Tasks Lead Mr. Ortiz: Administration Lead Project management, coordination Collect external feedback, initiate external collaborations. Integrated TEA/LCA, feeding results back.

Fabrication of a DAC pilot producing 1-2 kg CO₂/hr 2,000 hr continuous trial at Cyanotech Provide DAC-CO₂ TEA/LCA values for MBE model Dr. Charley O'Kelly Glenn Jensen:DAC integration Strain collection, identification, down-select Outdoor pond trials Integrated DAC trials; Evaluate product quality.

Cyanotech Soutrex

Dr. Michael Huesemann

Leverage and adapt an established strain screening pipeline to identify conditions that optimize biomass production, CUE, and product quality

Risks and mitigation strategies

<u>R1</u>: Delay in delivery of GT-DAC to Hawaii (Task 3)
 Mitigation: Use merchant-CO₂ in place of GT-DAC provided C
 <u>R2</u>: Cyanotech Innovation Facility refurbishment cost exceed budget
 Mitigation: Shift DAC-integrated cultivation studies to Cyanotech main farm (Task 4)
 <u>R3</u>: Unable to detect endogenous-CA flux enhancement (Task 6)
 Mitigation: Shift to other strains, discontinue task.

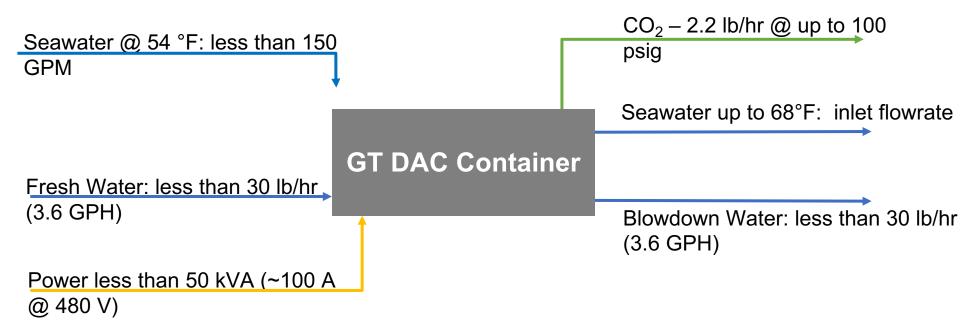
Approach: Schedule

4/3/2023 [†]

	Date:	Oct-20	Nov-20	Dec-20	Jan '21 to Jun '21	Jul-21	Aug-21 San-21	oct-21	Nov-21	Dec-21	Jan-22	Feb-22	Apr-22	May-22	Jun-22	Jul-22	Aug-22	Sep-22	Oct-22	Nov-22	Dec-22		Jan-23	Feb-23	Mar-23	Apr-23	May-23	Jun-23	Jul-23	Aug-23	Sep-23	Uct-23 Nov-23	Dec-23	
	Quarter		1		2-3		4		5			6		7			8			9				10			11			12		13		
	Month	1	2	3	4-9	10	11 1	2 13	14	15	16	17 1	8 19	20	21	22	23	24	25	26	27		28	29	30	31	32	33	34	35 3	36 3	37 38	8 39	
	Task		BP1									BP2																BF	93					
1	Verification																																	
						2.1	BP2 Pr	oject	Mana	agem	nent																							
2	Project management																						2.2	BP3	Proj	ect N	/lana	agen	nent					
		Ailes	tone	#:	ğ				2	.1.1		2.1	.2	2	2.1.3					2	.1.4			2.2.	0, 1		2	.2.2		2.2	2.3		2.2.4	Final Project Assessment
	DAC design, assembly,				contracting	3.1	DAC D	esign,	testi	ng, ir	nstall											5												SST
3	testing, monitoring, TEA																					o #2									З	.2 DA	C field	sse
	testing, monitoring, TEA			Verification									Go/no-go	2							з	3.3 TEA/LCA												
				/eri	view	4.1	Alkalip	hilic s	train	scre	ening	g, culti	vatio	n, se	lectio	on						o/n												oje
4	Field strain screening			-	ē		4.2 Site Prep										U												<u>م</u>					
					Environmental review.												4.3. Chlorella cultivation, productivity quality					testir	estir Ё											
-	Lab strain				Je Je												5.1	Stra	in re	vival														1
5	parameterization				ŗ										5.2	Strai	in ch	aracterization																
	MBE Enhanced Transfer				E S	6.1	Bioche	mical	tran	sfer s	studie	es																						1
6	Studies													6.2 Endogenous CA enhanced						nced	ed transfer													
_	Algae Production and												7.1	L Pro	duct	TEA																		1
7	Products TEA/LCA																												7.2	Produ	ict Tl	ĒA		
														Су	/an	ote	ech	I	PN	INL			G٦	-		Μ	BE	(Суа	no	teo	:h+	MB	Е

GT-DAC skid design complete

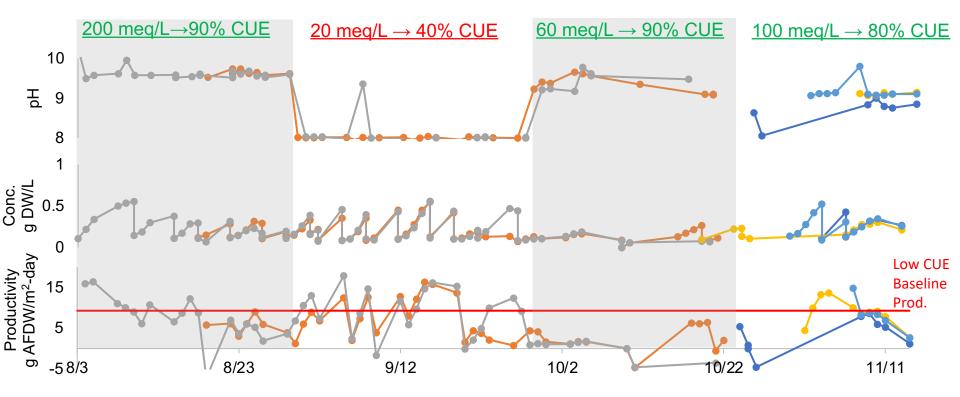
Fabrication underway – Summer 2023 Delivery



Operational data validates that GT-DAC can hit target metrics

10 ton CO₂ per year pilot operating at GT headquarters since July 2021 **Progress and Outcomes**

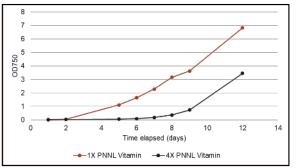
GT-DAC integration at Cyanotech



20 strains evaluated in lab, 4 tested in outdoor ponds; *Graeseilla* (CT3072) selected for optimization

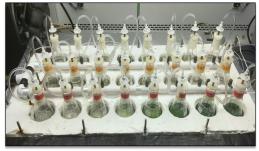
Strain ID	Taxonometric group	Sent to PNNL?	Current Status
CT3069	Graesiella	Yes, 01/2022	 PNNL-CT MTA in place 12/2021 Down selected Oct-Dec 2021 due
		01/2022	to poor growth relative to CT3074
CT3074	Parachlorella	Yes,	Tested at 200 L scale Jan-Apr
		01/2022	Tested at 600L photobioreactor scale Jun
			Tested at 1000L minipond scale Jun
			 Downgraded to first alternate status
CT3067	Graesiella	Yes,	Flask Scale Feb-Mar
		06/2022	Outdoor Scale Mar-May
			 Down selected due to poor
			growth in outdoor
			conditions relative to
-	_		CT3074
CT3072	Graesiella	Yes,	Well plate scale in late June
		08/2022	Outdoor Scale July-current
			 Lead Candidate

Strain CT3072 matched baseline productivity with CUE > 75% in Summer; improved pest management needed in Fall


Progress and Outcomes

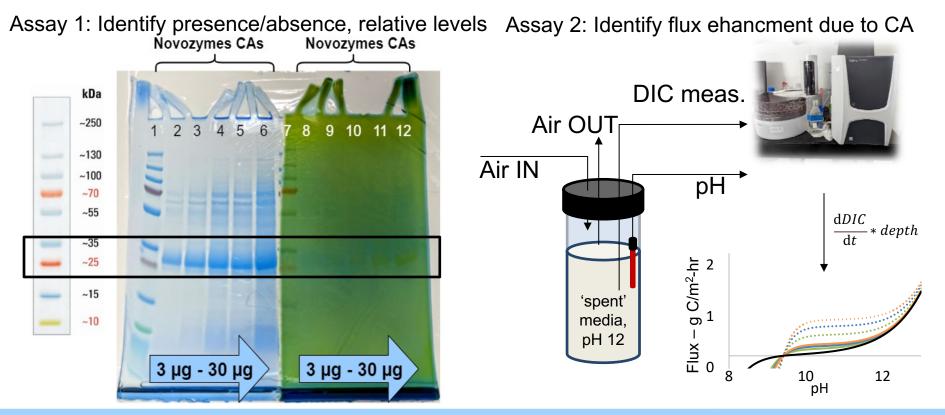
Top Cyanotech strains revived at PNNL; BP3 trials to optimize growth and product quality under <75% CUE conditions (Task 5)

Medium optimization


-Lag period reduced after lowering vitamin concentrations

Alkalinity profiling

- Tolerance to wide range in initial screening


0.45 2 0.40 p/1/8 0.30 0.25 0.20 .≌ 0.15 0.10 0.05 0.00 2.5 mea/L 20 mea/L 50 mea/L 100 mea/L 200 meg/l Medium Alkalinity

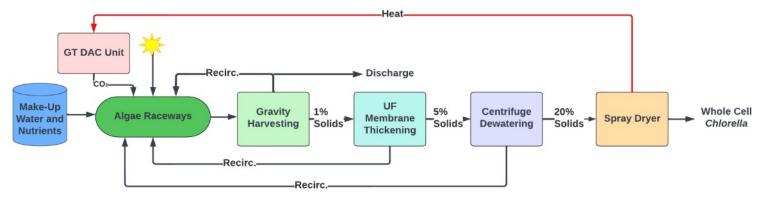
<u>Future experimental setup</u> -85 mL automated PBR configured to control pH at different alkalinities

Assays validated to detect <u>active</u> carbonic anhydrase at levels required to increase air- CO_2 flux to target levels (Task 6)

Cell wall-deficient *Chlamydomonas* mutant hypothesized to release CA into the culture media and increase air-CO₂ flux. Cultivation and assay application underway.

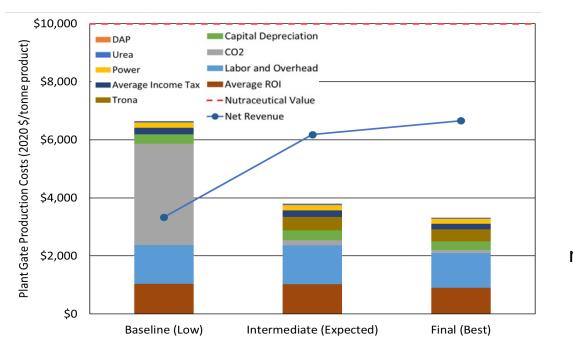
Plant & Cell Physiol. 24(2): 255-259 (1983)

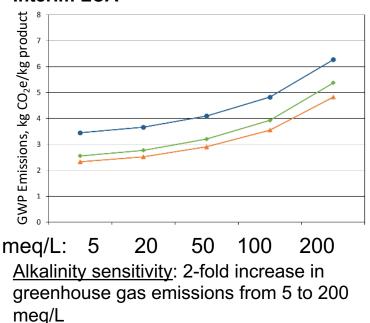
Carbonic Anhydrase in Chlamydomonas reinhardtii I. Localization


Donald L. Kimpel¹, Robert K. Togasaki¹ and Shigetoh Miyachi²

 Department of Biology, Indiana University, Bloomington, Indiana 47405, U.S.A.
 ² Institute of Applied Microbiology, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

Most of the carbonic anhydrase (CA) activity was released into the growth medium, when a cell wall-deficient mutant strain of *C. reinhardtii* was cultured under low CO_2 conditions. Treatment of wild-type cells carrying high CA activity with a gametic wall-lysing enzyme resulted in the release of the CA activity into the medium. Both data indicate that the majority of CA activity in *C. reinhardtii* is located outside the plasmalemma, either in the periplasmic space or attached to the cell wall.


Process model is based on near-term production of a whole cell *Chlorella* neutraceutical product



TEA Parameter	Baseline	Intermediate	Final					
CO ₂ Source	Merchant CO ₂	GT DAC	GT DAC					
Chlorella productivity (gmd)	9.2	9.2	10.4					
CO ₂ utilization efficiency	50%	75%	75%					
Alkalinity (meq/L)*	5	50	50					
CO ₂ CAPEX (\$/tonne CO ₂)	-	Not Dis	sclosed					
CO ₂ OPEX (\$/tonne CO ₂)	1,000	Not Disclosed						

*Results are presented for 50 meq/L, but varied from 5, 20, 50, 100, and 200 meq/L in sensitivity analysis)

In locations where CO₂ is expensive, efficient use of DAC-CO₂ halves minimum biomass selling price

Significant decreases in biomass production costs – targeted via shifting to more productive strains and reductions in CO_2 cost – is needed for commodities

Impact: Deep industry engagement between leading domestic air-CO₂ supplier (GT) and algal producer (Cyanotech)

<u>Near Term</u>

- Produce high value products in locations where existing CO₂ supply is limited
- Justify DAC scale-up to meet carbon requirements of Cyanotech main farm

Longer Term

- Justify expansion into lower value, larger markets via reductions in DAC-CO₂ costs and increases in biomass productivity
- Apply strain optimization framework to other CO₂ sources

Summary: An integrated, coordinated approach for producing algal commodities from air-CO₂

- **Completed design for GT-DAC pilot** to provide 1-2 kg air-CO₂/hr. Fabrication underway.
- GT-DAC infrastructure requirements coordinated with Cyanotech Engineering Team. Site is ready.
- Established framework to define outdoor pond conditions that meet CUE targets.
- Evaluated 20 alkaliphilic Chlorella strains in the lab; downselected to 4 for outdoor testing.
- Outdoor productivity met targets for commercial production of a high-value whole cell product.
- Consistent growth observed by incorporating dilute bleach additions, but under conditions that did not meet CUE targets; trials underway to evaluate conditions compatible with pest control and high CUE
- Top performing strains from Cyanotech **successfully revived at PNNL**, culture media improvements implemented at Cyanotech. Existing strain screening equipment modified to control pH.
- Validated an assay to identify presence/absence and relative levels of carbonic anhydrase; Cultivation of strains hypothesized to release CA underway
- Experimental trials guided by TEA/LCA: alkalinity levels above 50 meq/L increase cost, and more significantly, GHG footprint.

Timeline

DOE

Funding

Project

Cost

Share

• BP1 start: 10/2020; BP2: 7/2021 – 12/2022

FY22

Costed

\$490,175

\$290,870

• End: 12/31/2023

Project Goals

1. Demonstration of a path forward for large-scale microalgae production in the US, through provision of air-CO₂ via Direct Air Capture (DAC) with affordable capital and operating cost and favorable environmental footprint for commodities production.

2. Evaluation of processes for providing air-CO₂ directly to algal cultures through their metabolic processes to establish the trade-offs between the costs savings and inevitable reductions in biomass productivity.

End of Project Milestones

Operation of DAC pilot unit over 2,000 hrs; projected DAC-CO₂ costs <\$350/Mg CO₂

Proof-of-concept for endogenous CA production and flux enhancement

TEA/LCA outcomes supporting progression to demonstration-scale

Alkaliphilic *Chlorella* biomass productivity exceeding 10.5 g AFDW/m²-day at a CUE >75%

Projection of 15% improvement in biomass productivity under optimized conditions

Greater than 95% of biomass meeting product quality specifications

Project Partners

TRL at Project Start: 4

TRL at Project End: 6

 Global Thermostat Northwest National Laboratory

Pacific

Total Award

\$1,999,881

\$528,913

Funding Mechanism

DE-FOA-0002203; Topic Area 3: Algae Bioproducts and CO₂ Direct-Air-Capture Efficiency (ABCDE)

Cyanotech