DOE Bioenergy Technologies Office (BETO) 2023 Project Peer Review

Improving the Productivity & Performance of Large-Scale Integrated Algal Systems for Wastewater Treatment & Biofuels

April 3, 2023

Advanced Algal Systems

Lance Schideman, PhD, PE University of Illinois, Urbana-Champaign Illinois Sustainable Technology Center

UF FLORIDA



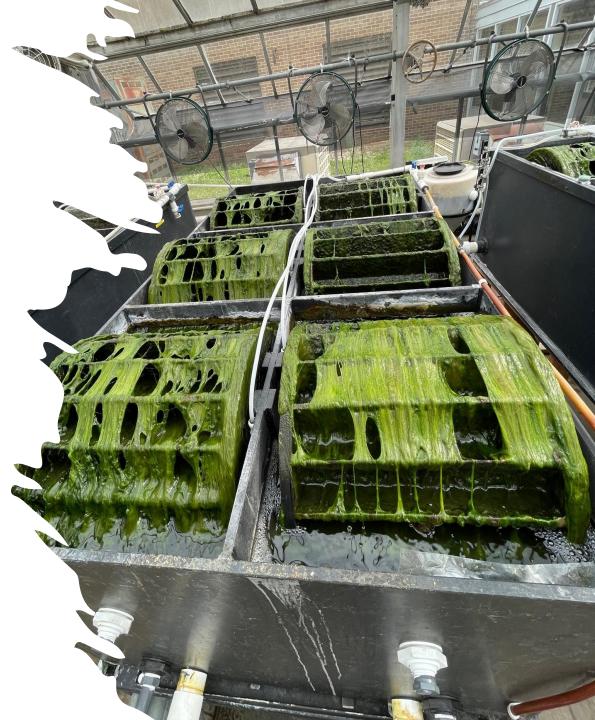
This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Overview

- Our project integrates advanced algal wastewater treatment with maximized biofuel production
 - Wastewater treatment fees pay for algae cultivation
 - This renewable feedstock is currently not being utilized for biofuel production
- Researching several methods to improve quantity & quality of mixed algal biomass at pilot- and full-scale
- DE-FOA-0002029, 5 years, \$3,764,553 total value, currently starting Budget Period 3 (BP3)
- BETO research priorities addressed:
 - Aft-B (Sustainable Algae Production): Beneficial reuse of waste resources for growing algal biomass
 - Aft-C (Biomass Genetics & Development): Bioaugmentation and Endoreduplication
 - Aft-J (Resource Recapture/Recycle): Membrane separation & recycle of organics from the aqueous by-product of hydrothermal liquefaction conversion

Approach-Overview

Pilot Scale


- Algaewheel demo w/ 20g/m²/day productivity baseline
- Test bioaugmentation, endoreduplication, optimized harvesting, adsorbents & increased WW loading
- Integrate proposed strategies to show 50% biomass productivity improvement over baseline (30g/m²/day)

Separation & Recycling of HTL Aqueous Product

- Bench-scale nanofiltration and recycle experiments

Field demonstrations: Illinois & Florida

- Successful pilot-tested strategies implemented at a full-scale wastewater facility in two regions to show >25% productivity increase & >10% conversion yield
- Final Project Goals
 - Field tests with >50% increase in biomass productivity and >20% increase in biocrude conversion yield
 - LCA/TEA evaluation of integrated full-scale systems

Approach: Proposed Technologies

Bioaugmentation

Azospirillium and Pseudomonas

Pilot scale implementation moving to full scale implementation

Endoreduplication

UBV, Dessication, Salt on 3 species Laboratory scale:

 Flow cytometry, dry weight, cell size

Adsorbents

Pilot scale integration moving to full scale integration

Granulated activated carbon and clinoptilolite

Automation

Pilot scale operation with programmed air flow rates

Approach: Project Timeline (BP2 Extended by 1 yr)

	Task Description	BP1	BP1 BP2			9- 	BP3					BP4					
Task #	<i>4</i>		Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Q11	Q12	Q13	Q14	Q15	Q16
1	Initial validation	Q	Ø														
2	Project management																
3	Pilot-scale system setup and optimization of HRT, harvesting frequency and temperature			7	r	7	r	7	K								
4	Stress-induced endoreduplication)	ĸ								
5	Bioaugmentation of growth promoting bacteria							7	k								
6	Integration of mixed adsorbents							1									
	Optimizing nutrient supply and light-exposure frequency by dynamic control of influent flow and aeration rate								k		We	are	e h	ere	!		
8	Seperation and recycing of HTL-Aq		1					,		7/							
9	Interim TEA and LCA							Ø		5							
10	Field demonstration at a northern US site									7	r			C	Ø		
11	Field demonstration at a southern US site											7	r	6	Ð		
12	Final Technical Economic analysis															7	7 6
13	Final Life cycle assessment																7
	★Milestone 🔂 Go/No Go		Verifi	cation		Bench	-Scale	Exper	iment		Pilot-S	Scale T	est		Full-So	cale Te	st

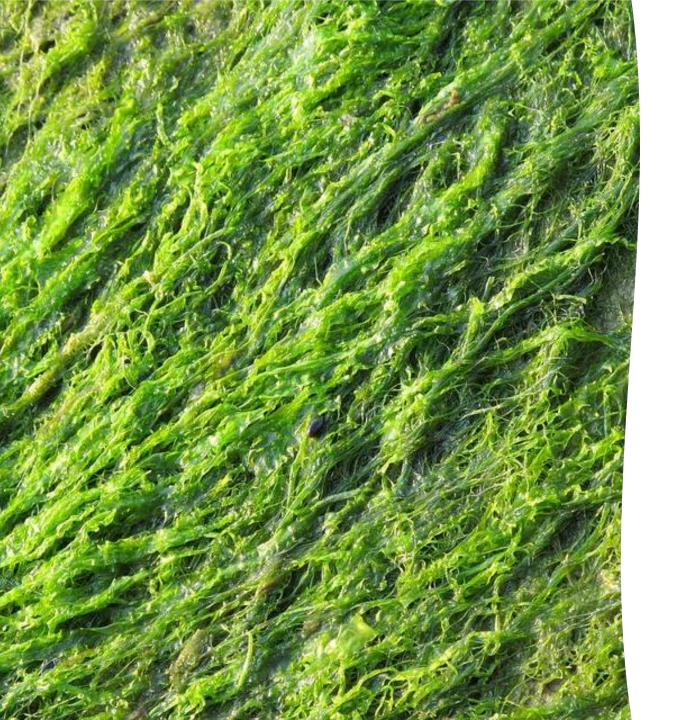
Approach: TEA & LCA

- Goals:
 - Primary goal to develop a process model to compare Algaewheel to conventional wastewater treatment (activated sludge) and raceway ponds used for algal wastewater treatment
 - Evaluate impact of biomass productivity improvements on cost
 - Interim target to demonstrate \$188/ton biomass
- TEA/LCA challenges:
 - Lack of specific data for process modeling and cost or life-cycle inventory data

Approach: Key Risks, Mitigation, & Challenges

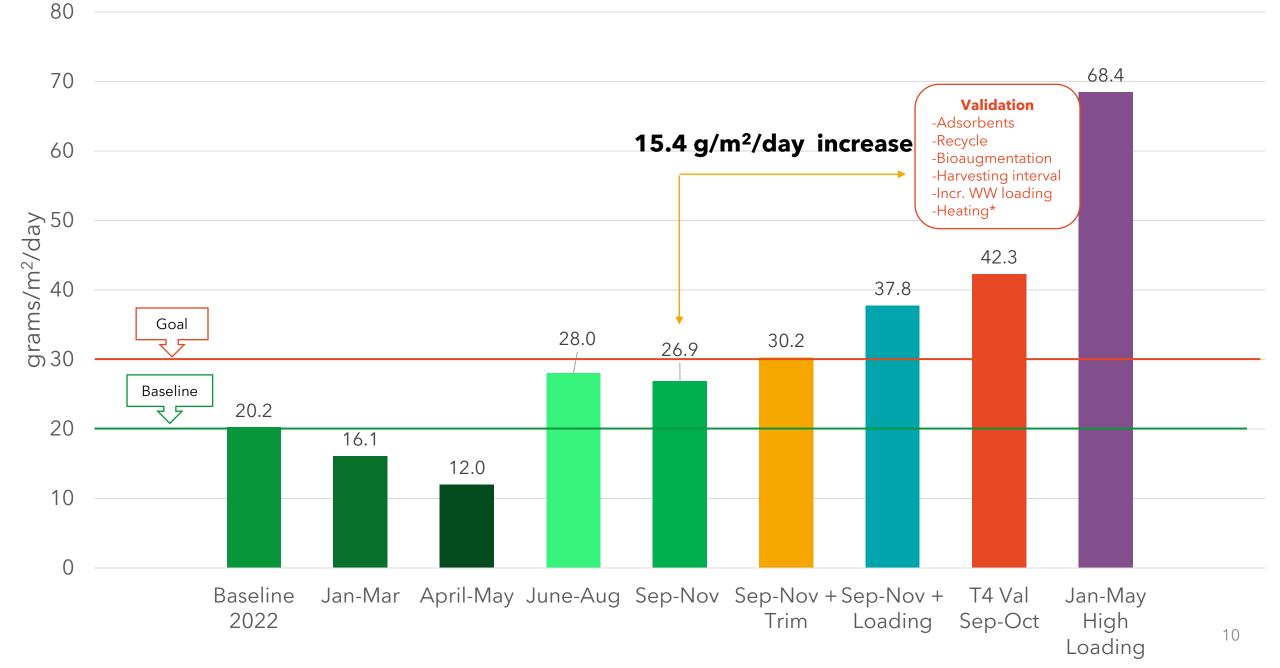
- Risk: Implementation of treatments could harm effluent water quality
 - Mitigation: Treatments are chosen that have proven to be positive or neutral on water quality at pilot scale. Full-scale treatments occur in 1 of 6 parallel trains at a time to dilute out any unforeseen negative affects.
- Risk: Bioaugmenting bacteria are inhibited by contaminants in wastewater
 - Mitigation: Grow bacteria in media separately, acclimate bacteria to wastewater in advance, co-treat with adsorbents to reduce contaminants, utilizing *Pseudomonas denitrificans* which is common in wastewater.
- Challenges: Timeline and biological system variability, data collection points weekly, and biomass harvesting is labor intensive at pilot-scale.

Approach

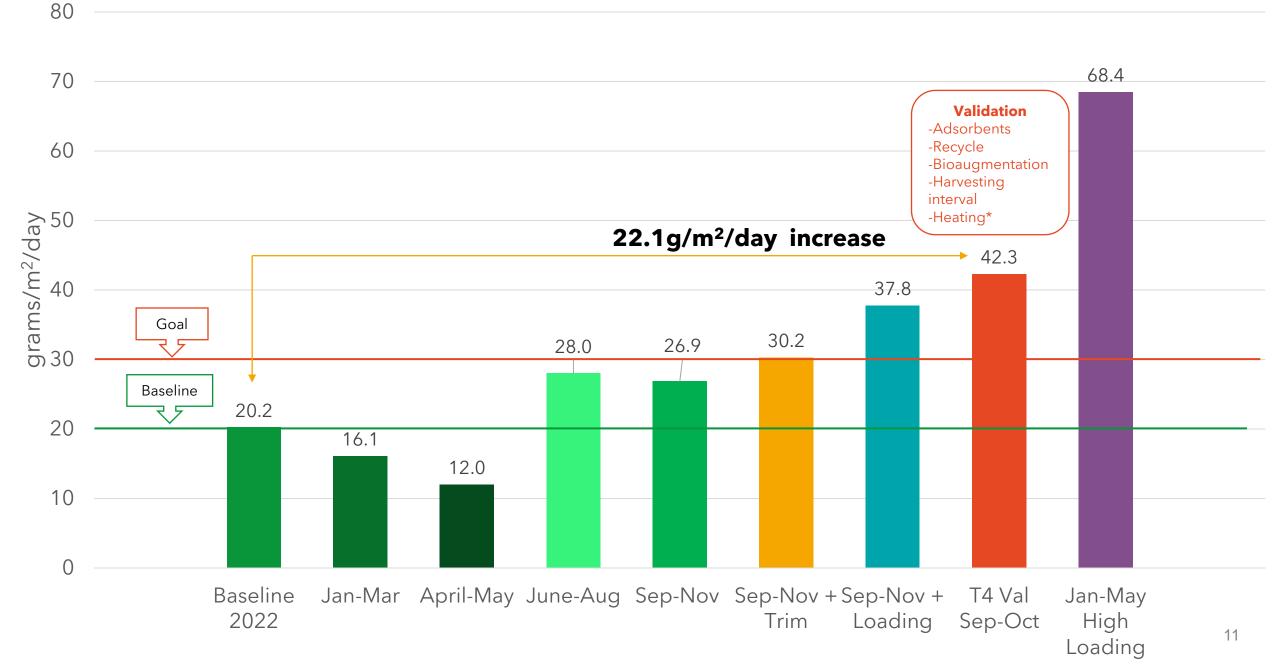

G/NG-2 Integrated pilot-scale test showing >50% increase of baseline productivity, with <25% ash, and >20% oil conversion yield increase.

G/NG-3 Integrated field scale test showing >50% productivity increase, and >20% oil conversion yield increase

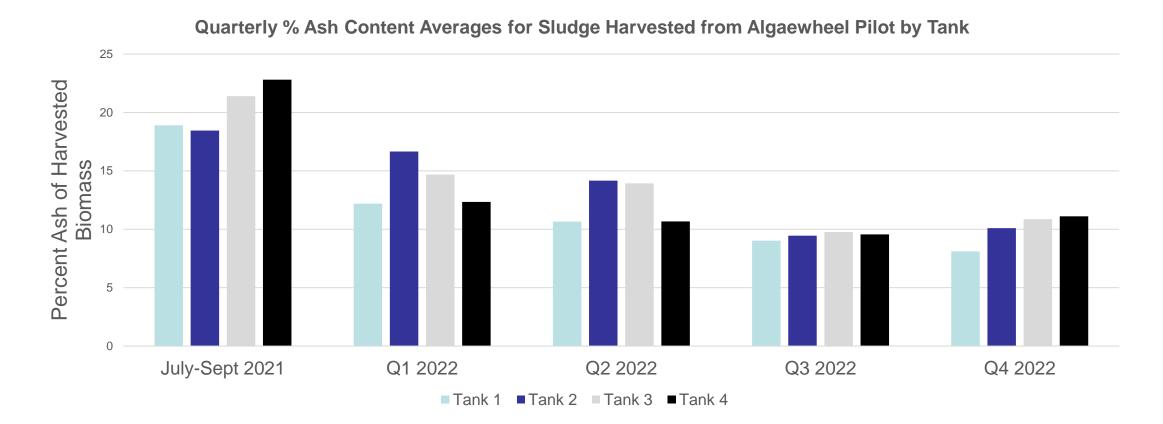
G/NG-4 Final evaluation of proposed technologies by TEA and LCA



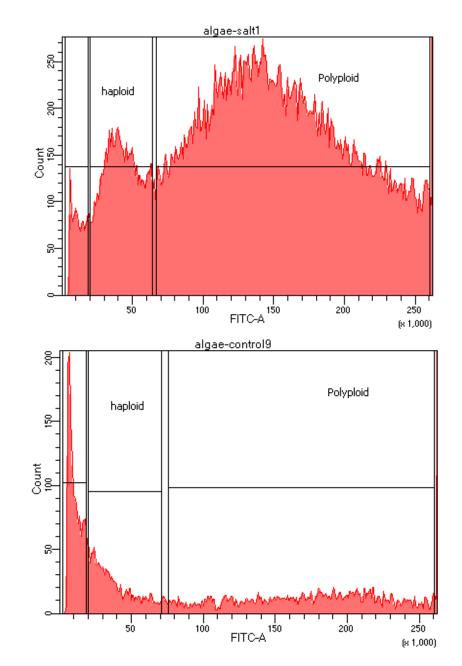
Progress and Outcomes


Successfully completed G/NG-2 for BP2

- G/NG 2: Integrated pilot-scale test showing >50% productivity increase, with <25% ash, and >20% oil conversion yield increase.
 - Increased productivity from baseline of 20 g/m²/day to 42 g/m²/day with implemented treatments
 - Adsorbents, Bioaugmentation, Enhanced Harvesting, Heating, Increased WW Loading, Recycling
 - Ash content reduced from 39% to 11%
 - Increased oil conversion from 23% to 40%


CIPA Productivity 2022

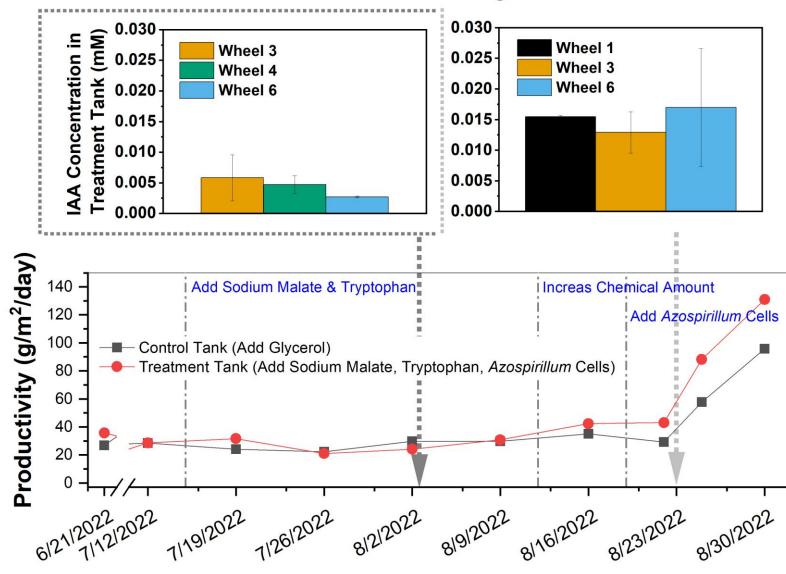
CIPA Productivity 2022



Improved Biomass Quality- Reduced Ash Content from 18% in 2021 to 12% in 2022

Progress and Outcomes-Endoreduplication

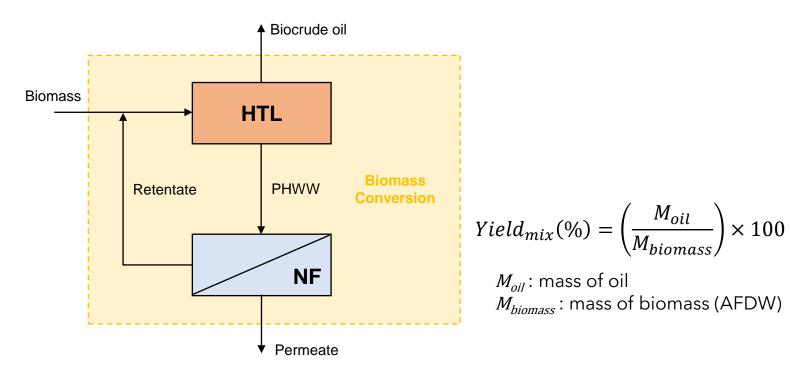
- Successfully induced endopolyploidy in *Ankistrodesmus sp.* and *Chlorella vulgaris* using salt treatment
 - Confirmed by cell sorting after fluorescent nucleus staining
- UVB also induced C. vulgaris endopolyploidy
- Desiccation did not work in any trials
- Presently working on tradeoff between cell size and total biomass quantity

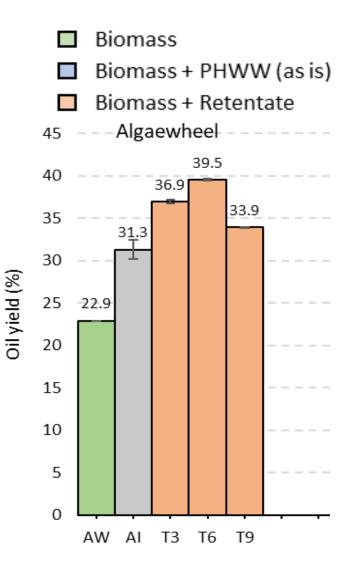


Ankistrodesmus with and w/o 0.1M NaCl treatment 13

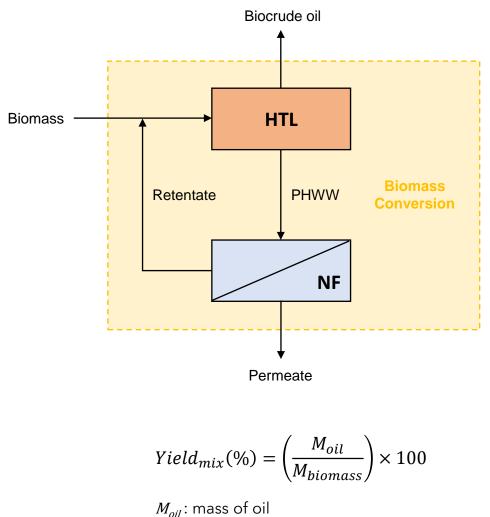
Progress and Outcomes: Bioaugmentation

 Addition of *Azospiriullium* to elevate the plant hormone IAA, yielded a >20% increase in biomass productivity

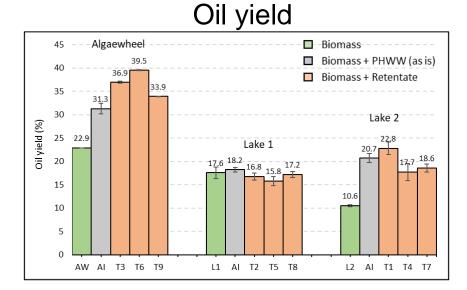

• Bioaugmentation with *Pseudomonas* to produce vitamin B12 showed mixed results

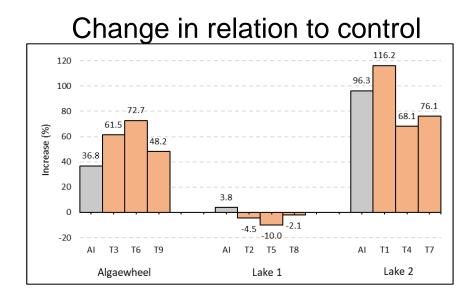


IAA Tested 3-4 Hours After Bioaugmentation


Progress and Outcomes: HTL Biomass Conversion

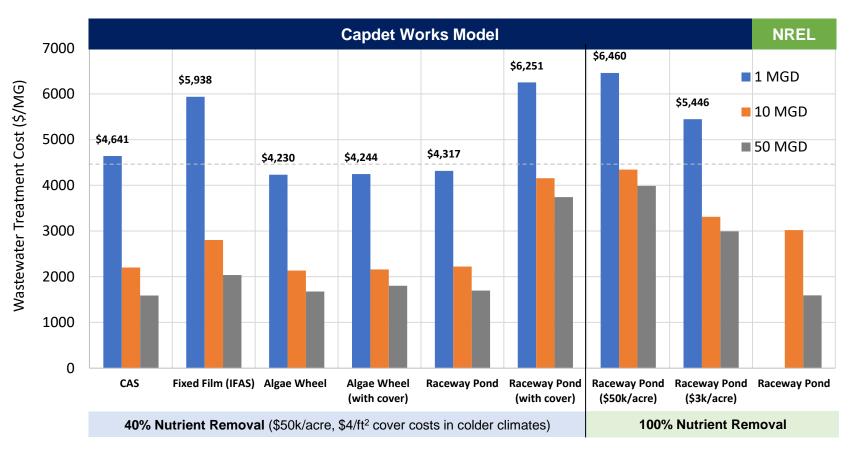
- Developed novel nanofiltration (NF) process to recover concentrated organics from posthydrothermal wastewater (PHWW)
- Recycling NF retentate increased HTL oil yield from 22.9% to 39.5% (an increase of 73%)
- NF also allowed separation of N from organics





Progress and Outcomes: Biomass conversion

 $M_{mixture}$: mass of biomass (AFDW)



Start of BP3: Field Demonstrations in Two Climatic Regions

- Initial Milestone for each site: >25% productivity increase and >10% oil conversion yield increase
- G/NG 3: Integrated field test showing >50% productivity increase and >20% oil conversion yield increase
- Currently planning implementation of enhanced productivity treatments for first field demonstration site
 - Adsorbents, Bioaugmentation, Enhanced harvesting, Heating, Increased WW loading and Recycling
 - Northern IL residential subdivision wastewater plant treating 38,000 gal/day
- Second field-scale demonstration to occur in Florida

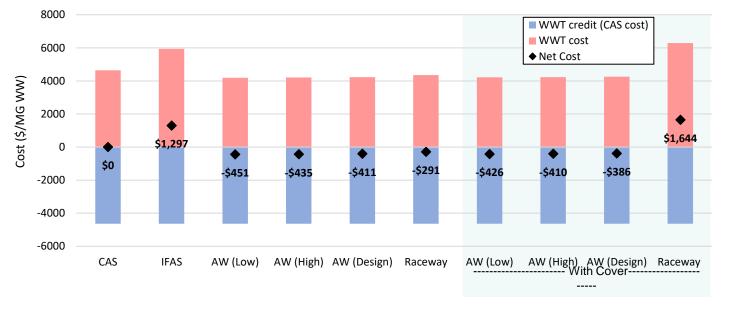
LCA/TEA Comparison of Full-scale Wastewater Treatment Costs

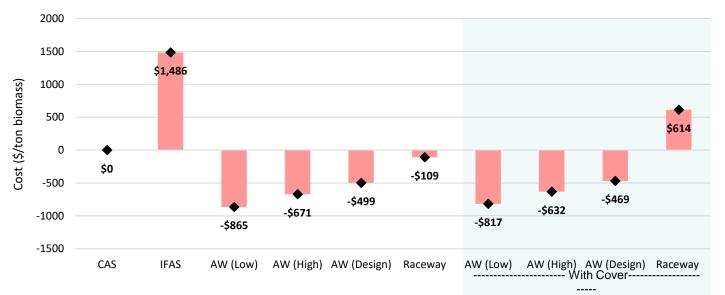
- Algae Wheel cost at 1 MGD size is significantly less than Conventional Activated Sludge (CAS)
- Algae Wheel land requirements are slightly more than CAS
- Algae Wheel cost at 1 MGD size is slightly less than Raceway Ponds
- Algae Wheel land requirements are much less than Raceway Ponds
- 10 MGD Algal Raceway Pond costs by NREL similar to TEA estimates with same design assumptions

	Land Area (acre)	1 MGD	10 MGD	50 MGD
al	CAS	11	20	47
	Fixed Film (IFAS)	11	20	47
	Algae Wheel	11.1	20.4	54
	Raceway (40%)	30.9	218	1,042
	Raceway (100%)	61	518	2,542

Key CapdetWorks model assumptions:

- 40% nutrient removal (or discharge standards)
- \$50k/ac land costs (Typ. for AlgaeWheel sites)
- Cover required in colder climates for yearround operations (\$4/ft²)


Key NREL model assumptions:


- 100% nutrient removal assumed
- Addition of CO₂ required for 100% nutrient removal
- Land cost assumed @ \$3k/ac (Davis et al, 2016)
- High Content Protein Algae: 25 g/m²/day
- NREL assumed WWT Credit of \$4500/MG

TEA/LCA- Biomass Production Cost and Net Cost (1 MGD)

Algae Wheel (AW) Biomass Productivity Rates (g/m²/day)	Low	High	Design
Small Wheel (0.45 m dia)	20	70	130
Large Wheel (1.8 m dia)	78	210	392

Impact

Goal: Integrated system for algal biofuel and wastewater treatment can reduce biofuel costs <\$2.50/GGE

- Dual-use infrastructure can provide algal biomass at a negative cost
- Enhanced algal productivity can increase biomass and biofuels derived from WW treatment
- Reduced ash content enhances oil yield and improves oil quality
- Partnership with OneWater Inc. can accelerate market penetration

Summary

Demonstrated increased productivity from 20 g/m²/day to 42 g/m²/day with combined treatments at pilot-scale

Interim TEA/LCA suggests algal biomass can be produced at a net negative cost when integrated with wastewater treatment

Increased HTL oil conversion from 22% to 40% with membrane separation and recycle of organics in HTL aqueous byproduct

Field demonstrations are starting to test enhanced productivity treatments in a full-scale wastewater treatment system

Quad Chart Overview

Timeline

	FY22 Costed	Total Award				
DOE Funding	(10/01/2021 – 9/30/2022) No- cost extension for 2022: \$211,258	\$3,011,701				
Project Cost \$752,852 \$3,764,553 Share \$ \$						
TRL at Project Start: 4 TRL at Project End: 6						

Project Goal

Overall goal is to improve mixed algal biomass productivity and quality in an integrated system for wastewater treatment and biofuel production.

We aim to achieve this goal using a variety of strategies including: endoreduplication, adding adsorbents, bioaugmentation, automated flow control; increased wastewater loading, enhanced biomass harvesting and recycling of biofuel conversion by-products.

End of Project Milestone

Field scale test showing >50% biomass productivity increase and >10% conversion yield increase. Final TEA/LCA on proposed technology

Funding Mechanism

DE-FOA-0002029 Cultivation Intensification Processes for Algae

Project Partners

- OneWater, Inc.
- University of Florida
- Hannon and Associates