

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Welcome to the DOE Buildings XV Post-Conference Workshop "Current Challenges, Opportunities, and Research Needs of Building-Integrated PV Systems"

Agenda Overview

1:00p - 1:10p	Welcome and Introductions
1:10p - 1:30p	BIPV and EE Envelopes to Achieve Low Carbon Buildings M. LaFrance (BTO)
1:30p - 2:00p	Building Integrated PV at the Solar Energy Technologies Office G. Stefopoulos (SETO)
2:00p - 2:45p	BIPV System Integration and Implementation Marcus Bianchi (NREL) – 15 mins Mengjie Li (University of Central Florida) – 15 mins Discussion
2:45p – 3:15p	Break

Agenda Overview

3:15p – 3:30p	European perspectives regarding BIPV Targo Kalamees (TalTech) – 15mins	
3:30p – 4:00p	BIPV International Markets: Current State and Future Projections Jacob Jonsson (LBNL) – 15 mins IEA PVPS Task 15 Review Jacob Jonsson (LBNL) – 15 mins	
4:00p – 4:45p	Standards requirements for walls, windows, and roofs – Breakout sessions Facilitators: Roofs (Andre Desjarlais), Walls (Diana Fisler), Windows (Marc LaFrance)	
4:45p – 4:55p	Report out	
4:55p – 5:00p	Concluding Remarks – Marc LaFrance/George Stefopoulos	

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BIPV and EE Envelopes to Achieve Low Carbon Buildings

Marc LaFrance US DOE Advanced Technology and Energy Policy Manager Buildings XV Conference December 8, 2022

Core functions of building envelopes

- Keep the rain out
- Keep the heat out in summer
- Keep the heat in the winter
- Maintain a view to the outdoors
- Provide safe and comfortable space
- Avoid mold, bugs and rot
- Reduce chances of condensation
- Ventilate indoor pollutants
- Avoid infiltration of outdoor pollutants and latent loads

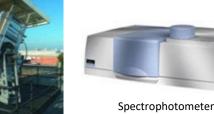
Building envelope infrastructure example – standards and ratings

Fenestration:

- Simulation of U-factor, Solar Heat Gain Factor and Visible transmittance - ISO 15099
- U-factor testing ASTM C 1363, C1199, NFRC 102
- Solar Heat Gain Testing NFRC 201
- Spectral Optical Property ISO 9050, ASTM E903, NFRC 300. 301
- Air Leakage ASTM E283, NFRC 400 Wall Insulation
- ASTM C 518, C 177

Wall System

ASTM C1363, ASTM C1155

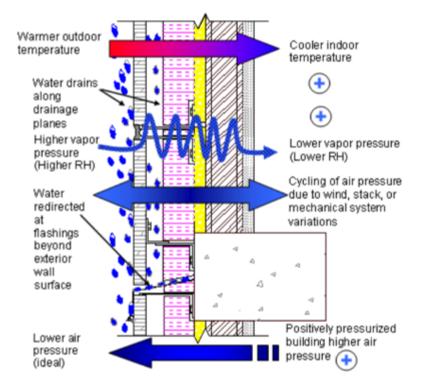

Air Leakage

U.S. DEPARTME

Hot Box

Solar Calorimeter

NT OF ENERGY	OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY
	OTTICE OF ENERGY EFFICIENCE & RENEWABLE ENERGY


	<u>I</u>	<u>nitial</u>	<u>Weathered</u>
	Solar Reflectance	0.00	Pending
	Thermal Emittance	0.00	Pending
COOL ROOF RATING COUNCIL ®	Rated Product ID Licensed Seller ID Number Classification	Pr	

Cool Roof Rating Council ratings are determined for a fixed set of conditions, and may not be appropriate for determining seasonal energy performance. The actual effect of solar reflectance and thermal emittance on building performance may vary.

Manufacturer of product stipulates that these ratings were determined in accordance with the applicable Cool Roof Rating Council procedures.

Wall systems – complex moisture and air management

BIPV needs to ensure core functions are maintained

Courtesy: Whole Building Design Guideline

Implementing EE with BIPV Example

Conventional

- Shades roof from heat gain
- Allows panels to cool to produce higher output
- Not always aesthetically pleasing to some

BIPV

- Higher cell temperatures, lower output
- Increase in heat flux to attic/plenum compared to cool roofs
- Generally greater aesthetics Above Deck Ventilation – lower peak cooling

BIPV with high efficiency facade

Key Benefits

- Highest output PV
- Cells allowed to cool
- Optimized sun angle
- Shades windows from sun

Concerns

- Aesthetically less appealing
- Window cleaning is more difficult/costly

Source: "Transition to Sustainable Buildings, Strategies and Opportunities to 2050", IEA 2013

EE Spandrels research – opportunity for BIPV

-2.0°C 0.8°C

8.3°C 7.0°C

4.4°C 4.1°C

Exterior

Temperature

-10°C

5.7ºC

5.1°C

lssues:

- Thermal-bridging of aluminum framing
- Differing construction of opaque wall areas vs. transparent areas
- Lack of consensus in thermal modeling

Needs:

- Higher performing spandrel systems to meet more stringent codes
- Thermal modeling consensus based on validation and experimentation

Outcome:

- Design Guidance document with best practices and recommended modeling procedures

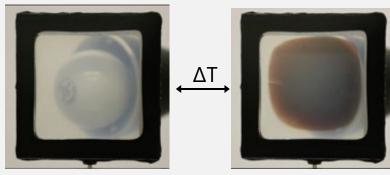
To learn more, contact Anne Ellis aellis@pankowfoundation.org

Interior

Temperature

SPONSOR

Charles Pankow Foundation

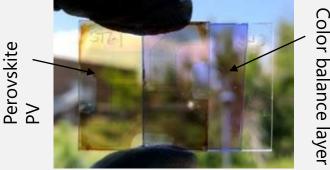

PARTNERS

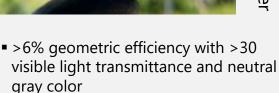
- Department of Energy Lawrence Berkeley National Lab Oak Ridge National Laboratory
- ENGINEERING TEAM Morrison Hershfield RDH Building Science Simpson Gumpertz & Heger Inc.

Perovskite materials for photovoltaic windows project

Thermochromic PV

Dynamic solar heat gain control + PV generation



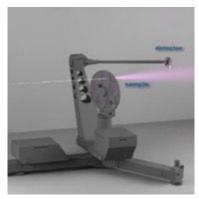

Transparent

- Colored + PV
- Generates electricity and modulates solar heat gain for significant building energy savings
- Proof of concept demonstrated.
- NREL holds > 10 patents on the technology
- Durability improved
- Significant investment makes them market viable in ~5 years

Neutral color semitransparent PV

High efficiency without sacrificing aesthetics

- Compatible with current glazing and lamination processes
- Investment makes technology market viable in ~3 years.



Lance Wheeler, PhD NREL

National Laboratory expertise and advanced facilities

LBNL Flexlab

LBNL Goniophotometer

NREL Differential Thermal Cycling Unit

ORNL Guarded Hot Box

PNNL Lab Homes

Resources and contact info

US DOE – Pathway to Zero Energy Windows – Advancing Technology and Market Adoption - <u>Pathway to Zero</u> Energy Windows: Advancing Technologies and Market Adoption (nrel.gov)

US DOE - Opaque Envelopes: Pathway to Building Energy Efficiency and Demand Flexibility Key to a Low-Carbon, Sustainable Future

Opaque Envelopes: Pathway to Building Energy Efficiency and Demand Flexibility

Grid-interactive Efficient Buildings Technical Report Series Windows and Opaque Envelope Grid-interactive Efficient Buildings Technical Report Series: Windows and Opaque Envelope (energy.gov)

LBNL Core Window Lab – Primer videos and resources Outreach | Windows and Daylighting (Ibl.gov)

> P Marc LaFrance, CEM Advanced Technology and Energy Policy Manager US Department of Energy 1000 Independence Ave, SW Washington, DC 20585-0121 <u>marc.lafrance@ee.doe.gov</u> Cell 240-474-2177

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

Building Integrated PV at the Solar Energy Technologies Office

Dr. George Stefopoulos, *Solar Innovation Technical Advisor* Buildings XV Conference – U.S. DOE BIPV Workshop December 8, 2022

Outline

• SETO overview and background

• BIPV RFI description, responses, and learnings

• Further discussion

Solar Energy Technologies Office (SETO) Overview

MISSION

We accelerate the **advancement** and **deployment of solar technology** in support of an **equitable** transition to a **decarbonized economy no later than 2050**, starting with a decarbonized power sector by 2035.

WHAT WE DO

Drive innovation in technology and soft cost reduction to make solar **affordable** and **accessible** for all Americans Enable solar to support the reliability, resilience, and security of the grid

Support job growth, manufacturing, and the circular economy in a wide range of applications

SETO Research Areas

CONCENTRATING SOLAR-THERMAL

BALANCE OF SYSTEMS/ SOFT COST REDUCTION

SYSTEMS INTEGRATION

MANUFACTURING AND COMPETITIVENESS

Driving Toward Decarbonization Goals

- SETO 2021 Multi-Year Program Plan was released Spring of 2021
- The Multi-Year Program Plan explains the purpose and the priorities of the office and sets goals for solar energy for 2025. Additionally, it explains how we will accelerate progress toward these goals

Accelerate solar deployment and associated job growth by opening new markets, reducing regulatory barriers, providing workforce training, and growing U.S. manufacturing.

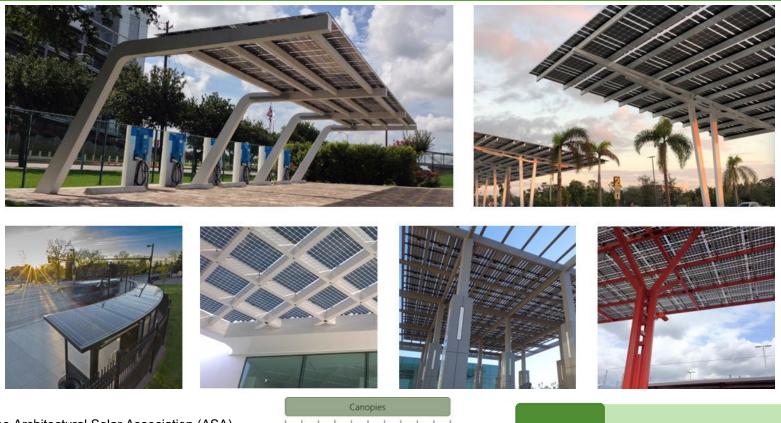
Emerging Sectors – Dual-use solar systems

- Building-integrated photovoltaics (BIPV)
- Vehicle-integrated photovoltaics (VIPV)
- Floatovoltaics
- Agrivoltaics

BIPV Background

- Building-sited distributed PV was about 30% of new solar capacity installed in 2020
- Roof-mounted systems are currently the dominant design
- Other approaches and technologies could provide a competitive value proposition for building decarbonization
 - Providing better potential given the building aspect ratio
 - Combining redundant parts
 - Reducing overall system costs
 - Improving efficiencies

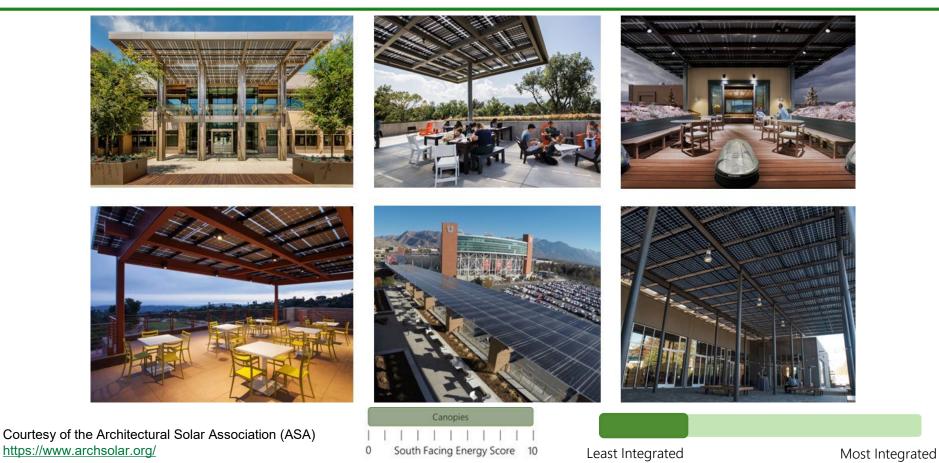
BIPV Background (EN 50583 / IEC 63092 / IEC 61730)

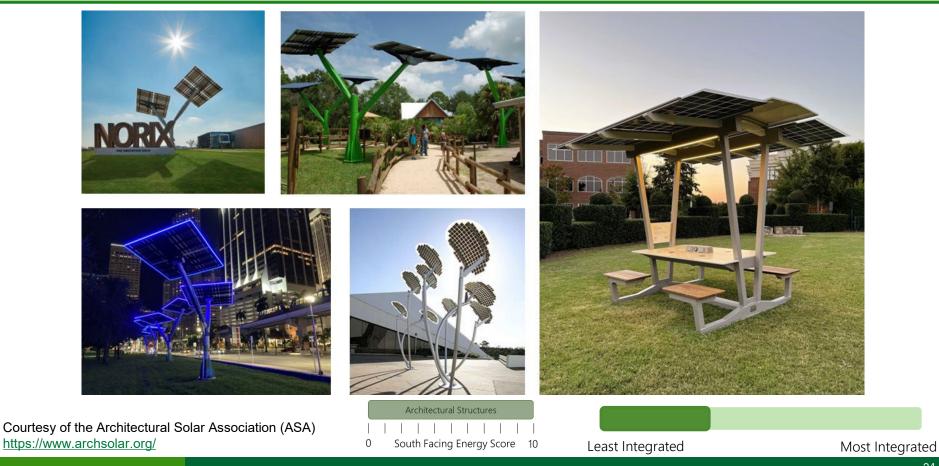

Building-applied PV (E	BAPV)	Building-integrated PV (BIPV)		
PV modules are building-attached if they are mounted on a building envelope		PV modules are building-integrated if they form a building component providing additional functions		
Conventional PV modules		Specialized PV modules		
Fully-functional building		Integral part of building		
Electricity generation		Electricity generation and building function		
Examples of Building-Integrated and Ancillary Structure Photovoltaic Applications				
	Roof Awning Window			
	3 Facade 6 Shade Canopy			

-0-0--0-0

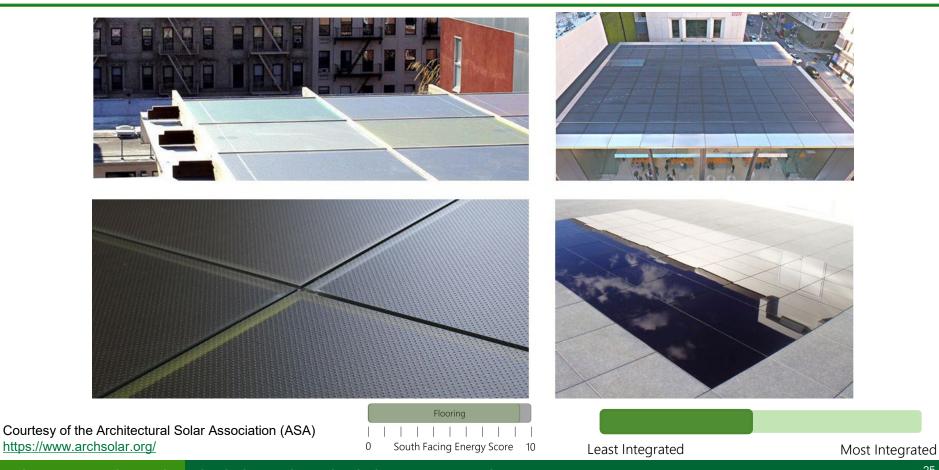
Rooftop Solar

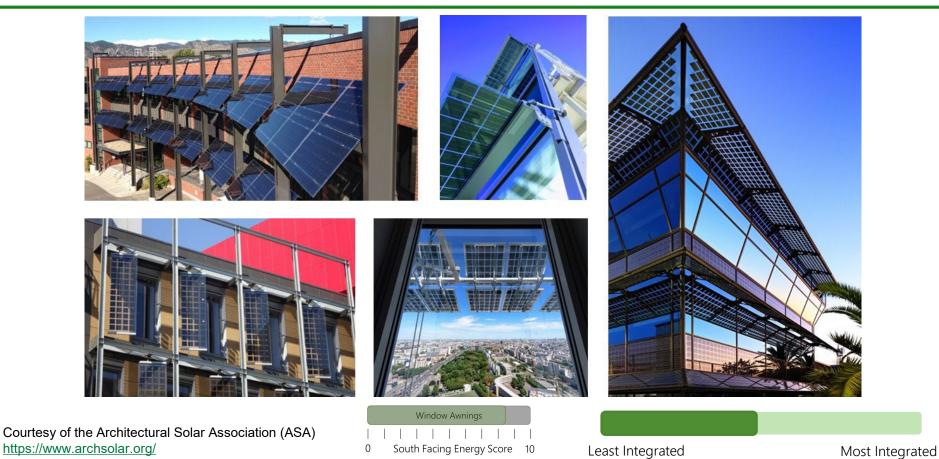
Canopies

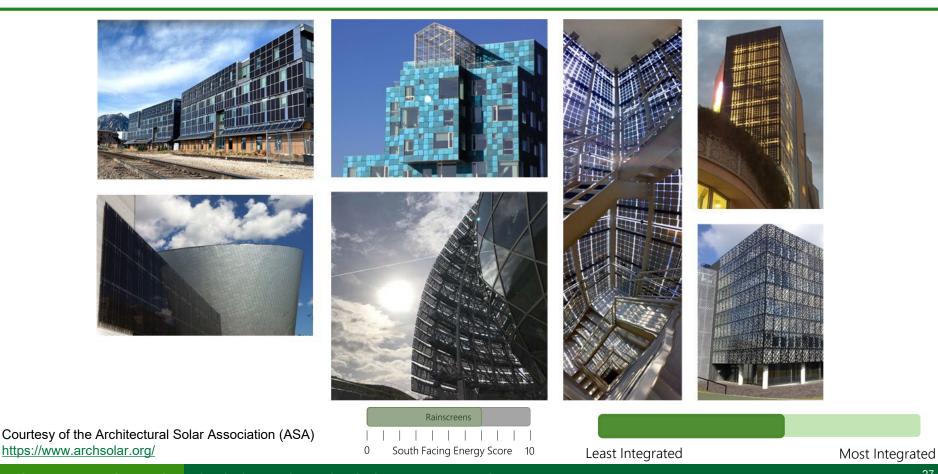

Courtesy of the Architectural Solar Association (ASA) https://www.archsolar.org/

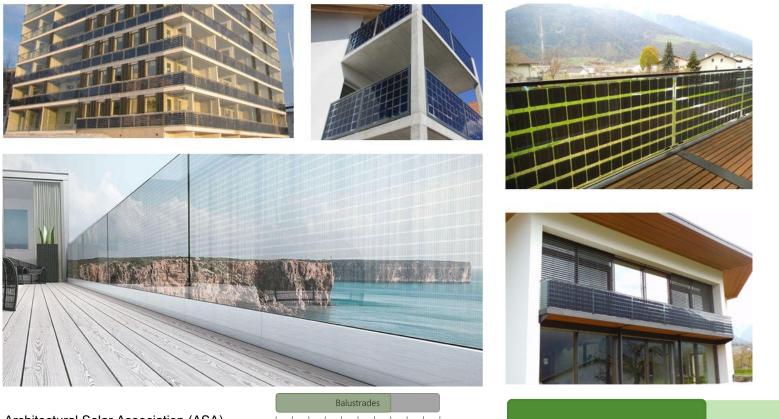

Least Integrated

Most Integrated


Canopies

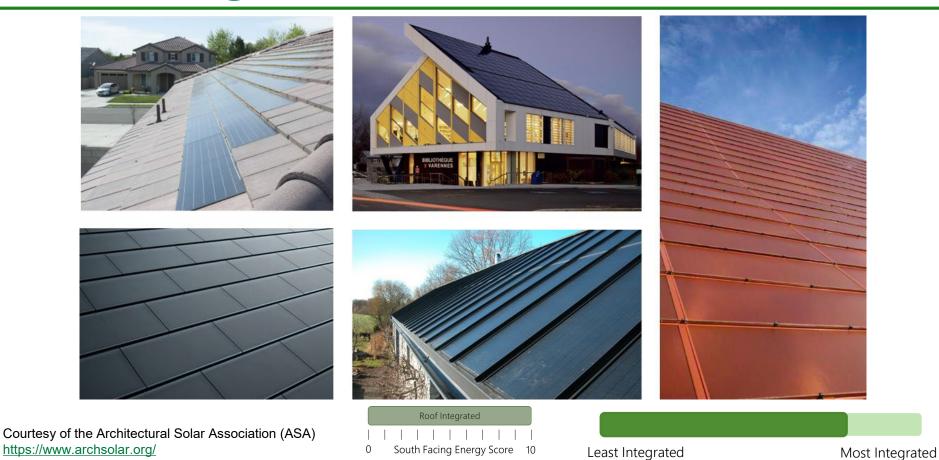

Architectural Structures


Flooring


Awnings/Louvers

Ventilated Solar Facades, Rainscreens, Enclosures

Balustrades

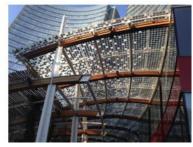

Courtesy of the Architectural Solar Association (ASA) https://www.archsolar.org/

Least Integrated

Most Integrated

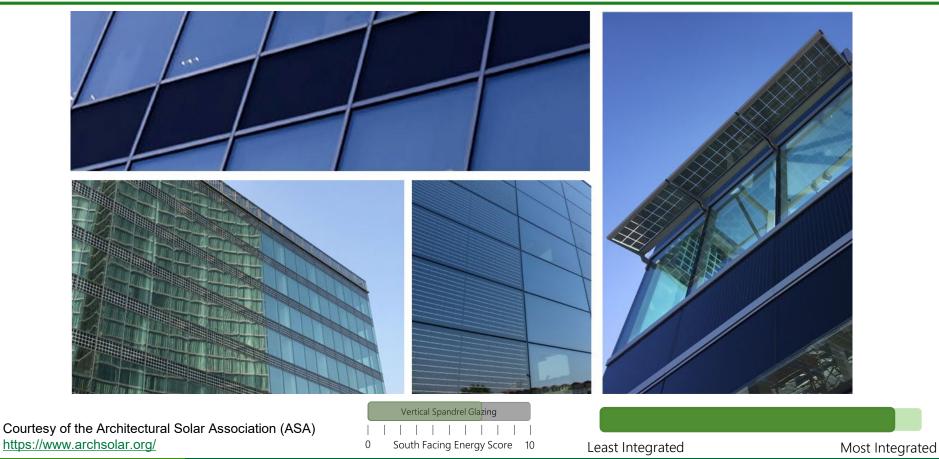
Roof Integrated

Sloped Glazing



Courtesy of the Architectural Solar Association (ASA) https://www.archsolar.org/

Sloped Glazing


 I
 I
 I
 I
 I
 I

 0
 South Facing Energy Score
 10

Least Integrated

Most Integrated

Spandrel Glazing

Vision Glazing

Courtesy of the Architectural Solar Association (ASA) https://www.archsolar.org/

Least Integrated

Most Integrated

BIPV RFI Details

- Collaborative DOE RFI between SETO and BTO
- March 7 to April 1, 2022
- 37 responses from a variety of stakeholders
- Focus on current state of the industry, challenges and barriers, gaps, and R&D needs
- Summary report at <u>https://www.energy.gov/eere/solar/summary-</u> <u>challenges-and-opportunities-building-integrated-</u> <u>photovoltaics-rfi</u>

BIPV RFI Details – Focus areas

State of the industry and key domestic markets

Product requirements

Key barriers and perceptions

RDD&C needs and opportunities

Stakeholder engagement processes

Market Segments and Opportunities

Products

Roofing

- Covering/Shading Elements
- Glass products
- Vertical products

Customer Segments

- Commercial buildings
- Residential buildings
- Government, education, healthcare
- Agriculture and greenhouses

Domestic Manufacturing

- Proximity to market
- Building products typically produced close to consumption
- Cost/emission reductions

Key Product Requirements

Performance

Cost

Aesthetics

Reliability, durability, and safety

Process integration

Supply chain integration

Key Barriers and Perceptions

Technical Barriers	Costs	
	Performance	
	Aesthetic considerations	
	Technical complexity in installation, operation, and maintenance	
	Certification and permitting challenges	
Resource Shortages	Availability of products, product and supply chain reliability	
	Expertise shortage and lack of educational resources	
	Lack of sales, estimation, and other decision support tools	
	Lack of financial incentives specific to BIPV	
Awareness and collaborations	Technology awareness by designers and end-users	
	Existing silos in operating and business models of various affected groups	
	Disconnects between partnering groups and affected industries	
Research and	Lack of fundamental research	
Development	Lack of demonstration projects	
U.S. DEPARTMENT OF ENERGY	OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY	37

RDD&C Needs

Product demonstration	Testing facilities and demonstration projects
	Availability of data
Models and tools	Production cost modeling
	Energy yield modeling
	Installed system cost modeling with consideration for O&M costs
	Comprehensive assessment of benefits
Performance	Improved BIPV product designs – aesthetics, installation, O&M
improvements	Efficiency and energy yield improvements
	Thermal management improvements
	Installation and maintenance processes
	Systems integration

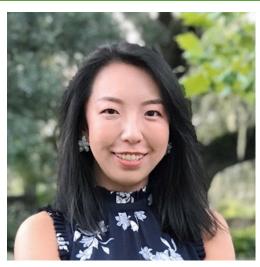
Stakeholder Engagement and Outreach

Underrepresented groups	Architectural community
	Construction industry
	Manufacturers and product implementation teams
	Power-electronics companies
	Trade associations and organizations
	Local/state regulators
	Investors
Outreach	Publishing case studies
mechanisms	Supporting and promoting demonstration projects
	Establishing dedicated BIPV conferences, trade shows, workshops, and other educational opportunities
	Creating a steering committee to make recommendations for specific certification standards for BIPV
	Providing funding opportunities for research and commercialization of BIPV solutions
	Instituting BIPV rebate programs or financial incentives
	Creating a coordinated national effort, like establishing a U.Sbased consortium
	Promoting early-stage innovation

Purpose of Workshop

- Bring together various BIPV stakeholders from industry, academia, and research entities
- Create a forum for discussion and exchange of views
 and ideas
- Understand the current status and needs of the industry
- Receive input that would guide future DOE plans and activities

Questions and Further Discussion



George Stefopoulos georgios.stefopoulos@ee.doe.gov

BIPV System Integration and Implementation

Dr. Marcus Bianchi, PE National Renewable Energy Laboratory Dr. Marcus Bianchi is a senior research engineer with the **Building Technologies and** Science Center at the National Renewable Energy Laboratory, where he also leads the business development activities to coordinate external funding, partnerships, and collaborations with corporations, government agencies, and other research institutes. Marcus was principal scientist at Johns Manville, performing insulation heat transfer research, and a professor in mechanical engineering at Universidade Federal do Rio Grande do Sul and at Purdue University.

Dr. Mengjie Li University of Central Florida

Dr. Li is a research professor at the Florida Solar Energy Center and the University of Central Florida. She has a background of high efficiency solar cell fabrication and is currently focused on degradation pathway analysis of PV modules and improving energy and community resilience with renewable energy solutions. She will discuss the role of BIPV in improving energy resilience and the current state-of-art in BIPV durability and reliability characterization research

Office of ENERGY EFFICIENCY & RENEWABLE ENERGY

BREAK 2:45 - 3:15pm

BIPV International Markets: Current State and Future Projections IEA PVPS Task 15 Review

Dr. Jacob Jonsson Lawrence Berkley National Laboratory Dr. Jacob C. Jonsson got his Ph.D. in Solid State Physics at Uppsala University and started work at Lawrence Berkeley National Laboratory in 2005. Focus on optical characterization, simulation and modelling of traditional facade materials like glass and shades, but also on electrochromics, hermochromics, and transparent PV.

Standards Requirements for Walls, Windows, and Roofs

Break-out Sessions

Breakout Group Assignments

DOE's RFI responses indicated that updating and the development of building performance standards is a critical necessity to remove barriers to greater market adoption of BIPV. Please address the following questions in your breakout groups.

1) Identify the top three to five standards or specifications that need to be improved that can have the biggest impact to reduce barriers to BIPV adoption?

2) What are the highest priorities of the identified standards and why?

3) For the top two priorities, what are the next steps needed to pursue the standard improvements and what is an estimated timeframe for them to be fully promulgated?

Thank you!

MarcLaFrance

marc.lafrance@ee.doe.gov

George Stefopoulos georgios.stefopoulos@ee.doe.gov

U.S. DEPARTMENT OF ENERGY OFFICE OF ENERGY EFFICIENCY & RENEWABLE ENERGY

BIPV: Drivers, Benefits, Challenges, and the Holy Grail

Mary Werner

National Renewable Energy Laboratory Solar Energy Technologies Program Manager

December 8, 2022

Topics:

Combining (i.e. Applied) vs. Integrating

Benefits & Drivers behind BIPV

Challenges to Integration

Holy Grail

Combining

1997: Birth of the Camera Phone

On June 11th, 1997, Philippe Kahn created the first camera phone solution to share pictures instantly on public networks. The impetus for this invention was the birth of Kahn's daughter, when he jerry-rigged a mobile phone with a digital camera and sent photos in real time. In 2016 Time Magazine included Kahn's first camera phone photo in their list of the 100 most influential photos of all time.

It is on exhibit at the San Francisco Museum of Modern Art.

Integrating

Drivers & Benefits

Why should the construction industry care about solar and BIPV?

- Solar's projected growth is >25% whereas the construction industry growth rate is projected at 3%
- There are serious drivers behind increasing solar and renewable generation that are going to drive increased adoption over the next decade
- BIPV can be much more aesthetically pleasing than rooftop solar, opening a much broader market base
- There are huge advantages to local generation (generation at the load) to avoid transmission expansion that are going to drive pressure to deploy local renewable generation, of which solar is the leading option
- Not only have solar costs dropped, but BIPV can cost substantially less than rooftop solar

Driver: Aesthetics Matter

Source: World Economic Forum

Source: PV Magazine

Driver: Transmission Expansion

DEPARTMENT OF ENERGY OFFICE OF POLICY

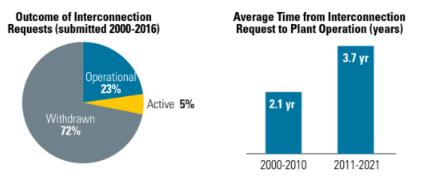
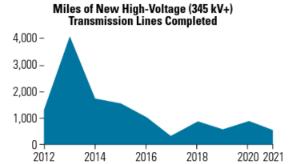
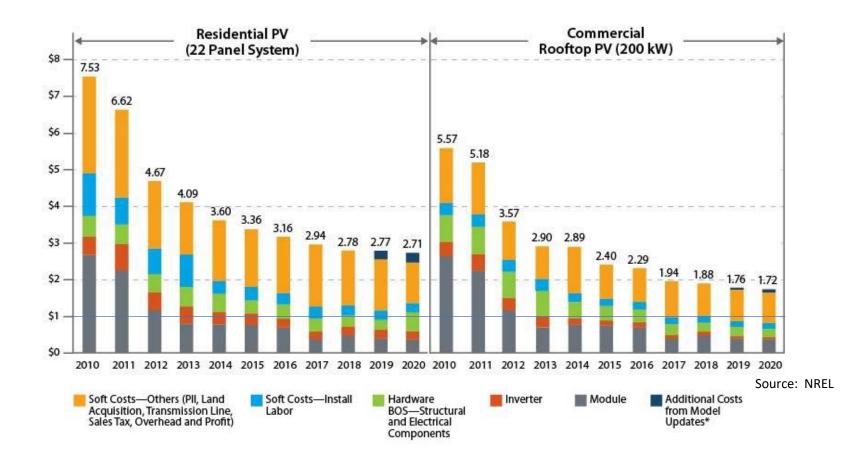
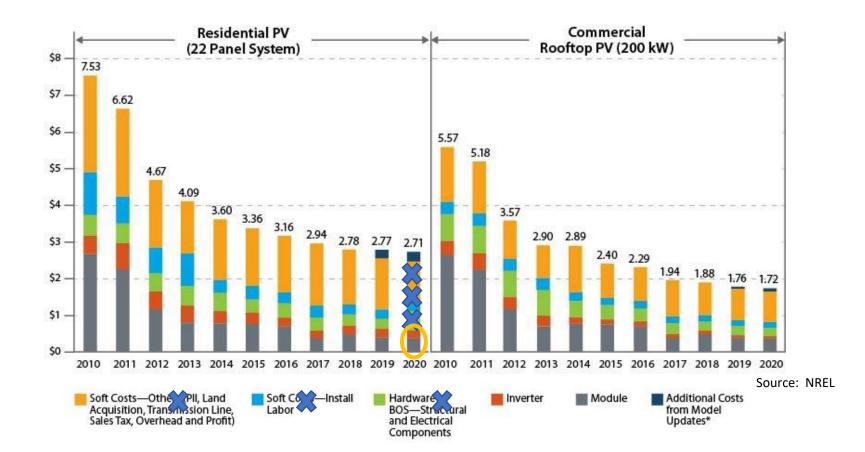



Figure 2. Indicators of the Challenges Facing Transmission Interconnection, Planning, and Construction



Independent estimates indicate that to meet our growing clean electricity demands, we'll need to **expand transmission systems by 60% by 2030** and may need to triple those systems by 2050.


Source: Queued Up... But in Need of Transmission; Department of Energy; April 2022 Depending on the scenarios, transmission expansion is estimated between 2X and 5X current levels.

Co-locating Generation with Load through Rooftop PV and/or BIPV could provide over 2,000 TWh/yr, offering huge transmission expansion mitigation.

Driver: PV Costs have dramatically dropped

Driver: BIPV Cuts Costs Even Further!

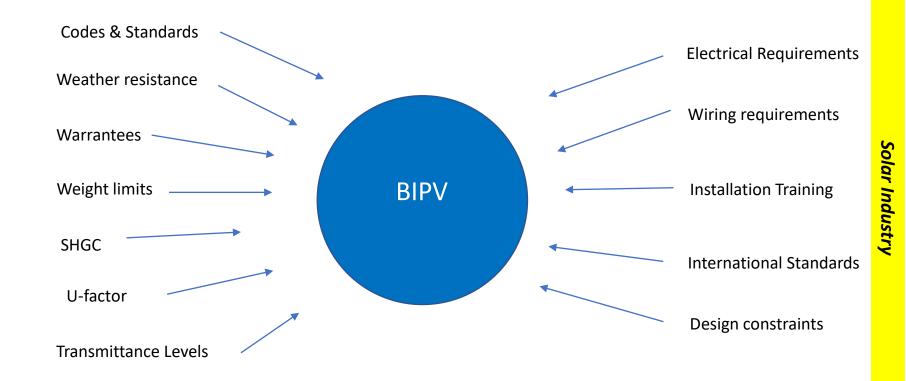
Benefits

- Construction industry grows in revenues and labor
- Less raw materials are used overall
- Generation is produces at the load
- Integration of generation is more aesthetically pleasing than adding it on after the fact
- BIPV costs less than Building Applied PV

Challenges to Integration

Connecting the Construction Industry with the Solar Industry

Construction Industry


- The market size of the US construction sector was <u>\$1.6 Trillion</u> U.S. Dollars in 2021 by the U.S. Census, accounting for ~4% of the US GDP
- There are nearly 4 Million construction businesses in the U.S. and *over 10 million employees.*
- Construction industry:
 - Spends less than 1% of revenue each year on R&D
 - Is considered a low tech industry
 - Is one of the least digitally advanced sectors

Solar Industry

- The market size of the U.S. solar industry is <u>\$16</u>
 <u>Billion</u> U.S. Dollars
- There are approximately 230,000 employees in the solar industry overall
- The market size of BIPV in the U.S. is estimated at <u>\$1.6 Billion</u> in 2021.
- Solar Industry is:
 - Less mature, focusing more on R&D
 - Evolving and growing rapidly
 - Focused on reducing costs and time to install

Regardless of which industry develops the product, the product has to be accepted, regulated, and understood by the construction industry.

Finding the Integration Middle Ground

Mindset Challenge

At what price-point is optimal no longer needed

- Great is the enemy of Good
- Minor shading okay?
- PV in all four directions?
- Entire roof of PV?
- Angle no longer critical?

Holy Grail?

- Mainstream building materials with integrated solar generation technology
- Building designs automatically include wiring for BIPV
- Architects automatically include BIPV products just as they would a window or a roof
- The KISS Principle

Thank you

www.nrel.gov

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

International markets current state and future projections

Jacob C. Jonsson

Yuan Gao

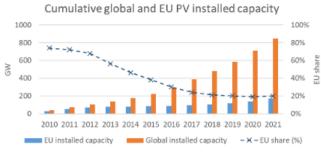
Windows and Envelope Material Group Building Technology and Urban Systems

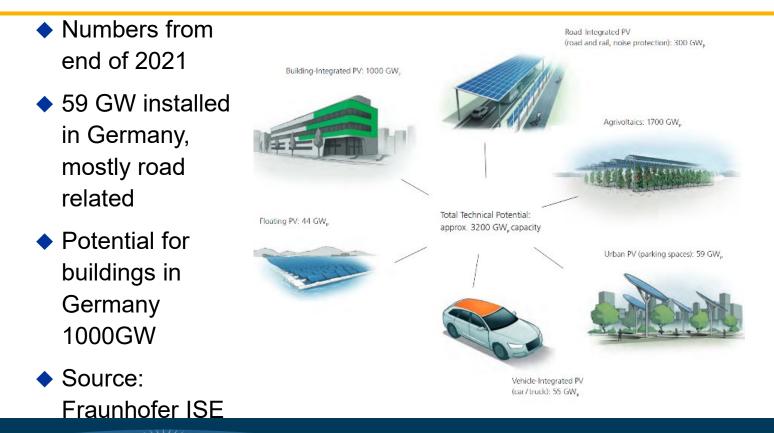
ENERGY TECHNOLOGIES AREA

The grass is greener ...

A feeling that the US is late to the party, EU ahead

- Who is doing better that we can copy?
- BAPV is increasing but still a small fraction of US homes (2.7 Million homes in 2020), BIPV much smaller (1000? 10000? 100?)




Figure 8. Cumulative global and EU PV installed capacity with EU share for the period 2010-2021.

Source: JRC analysis based on Eurostat, IRENA and (Jäger-Waldau, 2022)

Source: Chatzipanagi, A., Jaeger-Waldau, A., Cleret de Langavant, C., Letout, S., Latunussa, C., Mountraki, A., Georgakaki, A., Ince, E., Kuokkanen, A. and Shtjefni, D., Clean Energy Technology Observatory: Photovoltaics in the European Union – 2022 Status Report on Technology Development, Trends, Value Chains and Markets, Publications Office of the European Union, Luxembourg, 2022, doi:10.2760/812610, JRC130720

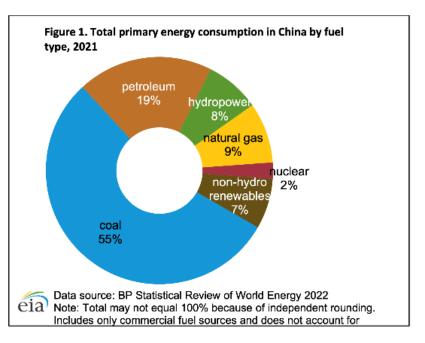
Room to grow in Germany

Similar story in Singapore

- SERIS and NUS provided 2020 update that provides a conservative estimate of
 50km² usable façade area limiting themselves to the top 5 floors of existing buildings
- Potential of > 500 kWh/m²/yr
- For comparison rooftop area was calculated to 13.2 km² with a potential of > 1000 kWh/m²/yr
- Installed square footage
 < 1% of potential

Update of the

SOLAR


PHOTOVOLTAIC (PV) Roadmap for Singapore

BIPV in China

- China's solar manufacturing association expects China to add between 75 GW to 90 GW of solar capacity in 2022.
- Building PV (BAPV + BIPV) accounts for 15% of the total PV capacity in China (data in 2020)
- Increasing building energy efficiency and green building development, primarily through installed capacity of building integrated photovoltaics (BIPV) on new buildings to exceed 50 gigawatts (GW) by 2025.

BIPV & BAPV in Japan 2021

- Installed PV capacity: BAPV > Utility scale
- Goals for new construction help push adoption
- Source: IEA PVPS report 2021

Table 2: PV power installed during calendar year 2021

			Installed PV capacity in 2021 [MW] DC value
Grid- connected	BAPV	(1) Residential (< 10 kW)	805
		(2) Commercial (< 50 kW, including ground- mounted)	1,664
		(3) Industrial (50 kW - 1 MW, including ground- mounted)	1,037
		(4) Total of BAPV	3,506
	BIPV	(5) Residential (< 10 kW)	25
		(6) Commercial (10 - 250 kW)	20
		(7) Industrial (> 250 kW)	
		(8) Total of BIPV	45
	Utility-	(9) Ground-mounted (1 MW ~)	2,572
	scale	(10) Floating PV systems	120
		(11) Agricultural PV systems	300 (including small-scale systems)
		(12) Total of utility-scale	2,992

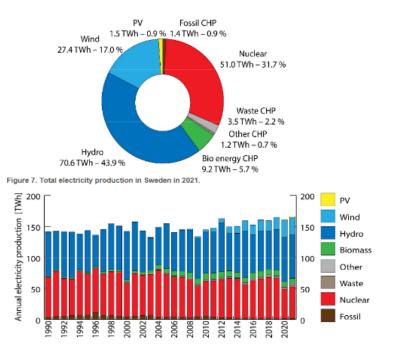
Table 20: Ideal vision for housing and buildings in 2050 and 2030

2050	The energy conservation performance of the ZEH/ZEB standard level is secured on average in the stocks, and the introduction of renewable energy such as PV systems becomes common in houses and buildings where the introduction is reasonable.
2030	Energy conservation performance at the level of ZEH/ZEB standards shall be ensured for newly constructed houses and buildings, and 60 % of newly constructed detached houses shall be equipped with PV systems.

BIPV in Spain

- IEA report
 2022
- BIPV knowledge development has sufficient quality
- Mainly scientific and academic fields, dissemination is hard
- Large

Figure 6 Results of the fulfilment assessment of the TIS functions. Numbers indicate the degree of fulfilment: 1 – absent; 2 – weak; 3 – moderate; 4 – strong; 5 – excellent.



company 350+

Sweden – mostly harmless

- 86 page IEA report about the state of PV in 2021
- 3.2.5 BIPV development measures: There were no specific BIPV measures in Sweden in 2021
- Appartment complex Uppsala
- Demand is not a barrier

What do we know now? Discuss

- No market has solved all the barriers identified at these workshops
- Hard problem to accelerate niche product to mainstream, things that are easier to imagine
 - Incentives (e.g. Tax rebate) reduces cost for early adopters
 - Demonstration projects and field tests give real world data and validate software tools to give planners more confidence
 - Work on standardization to increase potential for interoperability
- Things that are more like fantasies
 - Growing a company from making 20 to 2000 projects a year
 Removing inertia in a conservative building industry (humans in general)

IEA PVPS Task 15 review

Jacob C. Jonsson Yuan Gao, Charlie Curcija

Windows and Envelope Material Group Building Technology and Urban Systems

ENERGY TECHNOLOGIES AREA

Enabling Framework for the Development of BIPV

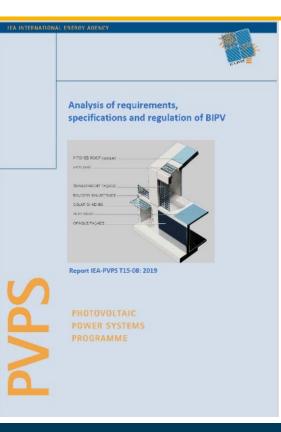
- The International Energy Agency started PVPS task 15 in 2016 and has studied a lot of topics identified as important in the DOE RFI
 - Phase I (16-19) Project database, business models, international specifications, environmental benefits, demonstration

Credit: DOE DE-FOA-0002685 RFI

- Phase II (20-23) Tech innovation system analysis, cross-section analysis – lessons learned, BIPV guidelines, digitalization, characterization methods
- Phase III (24-27) Scope in development, life-cycle analysis and recycling of components
- Great collection of public reports: https://iea-pvps.org/researchtasks/enabling-framework-for-the-development-of-bipv/

International standards

- Inherent challenge for products that do two things
- IEC 63092-1 Photovoltaics in buildings Part 1: Requirements for building-integrated photovoltaic modules
 - More focused on what than how unless another standard exists
 Extensive list of normative references
 - Mechanical durability, fire safety, hygiene, accessibility, noise protection, energy economy/insulation, sustainability
- IEC 63092-2 Photovoltaics in buildings Part 2: Requirements for building-integrated photovoltaic systems


Annex on wind driven rain testing

- EN 50583-1 Photovoltaics in buildings Part 1: BIPV modules
- EN 50583-2 Photovoltaics in buildings Part 2: BIPV systems

How to avoid reinventing the wheel?

- A commonly recurring phrase is the need to adhere to local codes. True in the US between states, EU between members, and internationally
- IEA report matrixed standards and tried to index which where overlapping or not, as well as if they were mandatory, useful for design or useful for characterization
- Do these standards need to provide more guidance on where to find those local regulations?
- Would an online repository be useful or get outdated too quick?

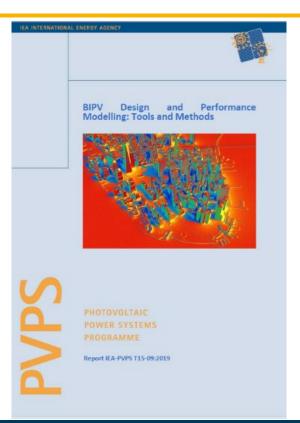
Demonstrations

Technology Collaboration Programme

Successful

Building Integration of Photovoliales A Collection of International Projects

- Every workshop has listed the need for more demonstration projects and validations
- How can it be made sure demonstrations are collected and added to a database of examples?
- What is the half-life of a document like this?
- Nice with a standard format


Demonstration template

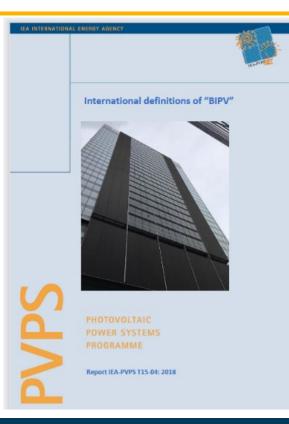
- Project type detailing new construction or retrofit and building type
- BIPV details on what product was used
- Decision making and process highlighting challenges and aesthetics
- Building Integration
- Interviews with architect, construction company, and owner

Software tools

- Do we need more than SAM and EnergyPlus?
- A reference counted 200 design tools the report drills down to 40 of the most popular
- 15 domains including geophysical, economical, technical, and environmental
- Different problems solved in different tools

More reports

and payback time


of existing tests to accommodate BIPV

Find collaborators or contact experts

US involvement in Phase III?

- Set the scope
- Increase manufacturer influence
- Improve collaboration on simulation tools
- Life-cycle analysis and maintenance issues
- Typical IEA setup: In person meeting every 6 months, 3rd day workshop. ~60 people in the room and more online.

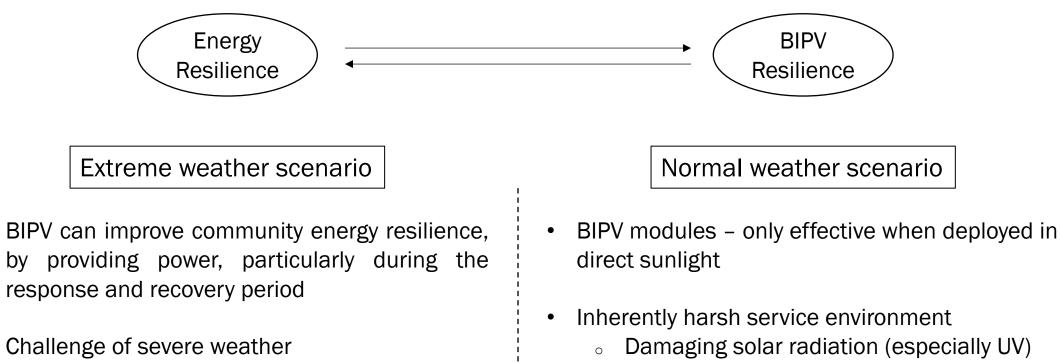
Monitoring BIPV Durability and Reliability - Imaging techniques

Mengjie Li

Florida Solar Energy Center, UCF

Resilient, Intelligent and Sustainable Energy Systems (RISES) Cluster, UCF

Department of Materials Science and Engineering, UCF



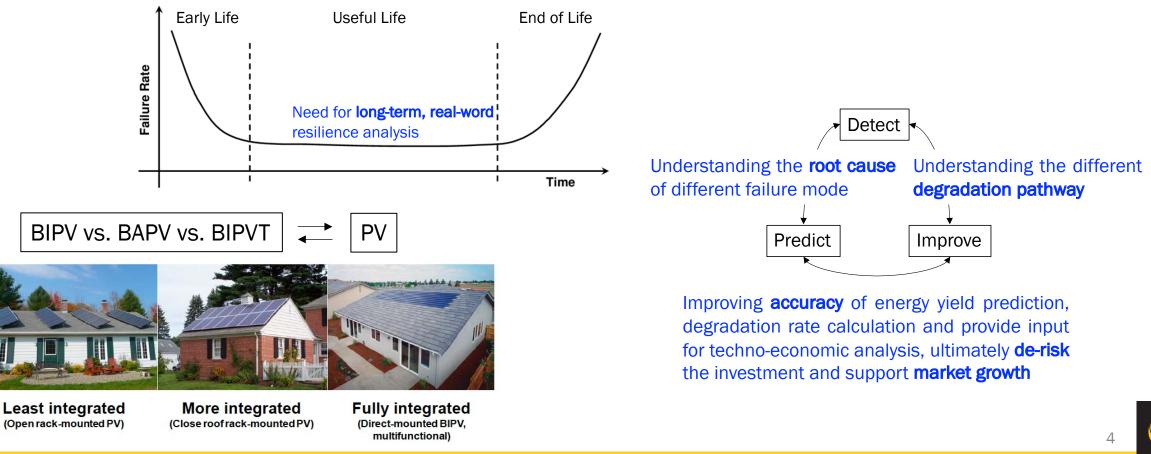
Overview

- <u>00:00 00:30</u> Introduction
- <u>00:30 05:00</u> What is BIPV Resilience and Why it's Important
- <u>05:00 12:00</u> Imaging Techniques
- <u>12:00 15:00</u> Discussion: Challenges and Opportunities

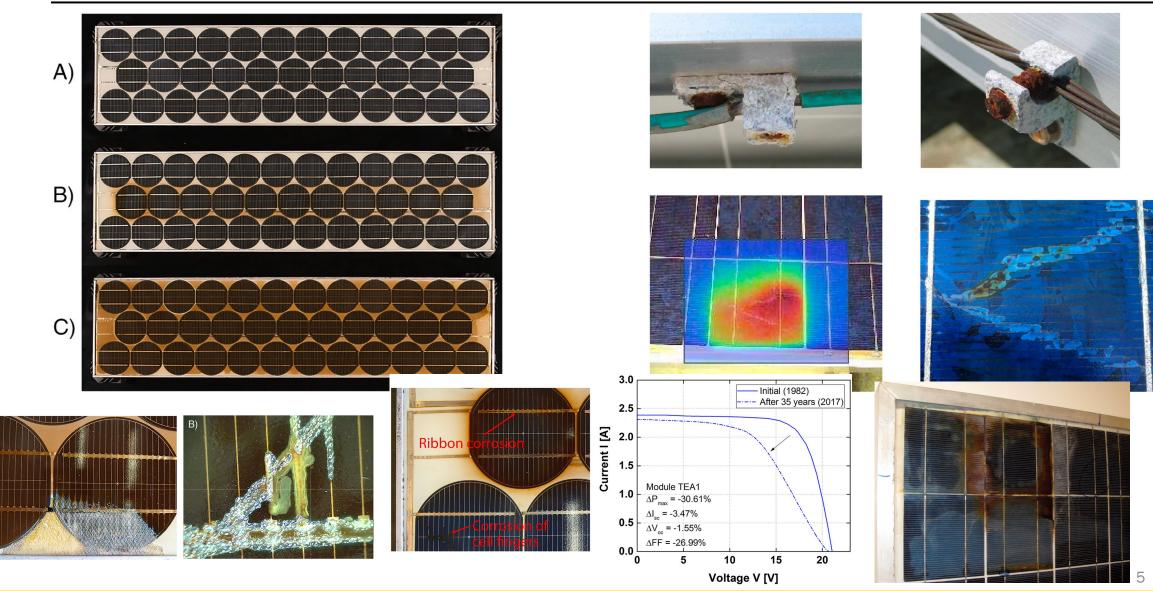
What is BIPV resilience, reliability and durability

- $_{\circ}$ Wind
- $_{\circ}$ Hail

٠

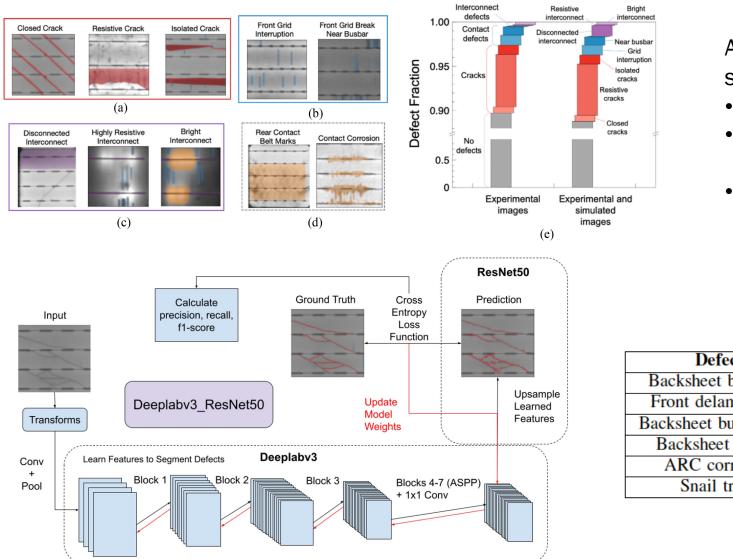

- $_{\circ}$ Hurricane
- \circ Fire
- $_{\circ}$ $\,$ Heavy snow $\,$
- $_{\circ}$ $\,$ Cold & Heat shock $\,$

- HeatHumidity
- Biological factors (mildew, algae, bird's dropping...)
- Mechanical factors (sand abrasion, hail ...)



What is BIPV resilience analysis

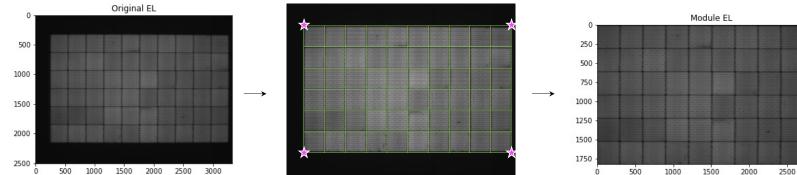
Combining long-term field inspection and lab degradation characterizations to perform a multi-scale qualitative and quantitative analysis to understand the BIPV behavior (degradation pathway) as both a building material and PV system



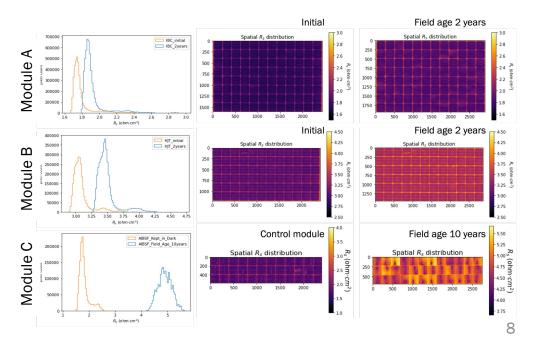
PV product field degradation

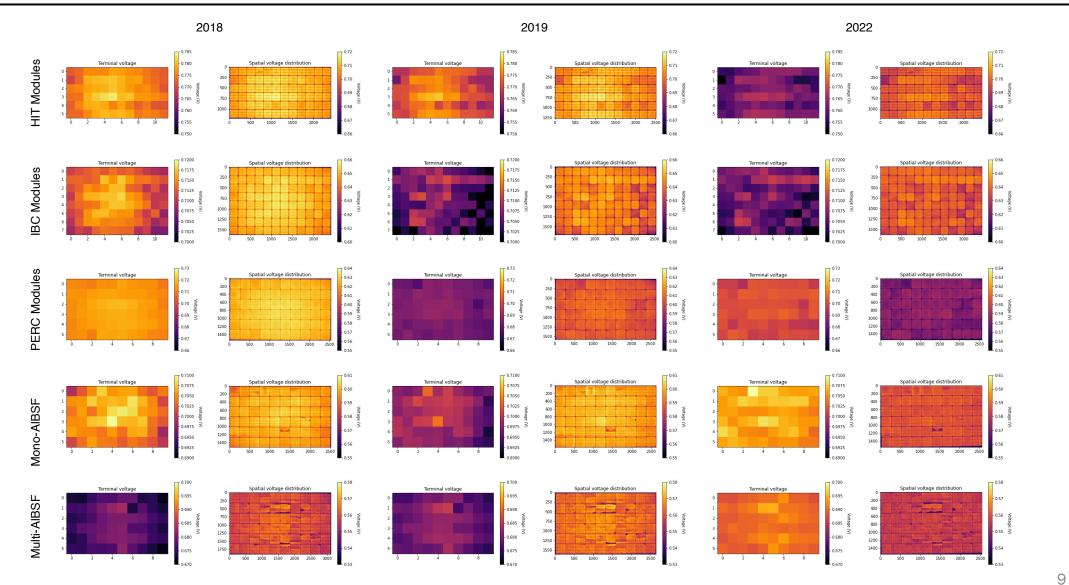
Annigoni et al. "35 years of photovoltaics Analysis of the TISO-10", progress in photovoltaics, DOI: 10.1002/pip.3146, 2019 Davis et al. "Multi-pronged analysis of degradation rates of photovoltaic modules and arrays deployed in Florida", Progress in photovoltaics, DOI: 10.1002/pip.2154, 2013 What information we can get from images?

Automatic defect detection using semantic segmentation

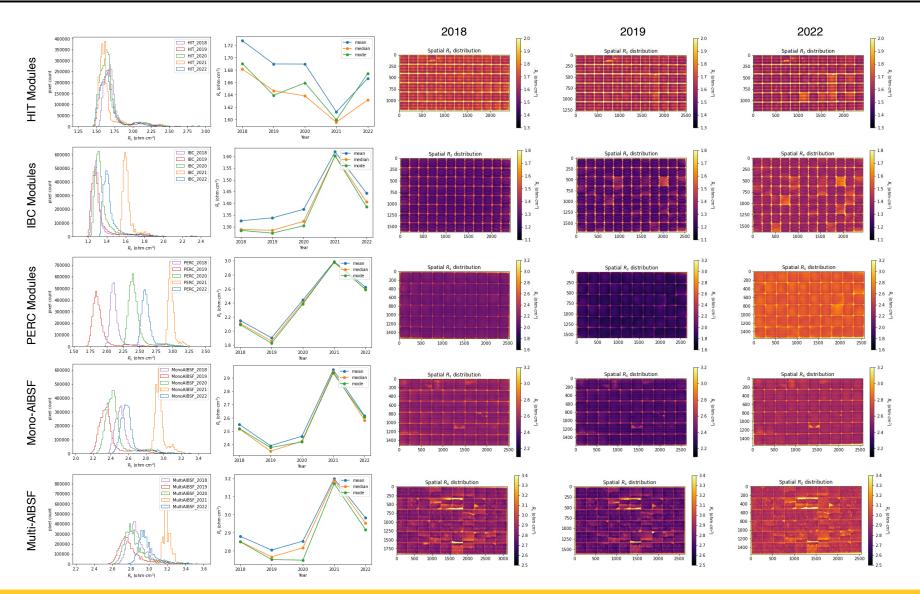

- Input of module EL images
- Indexing each individual cells within the module
- Output percentage of cells with certain type of defect

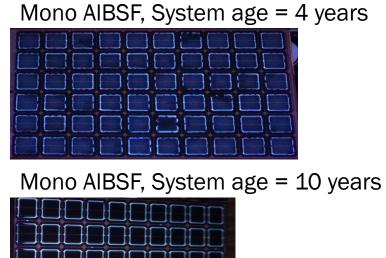

Defect	Modules with Defect	Percent of Total
Backsheet bubbling	2	1.3
Front delamination	156	100
Backsheet burn marks	10	6.4
Backsheet bumps	27	17.3
ARC corrosion	80	51.3
Snail trails	30	19.2

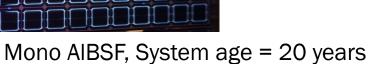


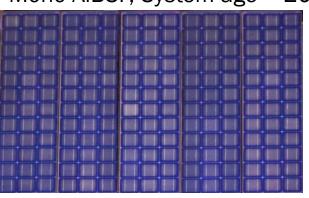

Streamline series resistance imaging

- Input of minimum of 2 EL images
- Automatically calculate terminal voltage and spatial voltage distribution at pixel level
- Output module *R*_s images

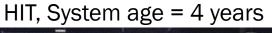






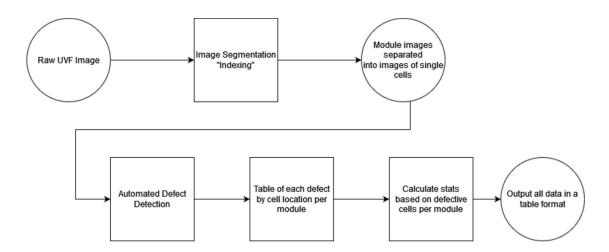

https://github.com/ucf-photovoltaics/PVRs

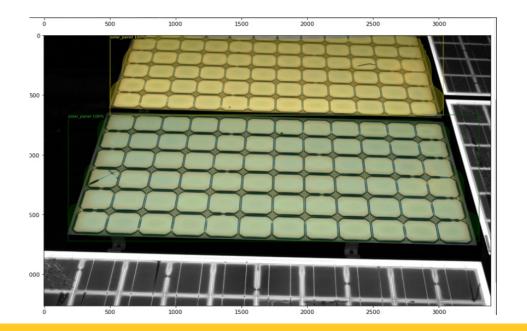
age = 10 years Mono PERC, System age = 4 years

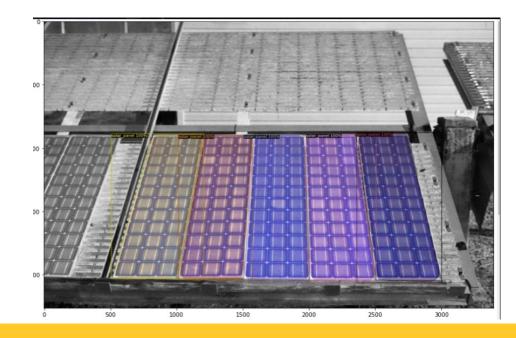


Multi AIBSF, System age = 4 years

Cracks • Hot cells



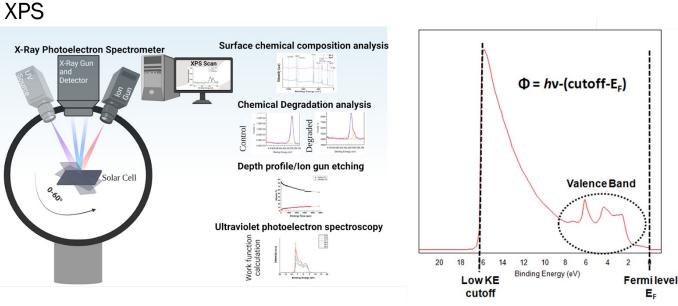

Shingle HIT, System age = 6 years



Automatic module detection and indexing

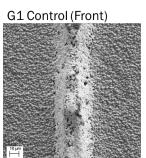
- Building PV degradation ontology model
- Automatically link IV, EL, UVF to specific module under investigation
- Statistical analysis of PV module degradation behavior

Degradation Analysis – Materials Characterization


Cored out sample

Front

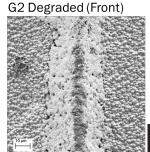
Back



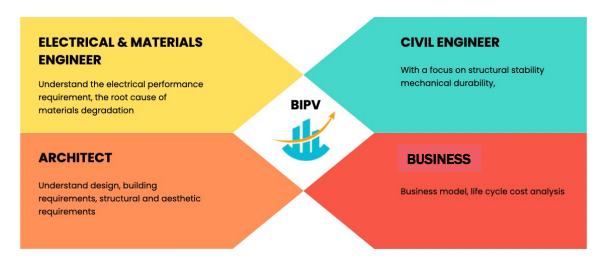
FTIR Reflection FTIR Microscopy 3200 2700 1200 220 Wavenumber (cm⁻¹

The Shimadzu AIM-9000 Infrared Microscope system

Objective-Determine degradation processes as work function changes Methods-XPS surface analysis, XPS etching and UPS analysis


SEM

G1 Degraded (Front)


G2 Control (Front)

Challenges and Opportunities

• Challenges with performance

monitoring in a building

integrated/applied scenario

• Understanding root cause vs.

global degradation rate estimation

Challenge with long-term field

testing

Thanks! Questions?

mengjie.li@ucf.edu

Funding

SOLAR ENERGY TECHNOLOGIES OFFICE U.S. Department Of Energy

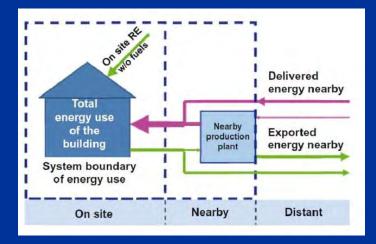
Award number: DE-EE-0009347 DE-EE-0008155

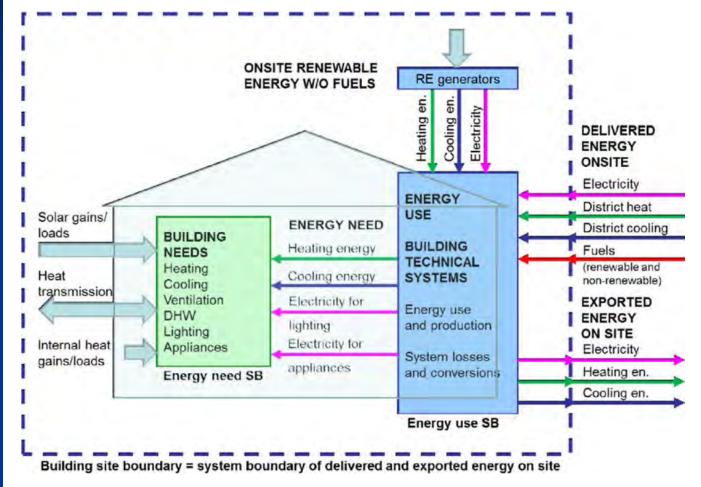
European perspectives regarding BIPV energy performance, technical solutions, building physics, circularity

Targo Kalamees, Tallinn University of Technology, Estonia

Thanks to Martin Talvik (TalTech), Roofit, Solarstone, Naps Solar, Go Vertic, Timbeco

Targo Kalamees


- 2009, Professor of Building Physics at Tallinn University of Technology, Estonia
- 2006, PhD "Hygrothermal criteria for design and simulation of buildings"
- Nearly Zero Energy Buildings research group
 - Staff: 39 persons
 - 3 (4) professor, 15 senior researchers (PhD)
 - 11 early stage researchers (PhD candidates)
 - Research topics:
 - Building physics
 - Energy performance of buildings
 - Indoor climate
 - Building services
 - Renovation of buildings
 - Some architectural elements like acoustics, solar shading, and daylight

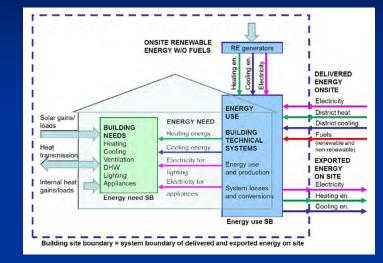


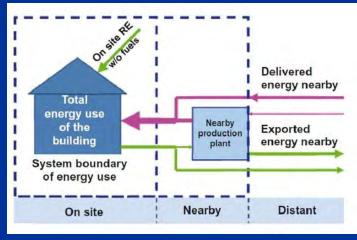
Energy performance of buildings

- Buildings need
- Energy need
- Energy use
- Delivered energy
- Heat loss and gains
- Onsite renewable energy w/o fuels
- Energy export

Energy performance indicator, kWh/(m²·a)

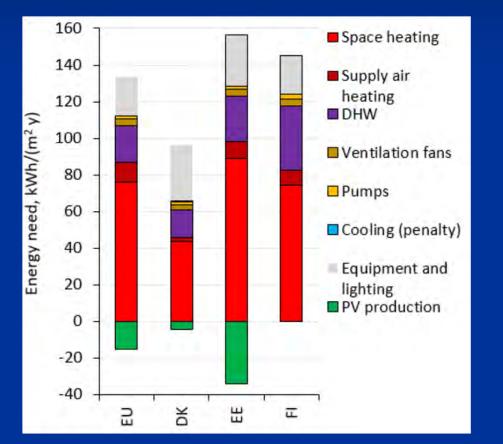
• EPBD \rightarrow primary energy use, kWh/(m²·a)


- Heating
- Cooling
- Ventilation
- Domestic hot water
- Appliances
- Lighting
- Service systems

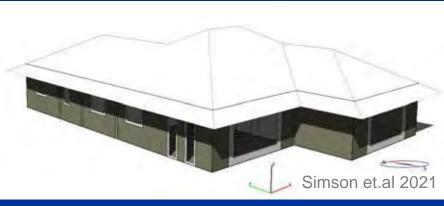

$$EPI = \frac{\sum_{i} (Q_i \cdot f_i)}{A_{net}}$$

Electricity

Energy carrier	PE factors, -			
	EC	DK	EE	FI
Electricity	2.3	1.9	2.0	1.2
District heating	1.3	0.85	0.65	0.5
Natural gas	1.1	1.0	1.0	1.0

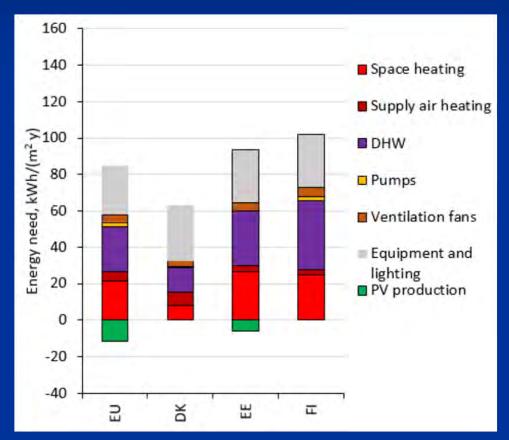


Energy performance indicator, kWh/(m²·a)


Building type	A (with PV)	(with PV) B (w/o PV) C		D	Е
	nZEB	LEB	Major renovation		
Detached house <120 m ²	145	165	185		
Detached house 120–220 m ²	120	140	160		
Detached house >220 m ²	100	120	140		
Apartment building	105	125	150		
Office building	100	130	Ruilding codo		
Hotel	145	170	Building code requirement for new		\/
School	100	120	building in Estonia: • EPC "B" \leq without PV • EPC "A" \leq with PV		
Kindergarten	100	120			
Hospital	100	130			

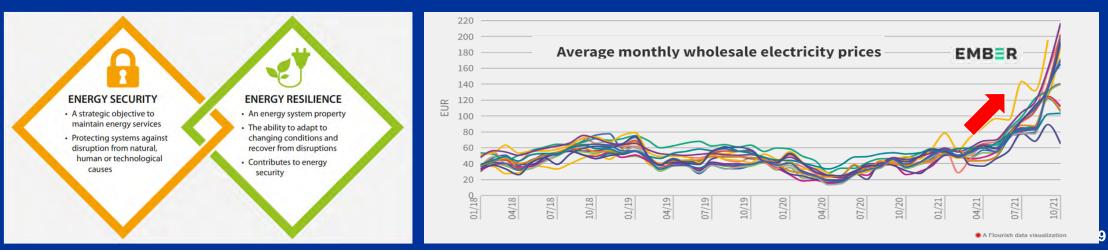
A comparative analysis of nZEB requirements

Detached house



A comparative analysis of nZEB requirements

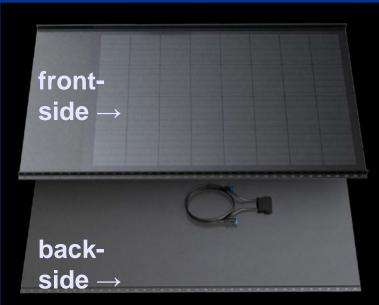
Apartment building


Electricity use in standard conditions

Building type	Use h/24h	time d/7d	Use rate	Lighting W/m ²	Appliances W/m²
Detached house <120 m ²	24	7	0.6	6	3
Detached house 120–220 m ²	24	7	0.6	6	2.4
Detached house >220 m ²	24	7	0.6	6	2
Apartment building	24	7	0.6	8	3
Office building	11	5	0.55	10	12
Hotel	24	7	0.4	10	1
School	8	5	0.5	12	8
Kindergarten	12	5	0.4	12	4
Hospital	13	5	0.6	10	4

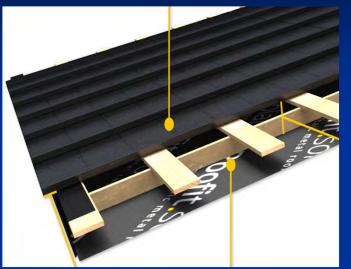
Need for PV

 nZEB means a building that has a very high energy performance. The nearly zero or very low amount of energy required should be covered to a very significant extent by energy from renewable sources, including RES on-site or nearby;


- Electricity price;
- Energy security;
- Energy resilience

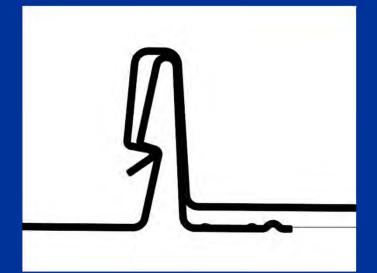
Examples of BIPV

Roofit Solar


- Looks like a regular steel roof.
- Suitable for historical and protected buildings.

Roofit Solar

- Looks like a regular steel roof.
- Suitable for historical and protected buildings.


Rated power Technology Efficiency Fire rating Seaming Double Seam solar roof module 110W / 135W / 160W Mono PERC 150 W/m² Class A (Highest) Double Seam

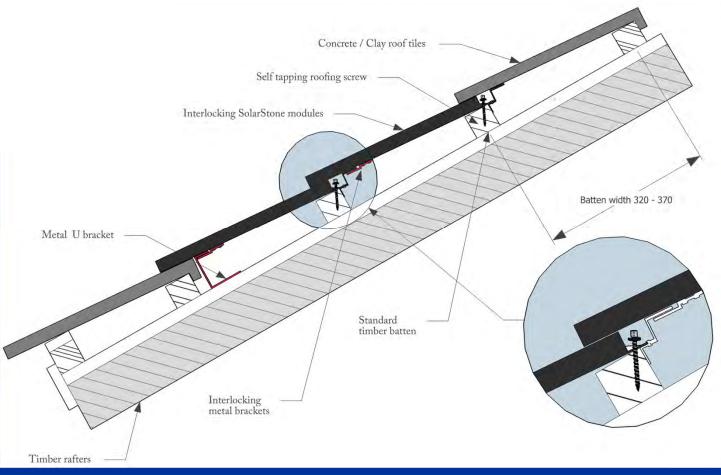
Click solar roof module 155W / 235W Mono PERC 160 W/m² Class A (Highest) Click

Roofit Solar

- Looks like a regular roof.
- Suitable for historical and protected buildings.

SolarStone

Solar Tiled Roof


Looks like a regular stone roof.

SolarStone

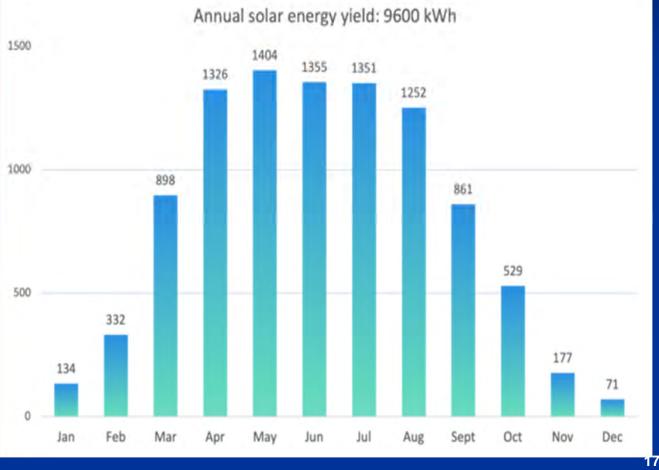
- Solar Tiled Roof
- Looks like a regular stone

SolarStone

Solar Full Roof

SolarStone

Solar Full Roof



SolarStone

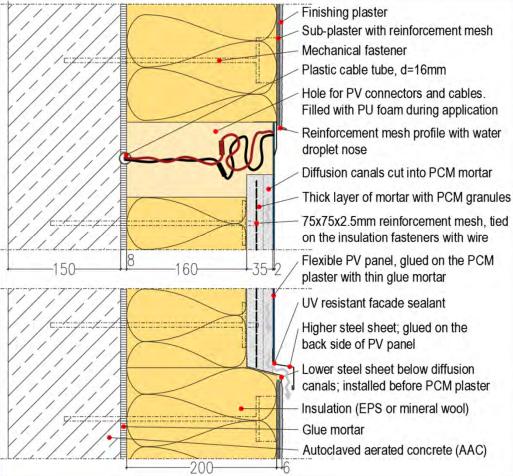
- 10.6 kWp roof
- 9600 kWh per year (real data 2020)

- Go Vertic
 850 € / kWp
 - 16 kg/m²

En-Activ ETICS

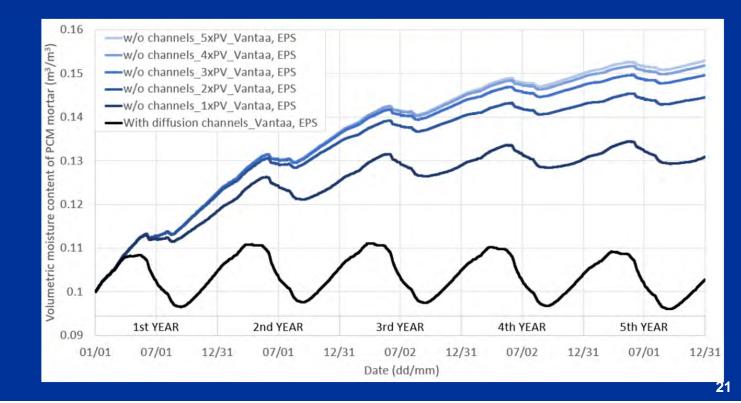
EnActive ETICS

Energy activating traditional ETICS/EIFS with flexible PV panels and PCM

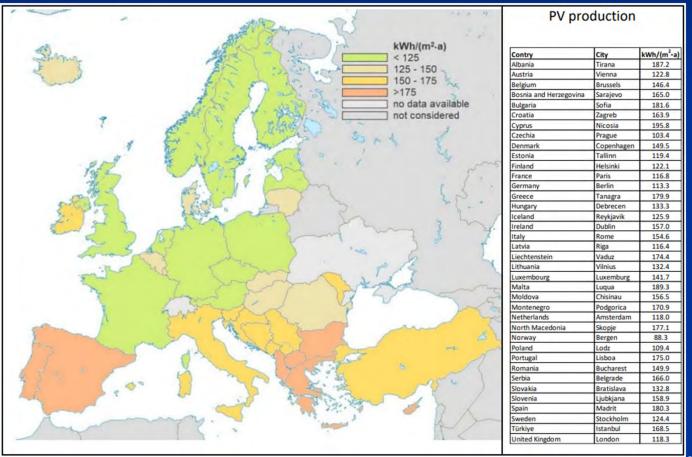

Both for renovation and new buildings

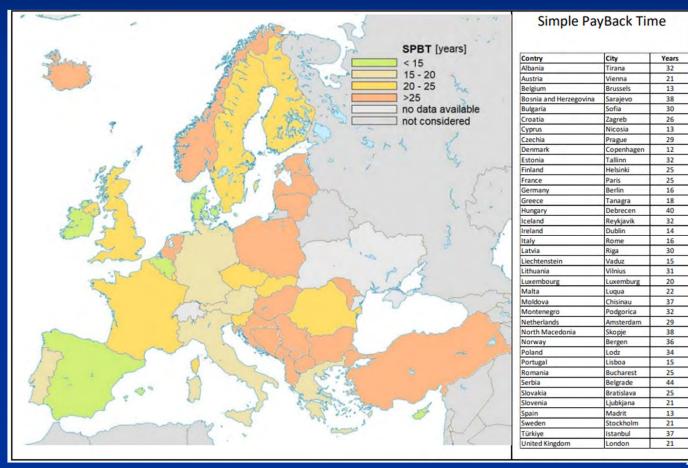
- Overheating of PV panels
 - Using PCM for passive cooling
- Vapor tight outer layer (flexible PV panel)
 - Diffusion channels for drying out excess moisture

EnActive ETICS concept



EnActive ETICS


- Importance of diffusion channels
 - Modelled results with and without diffusion channels
 - Using diffusion channels makes it possible to apply multiple PV panels side-by-side.


EnActive ETICS

- Electricity output of PV façade
 - South facing facade

EnActive ETICS

 Simple payback time is highly dependent of electricity price

EnActive ETICS - CONCLUSIONS

Adding vapour-tight PV panel as an outermost layer of ETICS facade promises to be hygrothermally safe only if there are diffusion channels created behind the PV panel.

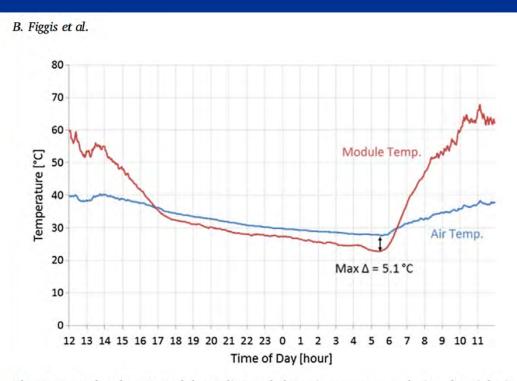
PCM managed to reduce PV panel peak temperatures below 80°C

- Integrating PV panels into ETICS facades makes economical sense.
 However, payback time calculations are hugely dependent of electricity prices.
- Besides PV, most expensive component is PCM mortar

Gullbrekken et.al. 2015

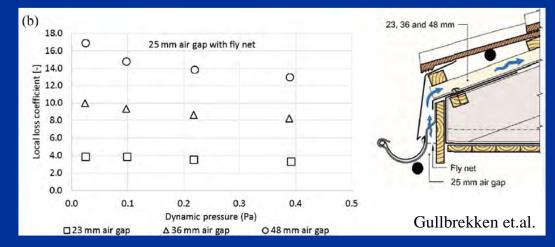
Rain tightness of BIPV systems, See Breivik et.al 2013 Large-scale experimental wind-driven rain exposure investigations of building integrated photovoltaics; Solar Energy, 2013;900:179-187; Fedorova et.al 2021 Quantification of wind-driven rain intrusion in building-integrated photovoltaic systems Solar Energy 2021,230:376-389

Gullbrekken et.al. 2015


Rain tightness of BIPV systems,
Snow and ice: ~3% loss in power production

At the Regional Test Center in Williston, Vermont, researchers are examining how framed (in the background) and frameless (in the foreground) solar photovoltaic modules handle snowy conditions. | Photo Courtesy: Sandia National Laboratories

Gullbrekken et.al. 2015


- Rain tightness of BIPV systems
- Snow and ice
- Condensation on the rear side of a PV: ventilation of the air gap between the modules and the underlayer roof is necessary in order to dry out the water;
- Underlayer roof: s_d-value of a wind barrier should be less than 0,5m (SINTEF)

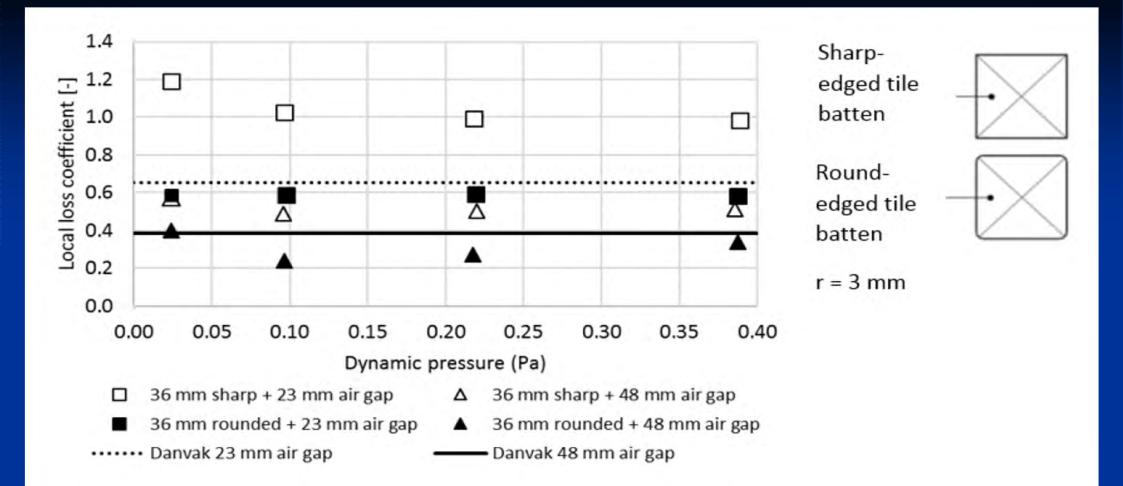


Fig. 2. Example of a PV module cooling to below air temperature during the night in Doha. Blue line = air temperature, red line = module back-surface temperature.

Gullbrekken et.al. 2015

- Rain tightness of BIPV systems
- Snow and ice
- Condensation
- Underlayer roof
- Venting below the BIPV:
 - The inclination (25°, 45°, 70°, 90°)
 - the air gap of the roof was varied (0.23m, 0.115m and 0.06m);

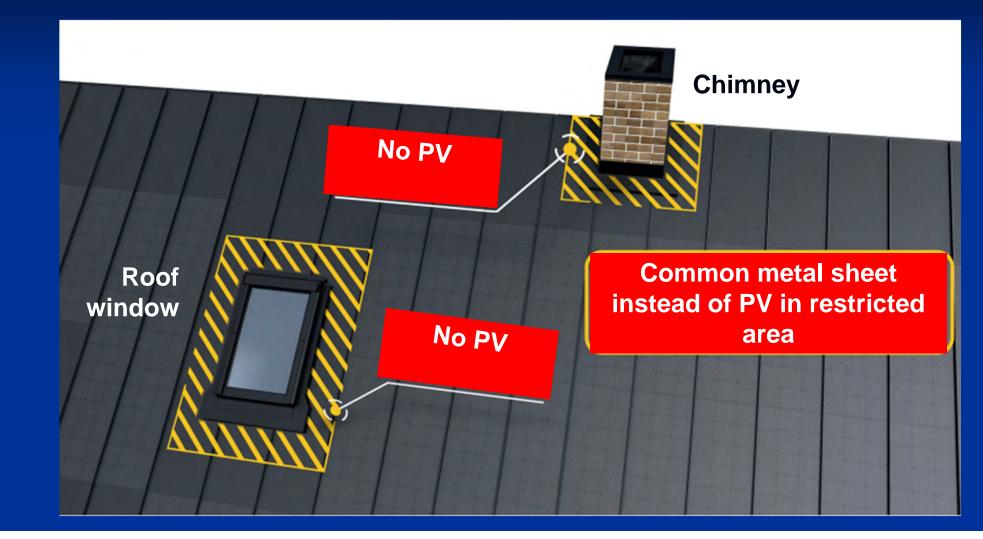


Figure 22. Local loss coefficient for sharp-edged and round-edged battens with different air gaps and dynamic air pressure of the airflow passing the tile batten. "Danvak" means values calculated from Hansen et al. (2013).

Roof length		m	7.5	10	15	20	30	60
Britain	Inlet/outlet	mm	25	25	25	25	25	25
	Height channel Inlet/outlet	mm	50 40	50 50	50 75	50 100	50 150	50 300
Germany	Height channel	mm mm	40	50	75	100	150	300
Canada	Inlet Height channel	mm mm	50 50	70 70	100 100	135 135	200 200	400 400
USA	Inlet Height channel	mm mm	50 50	70 70	100 100	135 135	200 200	400 400
Finland	Inlet Height channel	mm mm	15 100	20 100	30 100	40 100	60 100	120 120
Norway	Inlet/outlet Height channel	mm mm	36 36	72 72	98 98	-	-	-
New	Inlet	mm	23	36	73	98	148+11	-
guidelines for Norway	Height channel	mm	23	36	73	98	148+11	- Gullbrekken et.al.

Fire safety

BIPV on prefabricated insulation element

Q/A

Targo Kalamees,

Tallinn University of Technology, Estonia +37256284007 targo.kalamees@taltech.ee