DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

April 4, 2023 Advanced Algal Systems

ASU's DAC polymer-enhanced cyanobacterial bioproductivity (AUDACity)

Project #: DE-EE0009274 DE-FOA-0002203: FY20 Bioenergy Technologies Multi-Topic FOA Topic Area 3: Algae Bioproducts and CO₂ Direct-Air-Capture Efficiency (ABCDE)

Wim Vermaas

Foundation Professor School of Life Sciences Arizona State University

FOA Goals

Metrics	Unit	Minimum	Stretch
Algal biomass revenue potential Algal biomass quality for downstream testing	\$ per ton harvested algae biomass	25% increase from applicant's baseline*	50% increase
	% meeting fuel and product(s) specifications	<10% out of specification	<5% out of specification
Algae areal productivity	g/m²/d	Increase productivity 10% over applicant's baseline with CO ₂ from DAC	Increase productivity >10% over applicant's baseline with CO ₂ from DAC
DAC CO ₂ delivered and utilized by algal system	% of DAC CO ₂ delivered and utilized by algal system	20% increase over applicant's baseline	>20% increase over applicant's baseline
Cost** of CO ₂ delivered to algal system	\$ per volume of CO ₂ delivered to the algae system from DAC versus non-DAC	10% decrease in the cost of CO ₂ delivered via DAC versus non- DAC CO ₂ delivery	>10% decrease in cost of CO ₂ delivered via DAC versus non- DAC CO ₂ delivery

What we are doing

- Increase revenue potential >>25% over baseline (phycocyanin, methyl laurate)
- Increase biomass quality (>10% PC and methyl laurate by dry weight)
- Increase productivity >>10% over baseline (33 to 100 mg/L/d)
- Increase % of DAC CO₂ >>20% over baseline (from ~10% to ~100% DAC CO₂)
- Decrease cost of CO₂ delivered
 >10% vs non-DAC CO₂ delivery
 (reduce DAC cost from \$160/tonne
 to \$50/tonne) using water to
 release captured CO₂

*Applicant's baseline must include valorization pertinent characteristics such as moisture content; ash content; lipid, protein, carbohydrate content; cultivation media; nutrients; others **Cost must be presented without incentives or tax credits.

Project Overview

Challenges with existing CO₂ delivery approaches

- High cost and complexity in transporting concentrated CO₂ from industrial waste streams to the algae cultivation site
- 60–80% of CO_2 is lost when delivered by sparging
- CO₂ captured from air directly into ponds requires very high pH and alkalinity not suitable for most algal strains
- Direct air capture (DAC) of CO₂ requires energy intensive thermal or pressure swings to release CO₂ from sorbents

Also: Biomass cultivation and processing costs are too high to support fuel as the sole product

Moisture-driven direct air capture (DAC)

 Anion exchange resins used for water treatment also reversibly capture CO₂ when dry (≤ 50% relative humidity) and release it when wet

Project Overview

Technology Summary

- Use DAC polymers to passively capture CO₂ from air; deliver CO₂ directly into culture medium to grow cyanobacteria
- Engineered cyanobacteria excrete (methyl) laurate (chemical, fuel) and produce phycocyanin (blue colorant)

Advantages

- Low projected cost <\$50/tonne CO₂ released into the culture medium from low-cost polymers.
- **Carbon-neutral** feedstock with all CO₂ from air to produce sustainable fuels and products.
- CO₂ harvested onsite to eliminate transport costs, risks and life cycle challenges.
- pH 8–10 supports cyanobacterial growth.
- Salt and fresh water. Polymer designed to resist salts in fresh, brackish and salt water.
- Sustainably produced (methyl) laurate from cyanobacteria instead of oil palm and coconut.
- **Phycocyanin quality.** Phycocyanin is tested for improved pH, light and temperature stability.

Potential Challenges

- Develop an effective DAC polymer
- Biocompatibility of DAC polymers with microalgae
- Limited current phycocyanin market size due to limited thermostability

1. Technical Approach

Workplan and Key Milestones

Month = M

- Task 1. Develop polymers with improved CO₂ capture and release kinetics, fouling resistance, decreased inactive anion binding, reduced drying times, and process polymers into flexible, porous capture materials
 - **DAC polymer** captures $\ge 0.4 \ \mu$ mol CO₂ s⁻¹ g⁻¹ polymer and $\le 1 \ h$ cycle time in lab (M24)
- Task 2. Test biocompatibility of DAC polymers and use AUDACity systems to cultivate biofuel- and high-value product-producing cyanobacteria at lab scale
 - Go/No-Go: AUDACity used to deliver CO_2 from air at a rate of $\geq 6.4 \text{ mg } CO_2 \text{ L}^{-1} \text{ h}^{-1}$ to cultivate biofuel-producing Synechocystis at lab scale achieves a total productivity of $\geq 50 \text{ mg } \text{L}^{-1} \text{ d}^{-1}$ with all CO_2 sourced from air (M18)
- Task 3. Develop AUDACity systems to screen DAC polymer performance (M6), develop a continuous belt design (M12), and collect and deliver CO₂ to cultivate *Synechocystis* in the lab (M15) and outdoors (M33)
- Task 4. Cultivate cyanobacteria outdoors in 4 m² covered ponds using AUDACity to deliver CO₂ and assess productivity and biomass composition (M27, M33).
- Task 5. Develop techno-economic and life cycle assessments to guide research (M21, M36).

Project Success Criteria

- Pathway to ~\$50/tonne CO₂ delivered by AUDACity
- Higher efficiency than sparging; 100% of CO_2 from air
- \geq 10% biomass productivity from increased C_i
- ≥ 25% revenue potential from (methyl) laurate, phycocyanin

2. Progress and Outcomes

DAC Polymer Preparation

Methacrylate-based DAC polymer synthesis

CO₂ capture

[2-(methacryloyloxy)ethyl] trimethylammonium chloride solution (TMAEMA-CI) Crosslinker

di(ethylene glycol) dimethacrylate (DEGDMA)

Hydrophobicity

Photo-initiator

2,2,2-trifluoroethyl methacrylate (TFMA)

2,2-dimethoxy-2phenylacetophenone (DMPA)

Cured with UV (365 nm, 2 mW) light for 6 min

DAC Polymer Performance

Sorbent CO_2 release into a 10 mM K_2CO_3 solution

- 0.5 g of sorbent particles loaded in a 25-µm-mesh bag and submerged into 50 mL of 10 mM K₂CO₃
- Sorbent was previously used to support *Synechocystis* growth

Sorbent drying and CO_2 loading in the wind tunnel

outdoor environment (M24).

• 1.6 g sorbent particles attached to adhesive sheets

Deliverable 1.3.4: sorbent captures $\geq 0.4 \mu mol$

 $CO_2 \text{ s}^{-1} \text{ g}^{-1}$ sorbent and $\leq 1 \text{ h cycle time in}$

- Submerged in water for 30 minutes to fully unload
- Sorbent drying/loading measured at 2.5 m/s, 22 °C

CO₂ release

Cultivation with DAC polymers

Milestone 2.2.1 [Go/No-Go]:

AUDACity is used to deliver CO₂ from air at a rate of \geq 6.4 mg CO₂ L⁻¹ h⁻¹ to cultivate biofuel-producing *Synechocystis* at lab scale with a total productivity of \geq 50 mg L⁻¹ d⁻¹ with all CO₂ sourced from air (M18).

Use methacrylate-based powdered sorbent in 25- μm -mesh bags or three Excellion sheets

1. Add polymer for 30 min Wash and dry overnight

2. Cultivate for 24 h

Culture with CO₂ provided by polymer

Cultivation: 70-80 $\mu mole$ photons $m^{\text{-2}}\,\text{s}^{\text{-1}}$ shaking at 100 rpm, 30 °C

Powdered sorbent: 120 mg L⁻¹ d⁻¹ (3 d) **Excellion sheets:** 115 mg L⁻¹ d⁻¹ (5 d)

Adaptive laboratory evolution (ALE)

Evolving a polymer-tolerant Synechocystis strain

- Cultivate three Synechocystis cultures in parallel with increasing DAC polymer amount (0.5, 0.75, 1.0 g) and exposure time (10, 20, 30, 40 min)
- Add 20 mM KHCO₃ every 2 days to focus selection on polymer tolerance
- Sub-culture in triplicate after two doublings.
- Maintain three separate parallel cultures to determine common genetic changes.
- Polymer most toxic during first use

Adaptive laboratory evolution (ALE)

Key findings are that ALE-derived strains:

- Have a reduced lag phase
- Grow to higher densities
- Tolerate longer exposures to the polymer

AUDACity 1g system

Validate system using commercial Excellion strips

Automated data collection facilitates longer-duration tests for better material lifetime and performance stability projections.

1 g System Excellion Test Run

CO₂ release kinetics in 1 mM KHCO₃ (no cells)

- ~21 min per full rotation of Excellion belt
- ~95% of expected initial performance

Slower delivery of CO₂ the second time around: insufficient time to dry Excellion belt. We have increased belt size to improve drying between immersions into culture medium.

Cultivation:

- CO_2 delivery from Excellion reduced over time due to exchange of HCO_3^- for NO_3^- in BG11
- Excellion performance restored after soak in KHCO₃
- Some background CO₂ delivery observed (not from belt); this is being remedied with a partial cover

Phycocyanin Co-Product Extraction

- Up to 20% of dry biomass in cyanobacteria; value from \$1-200/kg depending on purity
- Natural alternative to chemical dyes in food, beverage and cosmetics
- Low thermal stability: 60% loss after 1 min at 100 °C or 30 min at 80 °C

Martelli, G. et al. Thermal stability improvement of blue colorant C-phycocyanin from *Spirulina platensis* for food industry applications. *Process Biochemistry* **2014**, *49*, 154-159

Phycocyanin (PC) Purity and Thermostability

PC yield and purity during extraction

Synechocystis sp. PCC 6803

PC thermostability: dry vs wet

We are developing strategies to encapsulate PC to keep it dry and maintain color upon heating

Techno-Economic and Lifecycle Analysis

Deliverable 5.1.2: Engineering process model accurately captures the energy and mass of the biorefinery concept (M21).

Cited Models

- 1. HTL Model (Chen et al., 2021)
- 2. Cultivation Model (Davis et al., 2016)
- 3. Methyl Laurate Extraction Model (Beattie et al., 2022)

New Models

- DAC Model
- Phycocyanin Extraction Model

- 1. Chen, P. H., & Quinn, J. C. (2021). Microalgae to biofuels through hydrothermal liquefaction: Open-source techno-economic analysis and life cycle assessment. Applied Energy, 289, 116613.
- 2. Davis, R., Markham, J., Kinchin, C., Grundl, N., Tan, E. C., & Humbird, D. (2016). *Process design and economics for the production of algal biomass: algal biomass production in open pond systems and processing through dewatering for downstream conversion* (No. NREL/TP-5100-64772). National Renewable Energy Lab.(NREL), Golden, CO (United States).
- 3. Beattie, A., Vermaas, W., Darzins, A., Holland, S. C., Li, S., McGowen, J., ... & Quinn, J. C. (2021). A probabilistic economic and environmental impact assessment of a cyanobacteria-based biorefinery. *Algal Research*, *59*, 102454.

Techno-Economic and Lifecycle Analysis

- Land
 Taxes
 HTL & Upgrading
 Methyl Laurate Extraction
 Phycocyanin Extraction
 Dewatering
 Cultivation
 Phycocyanin Extract Sales
 - Cost-competitive fuels are possible with moderate-value co-products
 - In situ methyl laurate harvesting improves fuel yield 2.2-fold over green algae (from 113 to 259 GGE/tonne).
 - The minimum co-product selling price is \$6.29/kg, which is equivalent to whey protein concentrate
 - The actual value of phycocyanin is much higher, particularly as it becomes much more thermotolerant

Risk Analysis

Demonstrated or Perceived Risk	Mitigation Strategy
1. Biological and inorganic (salt) fouling of the DAC polymers	1. Incorporate zwitterions within or apply hydrophobic coatings to surface of the DAC polymer
2. DAC polymer toxicity to cyanobacteria	2. Change polymer chemistry and generate tolerant strains
3. Methyl laurate sticks to the hydrophobic DAC polymer	3(a). Use perfluorinated or silicone functionality that repels both water and oil. 3(b). Run DAC polymer through organic solvent to harvest methyl laurate continuously
4. DAC polymer has insufficient CO ₂ transport rates	4. Increase DAC polymer porosity to increase the surface area for CO ₂ capture and to quickly release water to accelerate drying
5. Failure to meet economic and environmental targets	5. TEA/LCA to identify performance targets and integration requirements to ensure the system meets targets

Impact on the State-of-Technology if successful

- Reduce cost of CO₂ delivered to microalgae (projected <\$50/tonne CO₂) without pipelines or fossil inputs
- Reduce carbon intensity of algae fuels and products with all CO₂ sourced from air
- Support cultivating a wide range of algae and cyanobacteria by operating at somewhat alkaline pH and in saltwater or freshwater medium
- Establish biorefinery model with cost-competitive fuel product subsidized by high- and medium-value co-products (phycocyanin, protein, methyl laurate)
- Reduce cost and increase stability/value of phycocyanin to enable larger food and beverage markets
- Enable continuous harvest of excreted fuel/chemicals (methyl laurate) to reduce harvesting costs

Summary

- Synthesized and commercial DAC polymers deliver 90% of their CO₂ captured from air into cultivation medium within 15 minutes and load again with CO₂ from air to 90% of their capacity within 20 minutes without any external energy inputs.
- Lab-scale cultivation with AUDACity at a biomass productivity of 115–120 mg L⁻¹ d⁻¹ using synthesized DAC polymer powders contained in mesh and commercial anion exchange resin sheets.
- DAC polymer toxicity is significantly reduced after soaking in water and after 10–15 rounds of adaptive laboratory evolution
- Phycocyanin 1) can be efficiently extracted at high purity, and 2) has very high thermal stability when dry (>100 °C), thus providing an avenue to increased phycocyanin use/value.
- Cost-competitive fuels are possible with a modest-value phycocyanin co-product (\$6.29/kg).
- Methyl laurate harvesting improves fuel yield 2.2-fold (259 GGE/tonne) vs green algae.

Quad Chart Overview – ASU Vermaas AUDACity

Timeline

- Project start date: Oct 1, 2020
- Project end date: Sept. 30, 2023

	FY22 Costed	Total Award
DOE Funding	\$622,040	\$1,999,051
Project Cost Share	\$96,761	\$506,343

TRL at Project Start: 2 TRL at Project End: 5

Project Goal

Develop an AUDACity system that efficiently delivers direct air captured (DAC) CO₂ directly to photosynthetic microbes using moisture-driven sorbents and demonstrate it in outdoor raceway ponds.

End of Project Milestone

Operation of AUDACity delivering CO_2 from air to Synechocystis with a productivity $\geq 10\%$ over baseline without sparging CO_2

Funding Mechanism

DE-FOA-0002203: FY20 Bioenergy Technologies Multi-Topic FOA

Topic Area 3: Algae Bioproducts and CO₂ Direct-Air-Capture Efficiency (ABCDE)

Project Partners

- Arizona State University (ASU)
- Sustainability Science LLC

Feedback from Intermediate Verification (Apr. 2021)

- Spend more time at lab scale (1 g/day) before scaling to 100 g/day system; the team has made significant improvements to the 1 g/day system
- Spend more time investigating DAC polymer toxicity; the team found the synthesized DAC polymers were less stable under alkaline conditions
- Start evaluating outdoor cultivation of cyanobacteria ASAP; the team has been working with AzCATI throughout the project to identify conditions for scaling cyanobacteria outdoors
- Cultivate at pH above 8 to increase carbon utilization efficiency (CUE); the team is evaluating more alkaline pH to improve CUE and mitigate potential contamination