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Artificial intelligence (AI) holds the potential to accelerate the transition to a carbon-neutral economy and help 

achieve the technology research, development, demonstration, and deployment (RDD&D) goals set forth by the 

DOE Office of Fossil Energy and Carbon Management (FECM) in its Strategic Vision. FECM and the National 

Energy Technology Laboratory (NETL) continuously expand, maintain, and curate extensive scientific data sets 

and AI tools essential to carbon management, and they are now standing up a robust AI Multi-Cloud 

Infrastructure to enable the DOE research community to share and leverage a collection of tailored resources to 

expedite progress toward equitable and sustainable solutions. 

As one step toward prioritizing AI development activities, FECM is exploring specific roles for AI in meeting the 

top RDD&D needs identified in the Vision. This document summarizes a series of discussions in which a range of 

specialists from FECM, NETL, and the DOE Office of Science suggested potential roles for AI in Reliable Carbon 

Transport and Storage. This document should be viewed as a representative sample of the types of AI 

applications that may be needed; it is by no means a comprehensive list.   
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AI Role in Dedicated and Reliable Carbon Transport and Storage 

Achieving America’s goal of a net-zero carbon economy by 

2050 will require developing an expansive new carbon 

transport and storage industry and robust supporting 

infrastructure. This critical infrastructure must be able to 

safely transport and securely store vast quantities of 

carbon dioxide (CO2) captured at point sources or directly 

from the air. The needed technology and infrastructure 

must be deployed at an unprecedented pace and scale 

nationally and globally. Success in this undertaking is an 

essential part of addressing the climate impacts that 

increasingly threaten the safety, health, food supply, and 

economic security of our nation.   

To meet the 2050 goal, a recent study estimates that by 2030 the U.S. infrastructure for carbon storage (both on 

and offshore) will need to accommodate at least 65 million tonnes of CO2 per year—roughly the amount used by 

today’s CO2-enhanced oil recovery (EOR) industry, which has developed over 50 years. By 2050, the same study 

estimates that storage capacity will need to accommodate roughly one billion tons of CO2 annually. Storing CO2 

at this scale is likely to require at least 1,000 capture facilities, a 21,000−25,000-km network of interstate CO2 

trunk pipelines, 85,000 km of spur pipelines to supply the trunklines, and thousands of injection wells (Larson 

2020).  

Developing the necessary infrastructure within the next 20 years will require maximizing and expanding existing 

infrastructure, developing hundreds of new facilities, and discovering innovative and efficient approaches, 

including novel subsurface analysis tools, transport modes, materials, equipment, and systems. Artificial 

intelligence (AI) and machine learning (ML) are needed both to expedite development and optimize the 

performance of this critical infrastructure and its 

components. Specifically, AI holds the potential to 

accelerate progress in the foundational science and 

understanding needed to accurately assess the 

capacity and long-term integrity of subsurface 

environments, surface and subsurface mineralization 

processes, and other potential carbon containment 

resources—and to enable a highly reliable transport 

network that efficiently connects carbon sources to 

sinks. As the transport and storage industry grows, AI 

can also potentially minimize the risks associated with 

early demonstration and deployment projects and 

reduce basin-scale impacts. 

The U.S. Department of Energy’s Office of Fossil 

Energy and Carbon Management (FECM) has amassed 

extensive data on carbon storage through more than 

two decades of research in partnership with industry, 

academia, the national laboratories, and other 

research institutions (see inset). As summarized in 

Figure 1 on pages 2  ̶3 and on the following pages,  

Vision 

Establish the foundation for a successful 

carbon storage and transport industry by 

making key investments in RD&D, large-

scale transport and storage facilities, and 

regional hubs to support rapid deployment 

of carbon storage necessary to enable the 

decarbonization of the U.S. economy. 
Strategic Vision (DOE/FECM 2022)  

 

FECM Program and Other Resources 

• Carbon Storage Atlas: Estimated national storage 

resources of onshore saline formations (2015) 

• Regional Carbon Sequestration Partnership (RCSP): 

Demonstrated safe CO2 storage at seven large facilities 

• Regional Initiative: Stakeholders in four regions help 

address challenges and facilitate CCUS projects 

• CarbonSAFE: Five operating facilities help reduce 

technical risk and cost of commercial saline storage  

• SMART: Science-informed ML for Accelerating Real-

Time (SMART) Decisions in Subsurface Applications  

• Core R&D: Advancing storage site characterization, 

monitoring, modeling, and management tools 

• EDX4CCS: Refining, advancing, and deploying CS data- 

driven products to facilitate DOE/stakeholder research 

• National Risk Assessment Partnership (NRAP): Science 

-based methodology to assess carbon storage risks  

• Pipelines: The U.S. CO2 pipeline infrastructure today 

consists of more than 5,000 miles in 13 states. 

https://www.energy.gov/sites/default/files/2022-04/2022-Strategic-Vision-The-Role-of-Fossil-Energy-and-Carbon-Management-in-Achieving-Net-Zero-Greenhouse-Gas-Emissions_Updated-4.28.22.pdf
https://www.netl.doe.gov/coal/carbon-storage/strategic-program-support/natcarb-atlas
https://netl.doe.gov/carbon-management/carbon-storage/RCSP
https://netl.doe.gov/carbon-management/carbon-storage/regional-initiative-to-Accelerate-CCUS-deployment
https://netl.doe.gov/carbon-management/carbon-storage/carbonsafe
https://edx.netl.doe.gov/smart/
https://netl.doe.gov/sites/default/files/netl-file/22CM_CTS17_Rose.pdf
https://www.netl.doe.gov/sites/default/files/rdfactsheet/R-D179_0.pdf
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Figure 1. Summary of Potential AI Roles in Reliable Carbon Transport and Storage   
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Figure 1. Summary of Potential AI Roles in Reliable Carbon Transport and Storage (continued)  
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AI/ML shows promise to leverage federal, state, local, and 

industry data and accelerate progress in three main areas: 

expanding carbon storage (trapping) in the subsurface;  

locating and assessing mineralization resources; and planning 

for safe and efficient carbon transport systems. 

Carbon Storage in Sedimentary Formations 

The most mature and cost-effective option for geologic 

carbon storage today involves injecting supercritical CO2 

(sCO2) deep in the pore spaces of sedimentary rocks. The 

sCO2, which acts like a gas with the density of a liquid, can be 

stored in deep saline formations, depleted oil and gas 

reservoirs, or organic shale formations.1 Storing at a depth of 

a half a mile (800 meters) or greater ensures the temperature 

and pressure required to maintain the injected CO2 in a dense, 

supercritical state.2 Captured CO2 can also be stored in 

reactive rock formations such as basalts, in which CO2 

mineralization processes are highly accelerated. 

Suitable geologic storage formations must be sufficiently porous and permeable to ensure adequate capacity 

and injectivity and must provide at least one overlying impermeable caprock layer that serves as a seal to 

prevent unwanted vertical migration of the injected sCO2, which is less dense than other fluids in the rock pores 

(Kelemen 2019). Caprock layers are necessary to ensure that the injected CO2 is permanently trapped in the 

target storage reservoir. Since it is possible for the CO2 to seep through a leaky wellbore or an undetected 

permeable fault or fracture in the caprock (NAS 2019), candidate sites must meet rigorous federal (and state) 

regulations and be closely monitored before, during, and after CO2 injection to assess their capacity, injectivity, 

and integrity. 

Currently, the process to assess and develop a storage site can require three to ten years, depending on the 

amount and quality of relevant geological information available. In addition to meeting applicable regulations, 

assessments should follow a consistent framework, such as the Storage Resource Management System (SRMS), 

which was adapted from the industry-accepted Petroleum Resource Management System (PRMS) (IEA 2022). A 

further imperative is to proactively engage local communities in decision and planning processes to ensure 

social equity and responsible environmental stewardship.   

AI holds the potential to significantly accelerate the characterization, assessment, permitting, development, and 

operation of carbon storage sites that are safer and more efficient. For example, AI-enhanced understanding of 

subsurface structures, flows, and interactions at key interfaces will help to develop, verify, and validate tools 

and plans to expand operations at existing storage reservoirs, repurpose oil fields (both on and offshore), 

discover and analyze new storage resources, and scale information and transfer learning from specific sites to 

larger complexes, basins, and regions.  

As described below, AI and ML can help to develop the needed carbon storage capacity by improving data 

utilization and tools to assess the subsurface, provide reliable guidance on how to safely expand the capacity of 

existing sites, and accurately characterize potential new sites.   

 
1  Organic shale formations may store sCO2 as a free gas within pores and fractures or as an adsorbed component on clay or organic 

matter. The latter option will require more comprehensive geologic/petrophysical data on unconventional shale reservoirs. 
2  NETL, Carbon Storage FAQs. www.netl.doe.gov/carbon-management/carbon-storage/faqs/carbon-storage-faqs  

Sustained investment to advance the 

deployment of CO2 sequestration in deep 

sedimentary reservoirs and develop CO2 

mineralization should “lead to a deeper 

understanding of the reservoir characteristics 

from the nano- to kilometer scale, some of 

which may include: 

• Distribution of reaction products 

• Reaction rate of the minerals 

• Permeability evolution 

• Pressure build-up in the reservoir 

• Large-scale impact of chemicophysical 

processes leading to clogging or cracking 

• Effects of potential geochemical 

contamination, etc.” 

Peter B. Kelemen et al, Frontiers in Climate  
(Kelemen 2019) 

https://www.globalccsinstitute.com/news-media/insights/new-international-system-for-classifying-storage-resources-provides-further-confidence-in-ccs/
http://www.netl.doe.gov/carbon-management/carbon-storage/faqs/carbon-storage-faqs
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Improve Data Utilization and Tools to Assess the Subsurface 

AI and ML can help make sense of massive amounts of data 

(micro to regional scale) and provide a better understanding 

of subsurface environments, flows, chemistries, seals, 

hazards, and other critical factors affecting the security, 

economics, and environmental impacts of geologic carbon 

storage. In some cases, researchers may face challenges in 

gaining access to data held by private or local entities, 

handling diverse data formats and storage (legacy) media, or 

adjusting for a broad range of measurement units, methods 

(e.g., sensor type and placement), intervals, and accuracy 

levels. Where data is plentiful, AI may help identify which 

data types are most valuable for specific applications (e.g., visualizing rock layer formations, predicting sCO2 

flows, managing reservoir pressure levels/avoiding seismic events, ensuring wellbore integrity, confirming 

permanent storage suitability, or quantifying risks and uncertainties). Where data is sparse, AI and ML can help 

researchers use the available data to best advantage, fill in the gaps with high-fidelity digital twins or synthetic 

data, apply transfer learning, identify the limits of extrapolation for different subsurface environments, and help 

select new data types to improve assessment accuracy. In all cases, sufficient data must be reserved to help 

validate the accuracy of new algorithms/models (in addition to review by scientific subject matter experts). 

Leverage Data Resources: ML-developed algorithms and models often provide improved predictions when 

informed by larger volumes of relevant data and diverse data types and sources, including data that covers a 

wider range of relevant scenarios (spatial and temporal). AI/ML can bring together geologic data from a variety 

of sources (maps, reports, or logs from state, industry, or regulatory groups) and of various types (permeability, 

temperature, porosity, rock properties, pressure, etc.). Establishing the essential geological/geophysical context 

(volume, injectivity, seismic activity, seal security and/or recommended seal redundancy) can help identify 

potential new storage sites.          

To accelerate data collection, curation, and categorization, ML can effectively leverage sparse data as well as 

extract data from images using natural language processing (NLP) and computer vision. For example, the 

National Energy Technology Laboratory (NETL) has a subsurface trend analysis (STA) tool with an image-

embedding algorithm. Using NLP to communicate with such algorithms would expand this type of multi-modal 

data integration and strengthen predictive tools for the subsurface. 

ML can apply pattern recognition to massive datasets, potentially leading to near-real-time interpretation of 

field monitoring data. Models can rank the contributions of certain data types to reduce uncertainty and 

potentially avoid the misapplication of AI/ML techniques that were developed for specific physical conditions. 

Assessing the value of different data types could also improve site management by better informing critical 

performance- and risk-related decisions. Other ML models might monitor data to help match the geologic 

histories (spatial and temporal) of known sites to enable extrapolation to potential new sites, improving new 

site evaluations and operations. AI/ML models are similarly needed to rapidly extract subsurface physical 

properties from raw geophysical data to inform leak detection and/or plume conformance. Models could also 

enable near-real-time visualization (see Figure 2, SMART Initiative) of infrastructure performance (physical and 

decision space) to guide operations or detect potential failure before or in the early stages of a negative event 

(e.g., seismicity, caprock or well leakage]. 

 

“The R&D investments in new tools and 

technology to monitor underground 

activity near CO2 storage sites will help us 

minimize risk from natural events like 

earthquakes, safeguard the environment 

and water supply, and get us that much 

closer to our clean energy goals.” 

Secretary of Energy Jennifer M. Granholm  

(DOE 2021) 
 

https://edx.netl.doe.gov/offshore/tag/sta/
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Build Improved Models: AI can greatly enhance scientific understanding of the subsurface and significantly 

improve the efficiency and effectiveness of field-scale carbon storage. As a first step, infusing AI/ML capabilities 

into traditional geoscience-based methods can yield better and faster results. Integrating multiple data types to 

build more accurate stochastic geologic models can reduce uncertainty and risk. This opportunity is continually 

expanding as AI models add a temporal component to recognize the dynamic aspects of subsurface conditions 

(analogous to weather forecasts). ML can help interpolate data over space and time to advance 3D subsurface 

prediction and variogram calculations. That effort would significantly enhance the STA tool, as would the 

addition of hybrid models that integrate geologic context into analytics (categorical and hybrid numerical-

categorical models of spatial and non-spatial phenomena).  

The high complexity of site assessments for carbon storage and the uncertainties in available (non-binary) data 

suggest a role for fuzzy logic to deliver valuable insights on key trends and patterns or fill knowledge gaps in how 

fluid and/or gas migrates in the subsurface. Fuzzy logic modeling could help combine and weight (surface and 

subsurface) factors associated with storage sites (leveraging NETL’s Spatially Integrated Multivariate 

Probabilistic Assessment (SIMPA) model). 

Safely Expand the Capacity of Existing Storage Sites 

AI could expedite the development of models and tools to reliably guide the expansion of existing underground 

carbon storage facilities while minimizing the risks of seismic hazards, CO2 leakage to the atmosphere, or 

contamination of groundwater. Key challenges are to successfully integrate different data types (point source, 

3D, analog) to assess properties over an extensive area and identify the most effective additional data needed to 

produce actionable characterizations and projections. 

Safely Optimize Capacity: Near-real time tools are required to help optimize the amount of CO2 injected and 

stored at each unique site. Improved tools might effectively measure and monitor the seal integrity of caprocks, 

adjust operational parameters to increase effective storage volumes, and assess the potential hazard of leakage. 

As the supercritical CO2 is injected, ML tools might use changes in CO2 plume conformance to calculate fluid 

pressures and rock stresses in near-real time to guide the process. 

Inform Site Management: Safe and economical site management will require improved tools to better 

understand site-specific geophysical reservoir features, measure reservoir volume, and closely monitor 

conditions to inform decision making. Multiple data types (e.g., core samples, well logs, pressure measurements, 

analog data) will be needed to accurately estimate the spatial extent of seal integrity/quality and storage 

 

Figure 2. SMART Initiative: Visualization and Decision Support Platform (Science-informed Machine Learning 

 for Accelerating Real-Time Decisions in Subsurface Applications).  Image: NETL 

 

https://www.netl.doe.gov/sites/default/files/netl-file/J-Bauer-SIMPA.pdf
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capacity. AI should help select and interpret sensor data to monitor reservoir performance in near-real time, 

suggest operational parameters/adjustments, and assess impacts. These near-real-time performance 

evaluations could enable early detection and avoidance of potential storage system failures. Similarly, novel 

data-driven methods could be used to prioritize wells for inspection, remediation, or plugging and to set clear 

parameters for safe and economical operations.  

Repurpose Oilfield Infrastructure: New tools to assess the suitability of 

existing oil fields for permanently storing captured CO2 can potentially draw 

on 150 or more years of experience and data.3 Some of the data may be in 

private hands, but even the readily available data will span a wide range of 

temporal and geographic differences in construction design, standards and 

regulations (municipal, state, tribal, federal), data collection methods, and 

data formats—as well as record-keeping protocols (e.g., recording reentries 

by updating old records versus starting new ones). These old records may be critical to success, and AI tools 

could help to identify the most valuable types of data to collect and use in evaluating future scenarios 

[identifying the physical conditions under which certain types of data would not apply is equally valuable]. 

ML models could be trained on historical oil field performance data (e.g., primary, secondary, and tertiary 

injection/production and bottom-hole pressures) to help forecast future CO2 injection and storage performance 

at those sites. With no models of this type yet available, unsupervised learning might be used to rapidly parse 

available data types and test them in algorithms to identify the types of data most valuable for predicting 

successful transition scenarios (O&G production to CO2 storage). Future models should also help inform the new 

management protocols required to reduce any risks associated with the repurposing and to optimize 

performance as conditions evolve in the future. Novel data-driven methods might also use regional- or basin-

scale well characterization capabilities to guide decision making on repurposing and to prioritize needed site 

preparations (well inspection, remediation, plugging, etc.). Basin- or regional-scale datasets (e.g., Class II well 

construction data, Class II injection/production data, geologic setting information, well logs, inspections, and 

monitoring data) have the potential to yield new insights and inform site management. For a selected oil field, a 

SIMPA-based model could be developed to assess the potential for repurposing the field and infrastructure. 

Characterize Potential New Sites 

Achieving national carbon goals is estimated to require thousands of new injection wells (Larson 2020). To 

support this massive undertaking, AI/ML models and tools could expedite assessments of potential new storage 

sites across the country to make sure the injected carbon is securely sequestered for the long term. 

Characterize Capacity and Integrity of Specific Sites: Drawing upon extensive geologic data records, AI could 

help generate geologic models to accelerate screening of new sites to determine their suitability for secure 

carbon storage, expediting the decision process and lowering costs. A site’s storage capacity is a key factor in the 

screening process, and AI/ML might enable rapid reservoir modeling that incorporates multiple geologic models 

to rapidly produce accurate estimates of site-specific storage capacity and injectivity. As part of evaluating new 

resource storage capacity, AI/ML could be trained on existing resources to help stakeholders understand what 

might be expected from a new resource (e.g., strengths, weaknesses, management protocols). This capability 

will require best practices for the application of transfer learning from one location/reservoir to another.  

Inform Decision Making and Permitting: In the interest of protecting underground sources of drinking water, 

the Environmental Protection Agency (EPA) carefully regulates geologic CO2 sequestration in (Class VI) wells. The 

regulations address the unique nature of CO2 injected deep in the subsurface, including its relative buoyancy 

 
3 Processes for injecting CO2 into partially depleted oil fields to enhance oil recovery (EOR) do not ensure permanent carbon storage.  

“CO2 transport and storage 

infrastructure is the critical 

enabler of CO2 capture 

deployment.” 

International Energy Agency, CO2 

Transport and Storage, Tracking 

Report (IEA 2022) 
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and mobility, corrosivity in the presence of water, and anticipated high volumes. Requirements for the 

necessary Underground Injection Control (UIC) permits include siting, construction, operation, testing, 

monitoring, and closure (EPA 2023). In this context, the National Risk Assessment Partnership (NRAP) is 

developing quantitative, science-based tools and methods for estimating the long-term environmental risks of 

geologic carbon storage (induced seismicity, leaks) to help inform long-term monitoring costs and liability. 

Incorporating AI/ML tools into these risk assessment workflows can expedite permitting and lower costs.  

AI might significantly accelerate the currently lengthy permitting process. ML and virtual learning (VL) tools can 

expedite processes for evaluating operational scenarios, defining the Area of Review, developing an efficient and 

effective monitoring design, and identifying post-injection site care requirements. AI might also deliver better 

tools for visualizing the storage system behavior and decision space to improve communications among 

stakeholders on site performance and risk. The EPA is actively working with states to engage communities and 

ensure environmental justice through the permitting process. 

Characterize at Basin or Regional Scale: To develop the nation’s required carbon storage resources within the 

target time frame, developers will need to shift their focus from characterizing specific sites to examining 

prospects at the basin or regional scale. This broader perspective could greatly accelerate progress but will 

require powerful and appropriately scaled new assessment tools. AI/ML tools to handle this scale may leverage 

data from regulatory compliance inspections, acoustic measurements, and other sources, but uniform data sets 

for these much larger areas may be difficult to find.  

Solutions may involve extrapolating from sparse data, but this will require defining the limits to which dense 

data for one location can be reliably leveraged to assess a much wider area. AI/ML may assist in exploring 

extrapolation limits; new methods for transfer learning may also be useful. With scientific validation, AI tools 

hold the potential to rapidly forecast storage deployment scenarios, design efficient monitoring to effectively 

manage risk, and characterize well integrity and stress to de-risk storage—all at the basin scale. 

Carbon Mineralization Resources 

In subsurface carbon mineralization, the injected sCO2 reacts 

with minerals in the surrounding igneous or metamorphic rock 

to form a solid mineral, such as a carbonate. This happens 

naturally, but the process can be sped up artificially. The 

advantage of carbon mineralization over storage in sedimentary 

basins is that the carbon cannot later escape to the atmosphere. 

This process can also occur at the surface by exposing CO2 to 

broken pieces of rock, such as mine tailings (USGS 2019).4 

Igneous or metamorphic rocks with the best potential for 

mineralization through injection are basalt and ultramafic rocks (a broad category of rock with high levels of 

magnesium and iron). Lab studies show that ultramafic rocks have the fastest reaction times, and pilot studies 

indicate that CO2 injection in basalt can lead to mineralization in less than two years. As shown in Figure 3, the 

potential for carbon storage through mineralization is spread widely across the United States (USGS 2019). The 

main risks associated with injecting carbon into the subsurface for mineralization are large water demands, land 

use impacts, and the potential to trigger earthquakes if pressures are not adequately managed (USGS 2018).  

The full potential of reactive materials for carbon storage or conversion to durable products is constrained by a 

lack of knowledge of the processes that drive carbon mineralization. AI/ML approaches may be limited until we 

 
4 Surface mineralization is the purview of the Carbon Dioxide Reduction Program. 

“CO2 mineralization, where CO2 is 

injected into basalts or peridotites, 

is becoming increasingly developed. 

These rocks contain a higher fraction 

of CO2-reactive minerals, which can 

accelerate the precipitation of 

carbonate minerals compared to 

conventional storage.” 

CO2 Transport and Storage, IEA (IEA 2022)   
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gain a comprehensive understanding of the key interactions and multi-scale processes necessary to achieve 

successful carbonation operations for permanent storage or conversion to durable products. 

Locate and characterize reactive materials in the subsurface for permanent CO2 storage 

AI/ML-informed geostatistical approaches may be devised to assist in identifying prime areas for carbon 

mineralization, (e.g., variograms calculated using neural networks in the STA Tool). Alternatively, AI/ML could 

help mine and place geochemical data in a flexible data format (e.g., DAT file, CSV), enabling neural or artificial 

neural networks to spatially characterize areas of high reactivity.  

Spatially locate and characterize critical minerals 

AI/ML could leverage knowledge and data (possibly using SIMPA, STA, and supervised/unsupervised neural 

networks) to identify geochemical relationships and map locations with mineralization potential. More 

fundamentally, AI can also help clarify mineralization pathways, potentially building upon the structural 

complexity approach used in SIMPA. Detailed characterizations of the subsurface may identify locations likely to 

contain relatively high concentrations of various critical minerals. Any analyses or explorations that uncover 

critical minerals, rare earth elements, or low-temperature geothermal resources are to be automatically 

reported to the appropriate FECM programs. 

 

Figure 3. Potential sites for geologic carbon storage via mineralization         Public domain (USGS 2018) 

https://netl.doe.gov/sites/default/files/netl-file/20VPRONG_26_Mark-Moser.pdf
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Strategic Planning for Carbon Transport 

Captured CO2 can be transported by pipeline, rail, truck, ship, and barge. Pipelines and ships are currently the 

most scalable and lowest-cost options, but novel approaches, including multi-modal transport systems, may 

emerge. Initial build out of the needed carbon storage and transport network must be accomplished in close 

coordination with (and a bit ahead of) other components to appropriately accommodate/direct the volume 

captured and ensure its safe, efficient, and economical handling. Carbon transport planning is complicated by 

the evolving policy framework as well as uncertainties associated with the siting of future facilities, storage basin 

capacities, regulatory bodies, and locations of specific injection sites (Net Zero America 2021).   

Improve CO2 transport safety and decision support 

Safety is particularly imperative at this early stage of infrastructure development as any failures could 

significantly impede progress. AI can play a vital role in detecting, predicting, and avoiding leaks. One challenge 

in developing the AI is to select the most useful data out of the massive data sets collected for decades across 

thousands of miles of O&G pipelines and, more recently, mixed fluid and dedicated CO2 pipelines. The wide 

range of sensor types, deployment strategies, time frames, and environments may introduce considerable noise 

in the data. In addition, the available data for developing decision support tools is tied to current technologies 

and best practices, potentially constraining innovation.    

AI/ML can rapidly parse data collections and recorded events and swiftly evaluate various scenarios to help 

select the most valuable types of data for leak detection. AI-empowered edge computing might then extract the 

high-value data near the point of collection to share it with the network (or initiate direct remedial action). 

Streamlining the amount of data communicated and stored will increase efficiency and reduce costs. Based on 

the selected data types (potentially including types not previously considered), AI could help optimize sensor 

placement to minimize time to leak detection. In addition, AI might generate models to identify new signals to 

predict and avoid failure based on (or further informed by) data collected prior to and during failures recorded 

during the transport of other commodities. AI analysis of sensor data should help forecast threats in near-real 

time (leaks, quakes, material failures, and equipment issues, etc.), enabling preventive action. As cybersecurity 

threats to infrastructure continue to grow, AI may help identify the vulnerabilities of carbon transport networks, 

anticipate attacks, and prepare protective actions or ensure resiliency.5  

Improve CO2 transport performance and operations 

At this early stage of planning, optimization of CO2 transport performance and operations may include 

leveraging existing infrastructure; developing novel materials and transport media; building sophisticated 

routing algorithms; and advancing decision support6 to maximize capacity and lower costs. AI can assist in 

making regional CO2 transport networks agile and resilient by integrating and accurately interpreting data from 

connected technologies across all scales. 

The carbon transport chain is as strong as its weakest link, so every weld, section of pipe, and pump can make a 

difference. AI can help develop new and novel materials to improve CO2 transport safety and integrity, rapidly 

assessing and down-selecting from hundreds of new candidate steels, alloys, polymers, coatings, or non-metallic 

materials that offer superior durability (e.g., against the corrosive properties of sCO2). AI can similarly help to 

assess the feasibility of converting existing infrastructure to dedicated CO2 transport. For example, AI/ML 

models might assess existing components of the onshore and offshore transport infrastructure to determine 

 
5  CESER provides cybersecurity for existing critical infrastructures and interfaces. 
6  The AI-Informed Infrastructure Integrity Model (AIIM) within NETL’s Science-based AI/ML Institute (SAMI) generates 

maintenance regimes for offshore pipelines based on environment loading and incident histories, anticipated life spans, 
historical storms, etc. 

https://www.energy.gov/ceser/ceser-mission
https://edx.netl.doe.gov/sami/netls-ai-informed-offshore-infrastructure-integrity-model-selected-as-techconnect-national-innovation-awardee/
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their suitability for conversion to CO2 use (including consideration of impurities in CO2 from anthropogenic 

sources). AI could also efficiently explore more efficient and cost-effective ways to transport CO2. This effort 

might include improving existing transport modes (e.g., better containers, railcars with reduced leakage due to 

periodic pressure bleed off) or developing entirely new ones (e.g., transport as carbon black or in other CO2-

dense phases that remain secure under a wide range of pressures and temperatures). In addition, AI can help 

forecast the remaining useful life and risk profiles of pipelines (potentially by applying multiple ML models, 

including gradient-boosted regression trees and artificial neural networks). 

On a larger scale, AI might help develop and regularly update pipeline maintenance strategies. As part of this 

effort, AI/ML would find and update data on pipeline materials/structures and past incidents and continuously 

assess sensor data to devise preventive maintenance strategies. To optimize transport performance on a 

regional scale, AI could develop geospatial layers for incorporation into broader routing, cost modeling, and 

analytic tools, ultimately improving the certainty and security of permanent CO2 storage. NETL’s Advanced 

infrastructure Integrity Modeling (AIIM) for pipelines may provide a useful foundation for this work. 

Inform routing, demonstration, and deployment using place-based inputs 

The design and development of a robust carbon transport network that meets all regional and national goals 

must carefully consider the unique characteristics of the various places it serves, goes through or under, or 

bypasses. The network can impact local populations, environments, and economies, and the local environments 

can affect the network. As a first step, AI might analyze social and environmental justice sensitivity to the 

transport network. This effort might apply ML techniques to analyze aggregated location-specific health indices, 

income levels, employment data, property values, or some appropriate mix of data to help focus local 

engagement activities within a region. ML and NLP applied to 

digital news sources could potentially acquire current data on 

state- and community-level views on pipeline infrastructure 

within defined boundaries. 

To optimize pipeline routing, AI can help generate models 

that integrate a range of social equity, logistic, and energy 

issues, including local initiatives, routing regulations, and 

geospatial analytics (to lower risk). These models may adapt 

and apply ML models previously developed for the natural gas 

infrastructure. AI can also identify potential pipeline routes 

through a fragmented cost surface (areas with abruptly or 

widely varying land uses and values) to support the evaluation 

of potential corridors for installation. To improve property 

predictions and reduce uncertainty in pipeline routing, 

physics-informed ML (PIML) approaches might be integrated 

with qualitative/ categorical AI/ML models. Reducing these 

uncertainties can potentially expedite the necessary 

demonstration and deployment efforts (see inset on Hubs).  

Strategic carbon transport planning must also consider that all critical infrastructures are vulnerable to climate 

change impacts such as hurricanes, ground subsidence, wildfires, sea-level rise, heat waves, and drought. 

Multivariate modeling to project the impacts of climatological events on equipment and operations can deliver 

valuable new design parameters. This effort could use up-to-date or real-time data and advanced climatological 

models to improve forecasting of onshore hazards. For off-shore transport, this effort may leverage existing 

Ocean and Geohazard Analysis (OGA) work and improve the forecasting of near-subsea currents (affecting off-

Regional Hubs for 

Geologic Storage & Carbon Management  

FECM currently supports four projects 

that provide region-specific technical 

assistance on secure geologic carbon 

storage across the country. Upcoming 

awards (Sept. 2023) will augment and 

extend those efforts to include regional 

stakeholder engagement. This work lays 

the groundwork for deploying large-scale, 

regional geologic storage facilities or 

carbon management hubs capable of 

storing hundreds of millions of metric 

tons of CO2 at an injection rate of more 

than 5 million metric tons per year. 

  FECM Funding Notice (DOE/FECM 2023) 

https://netl.doe.gov/sites/default/files/netl-file/20VPRONG_26_Duran.pdf
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shore pipelines and ship transport) with data from NOAA monitoring buoys. An AI/ML model to suggest areas 

of greatest risk to offshore infrastructure could combine existing models for submarine landslides, extreme 

wind/wave/current events, etc. (see OGA above). Improved characterization of seabed-related hazards in the 

offshore environment would help manage and minimize or avoid costs, risks, and catastrophic incidents. 

Challenges in developing AI tools for transport planning include the large amount of disparate data from 

multiple sources that must inform any predictions or decision making, especially when drawing from data 

systems that don’t typically interact with each other (e.g., maritime versus land topography data systems). In 

addition, AI model developers must take steps to avoid model bias toward areas or regions in which 

infrastructure already exists or communities already burdened by developed infrastructure.  
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