

North American Energy Resilience Model (NAERM) Program

Ali Ghassemian (DOE Office of Electricity), John Grosh (Lawrence Livermore National Laboratory), JP Watson (Lawrence Livermore National Laboratory), Russell Bent (Los Alamos National Laboratory)

February 15, 2023

⇒ Introduction to NAERM (Ali Ghassemian – DOE OE)

Current State of NAERM (John Grosh – LLNL)

Wildfire Use Case (JP Watson – LLNL)

Cold Wave Use Case (Russell Bent – LANL)

Q&A

2

The U.S. energy infrastructure faces many threats

North American Energy Resilience Model (NAERM)

Vision: Rapidly predict energy system interdependencies, consequences, and responses to reduce risk of extreme events at a national scale

Mission: Develop and deploy engineering-class modeling system for planning and near real-time resilience analysis

Key Objective: Catalyze partnerships with industry, national labs, states/communities, and other federal agencies to enhance coordination to support energy resilience

Team: DOE, LLNL, PNNL, ORNL, LANL, ANL, SNL, NREL, INL

National Labs Contributing to NAERM

Introduction to NAERM (Ali Ghassemian – DOE OE)

➡ Current State of NAERM (John Grosh – LLNL)

Wildfire Use Case (JP Watson – LLNL)

Cold Wave Use Case (Russell Bent – LANL)

Q&A

3

NAERM workflow

Multi-Infrastructure Planning Modeling

Analyze options to affect energy resilience, improve rapid restoration and recovery, and enable risk-informed planning and coordination to mitigate large-scale energy disruptions (e.g. earthquakes, wildfires).

Data and Analytics

Store and analyze wide range of data to support resilience analysis. Data layers include modeling databases for bulk electric system, generation, natural gas pipelines; cell, fiber communications; weather forecasts, icing; hospitals, roads. Analytics include graph analysis and machine learning (ML).

Software and Computing Architecture

Enable a complex, multi-component software system focused on security, integration, scalability, and open architecture that leverages existing commercial and open-source software and commercial and government cloud services.

3

NAERM builds on 50+ projects / technologies from DOE, government agencies, and industry

Sponsors DOE OE	Labs	Partial List of Tech Contributions to NAERM
DOE EERE	ANL	HELICS co-simulation framework
DOE GMI	INL	Extreme events modeling
DOE CESER	LLNL	Solar, wind, and load forecasting
DOE FE	LANL	 Modeling distributed energy resources
DOE NNSA	NREL	Communications modeling
DOE LDRD	ORNL	Natural gas pipeline modeling
DOE GDO	PNNL	Dynamic and worst-case contingency analysis tools
DHS	Sandia	Situational awareness tools
ARPA-F	Vendors	 Validation, verification, and UQ
DARPA		Commercial power flow solvers

U.S. DEPARTMENT OF ENERGY OFFICE OF ELECTRICITY

DOS

)

Infrastructure Modeling

Under Development

Integrated

Bulk Electric System Modeling

Commercial and lab tools:

- PowerWorld
- PSS/E
- Dynamic Contingency Analysis Tool (initial integration)

Modeling capabilities:

- Steady-state
- Transient (for limited use cases)
- Commitment and dispatch modeling (initial integration)
- High-k N-k contingency analysis (prototype)
- AGC (prototype)

Example of Data Layers Used:

- WECC, ERAG, and ERCOT planning models
- Real-time EMS and telemetry data (under development)

Natural Gas Modeling

Lab Modeling Tools:

- NGFast
- NGTransient
- GasModels

Modeling Capabilities:

- National Steady-state models
- Regional Transient models

Example of Data Layers Used:

- DHS HIFLD
- Genscape

Datasets

Elect	ric System	¢\$ ^
	Bus	• •
	Branch	\mathbf{X}
	Generator	••
	DC Transmission Lines	$\overline{)}$
	HIFLD Substations	•
	HIFLD Power Plants	•
	HIFLD Transmission Lines	\sim
	HIFLD Electric Service Areas	
	Balancing Authorities	
	Load/Generation By BA	$\bigcirc \bigcirc \bigcirc$
	Forecasted Load	•••
	Forecasted Solar Generation	•••
	Forecasted Wind Generation	

Natu	ral Gas	^
Natura	al Gas Model	
NG	FAST	~
	Power Plants	
	Compressor Stations	
	Processing Plants	A
	Border Points	
	Underground Storage	
	Interstate Pipelines	\sim
	Receipt Delivery Points	A
	HIFLD Natural Gas Receipt Delivery Points	•
Com	munications	¢
Comm	unication Model	
NA	ESCCM	~
	Cellular Sites	
	Central Offices	
	Microwave Sites	
	Control Centers	
	Fiber Regen	1.1
	Fiber	\sim
	Fiber Routes	

^

Weat	ther / Natural Hazards ^	
	NIFC Active Wildfires 🔶 🌒 🗟	
	Pyregence Forecasted Wildfires ● ● ● ●	
	USGS Earthquakes 🔷	
0	USFS Fire Potential Index	
	NWS Flood Monitor	
	NWS Storm Surge	
	NWS Ice Accumulation	
0	NWS Drought Monitor 🔶 🔶 🌰 🌰	
	NWS Radar Precipitation	
	NWS Day 1 Convective Outlook	
	NWS Temperature	
	NWS Weather Warnings	
	NWS Windspeed	
	NWS Tornado	
0	NASA FIRMS Wildfires	
	NWS 5-Day Outlook	
	NOAA GOES-16	
	NWS Cyclone Tracks	
	EPA Smoke	
0	SPIA	
0	SPIA Ice Accumulation	
0	SPIA Precipitation	
0	SPIA Snowfall	
0	SPIA Temperature	
0	SPIA Wind Direction	
0	SPIA Wind Speed	

Refe	rence	^
	Roads	\times
	Rails	\mathbf{x}
	Hurricane Evacuation Routes	\times
	Protected Areas: Designation	٠
	Protected Areas: Easement	٠
	Protected Areas: Fee	٠
	Protected Areas: Marine	٠
	Protected Areas: Proclamation	٠
	Ethanol Plants	
	FDIC Insured Banks	
	Fire Stations	
	Hospitals	
	Law Enforcement Locations	
	Military Bases	
	NCUA Insured Credit Unions	
	Oil Refineries	
	Petroleum Terminals	
	Wastewater Treatment Plants	

U.S. DEPARTMENT OF OFFICE OF ELECTRICITY

NAERM team is developing capabilities at the National Level

• Demonstrate how modeling and analytics can be used to support transformational resilience investments

• Rapidly demonstrate the type of studies, metrics, and threats that can be analyzed, then engage stakeholders to improve outcomes

- Focus on regional use cases that can be extended to other parts of the country
- Coordinate with other DOE R&D to extend analysis capabilities (e.g., energy equity)

Technical assistance use cases briefed today

JP Watson, LLNL Kaarthik Sundar, LANL

Northeastern Cold Wave

Greg Brinkman, NREL Russell Bent, LANL

Introduction to NAERM (Ali Ghassemian – DOE OE)

Current State of NAERM (John Grosh – LLNL)

⇒ Wildfire Use Case (JP Watson – LLNL)

Cold Wave Use Case (Russell Bent – LANL)

Q&A

Wildfire Threat Analytics: Impacts Projection and Mitigation

Approach:

- Wildfires are amplifying in intensity, frequency, and extent of wildfires in the US
- Changes in the above metrics will impact the benefits associated with various proposed mitigation options
- Critical to focus on how wildfire threats are *going* to manifest, rather than how they manifest presently
- Climate-impacted (future) weather data is required for high-fidelity modeling

Benefits:

- Quantification of future wildfire impacts on Western Interconnect infrastructure
- Maximize resilience benefit of hardening investments and other mitigation options

Background: Short-Term Predictive Wildfire Impacts Analysis with NAERM (1)

Snapshot from NAERM UI, visualizing NIFC data

Active wildfire perimeters in the southwestern US on July 7, 2021

NAERM leveraged active wildfire perimeters from NIFC and growth projections from Pyregence to identify infrastructure at risk and estimate impacts

Active Wildfire Hot-Spots

Overall situation: due to heatwave conditions in previous weeks, a rapid increase in the number of fires can be observed, as well as expansion of existing ones. NAERM has identified at least three fires that should be monitored for existing (or potential) impact on US energy infrastructure.

Background: Short-Term Predictive Wildfire Impacts Analysis with NAERM (2)

Snapshot from https://pyregence.org

Pyregence risk forecast on 06/17/2021 UTC 20:00 for wildfires due to bulk transmission equipment (Southern California)

Identical impacts quantification tools were leveraged by NAERM team to identify infrastructure at risk from and impacts associated with <u>potential</u> wildfires

Forecasted Wildfires Hotspots California

Overall situation: Provided transmission fault caused fire risk forecast is for 6th of July and covers the state of <u>California</u>. With the dry conditions the risk of ignition continues to rise. NAERM has identified potential high-impact regions from energy infrastructure perspective.

Enabling Capabilities

Analytic Outputs

- Ingestion of wildfire risk sources
 - Historical, forecasted, climate-impacted
 - Vegetation density
- High-impact contingency identification within high-risk areas
- Co-simulation (time-stepped) of BES and NG to determine cascades and quantify impacts
- Customizable Jupyter notebooks
 leveraging extensive NAERM back-end

- Impact metrics
 - Load lost
 - Voltage violation
 - Transmission rating violation
 - Generator trips / re-dispatch
 - Generation headroom
- Investment recommendations
 - Optimal allocation of limited resources for hardening, e.g., lines to underground
 - Characterization of cost vs. impactreduction trade-off curve

Risk = Relative Likelihood of Event Occurrence

Capability Demonstration: Monument Wildfire (1)

Identification and analysis of high-impact contingencies associated with wildfires ultimately supports optimal allocation of infrastructure hardening budgets

Monument is a wildfire in Northern California, started in July 30 2021 (due to lightening strike)

- Limited impacts on BES and NG infrastructure...
- ... but exhibits full spectrum of impacts
- Enable straightforward verification and validation

Capability Demonstration: Monument Wildfire (2)

NAERM focuses on analysis of extreme events, which yield contingencies with high "k"

Ensures simulation in contexts with k >> 10 outaged components

- Black: direct outage
- Red: cascade outage
- Green: load lost
- Purple: violations

Capability Demonstration: Monument Wildfire (3)

Significant fire and emergency facilities directly impacted by the wildfire, and many potentially impacted in surrounding area

Investment optimization algorithms indicate a limit to benefits of hardening *existing* assets

Key Wildfire Data Sources

https://pyrecast.org

https://glad.umd.edu/dataset/gedi/

NIFC – historical wildfire perimeter archive

Forecasted wildfire risk sources (USGS, Pyregence, and numerous others) Vegetation density layers to inform fragility curve development (NASA/GEDI)

High-Impact Contingency Identification Analytics

Number of BES and NG components in high-risk wildfire regions is significant

Hardening everything in a high-risk region is costprohibitive Use rigorous optimization analytics to identify subsets of *critical* components

Combinatorics prevents naïve critical component identification approaches from working Outaging a small subset of components in a high-risk region often leads to large-scale impacts

<u>Critical component</u> <u>identification forms the</u> <u>basis for optimal</u> <u>investment / hardening</u>

Capability Demonstration: Bay Area (1)

Consideration of wildfire risk maps in impacts analytics enables (1) consideration of larger high-risk wildfire regions and (2) inclusion of climate impacts

- Demonstrates use of wildfire risk maps...
- ... as opposed to historical impacts
- Broader impacts on BES and NG infrastructure

Capability Demonstration: Bay Area (2)

28

Capability Demonstration: Bay Area (3)

Interdependency analysis provides a "picture beyond MW demand" relating to what functionality may be lost during a contingency

Hardening a modest number of components yields significant reductions in impacts – but tens of components must be hardened to mitigate <u>all</u> impacts

In-Progress: Climate Impacts and Hardening Recommendations

Climate is projected to significantly impact wildfire risk – due to shifts in both intensity and location

Through the Pyregence consortium, we will be acquiring and analyzing climate-impacted wildfire risk maps for 2030 and beyond Investment planning is driven by understanding and analysis of costversus-risk tradeoffs

Algorithms underlying NAERM high-impact contingency identification analytics will provide recommendations for hardening investments

Introduction to NAERM (Ali Ghassemian – DOE OE)

Current State of NAERM (John Grosh – LLNL)

Wildfire Use Case (JP Watson – LLNL)

➡ Cold Wave Use Case (Russell Bent – LANL)

Q&A

New England Cold Wave Co-simulation of Electric Power and Natural Gas

Need:

- New England has experienced several cold weather events over the last decade that have caused tight generation and gas supplies
- Assess the resilience (N-k) of combined electric power and natural gas systems during extreme cold weather
- Evaluate the resilience benefits of mitigation and investment options

Benefits:

 Inform energy planners on compounding risk of cold weather impacts to generation infrastructure, increased demand, and guide mitigation strategies for these scenarios

Approach:

- Regional focus on Northeastern United States
 - Generalize to other parts of the country
- Identify cold weather events over the last decade that have impacted actual system
- Identify candidate N-k contingencies that would have exacerbated capacity limitations during the collected cold weather events
- Perform co-simulation of the electric power and natural gas system

OFFICE OF

- Work with stakeholders to assess proposed mitigation investments, inclusive of:
 - Dual fuel units
 - Wind turbine winterization
 - Increased LNG capacity
 - Electrification and demand flexibility

Use Case Summary

- Cold Weather Event: Winter Storm Grayson (early January 2018)
- Co-simulate what <u>could have</u> happened during Grayson had additional failures occurred
 - Natural gas pipeline failure scenarios
 - Scenarios of power plant outages due to winter weather and gas unavailability
- Use case highlights how NAERM's natural gas pipeline and bulk electric system co-simulation capabilities can be used
- In progress: Evaluation of mitigation options.
- Talk Focus: Underlying technical approach to support such analysis with specific results omitted

Data Inputs: Natural Gas and Electric Power System Models

Interstate Pipelines

Transmission Planning Models

Data Inputs: Cold Weather Characterization

- Select cold weather event
 - Winter Storm Grayson (early January 2018)
- NAERM utilizes wind, solar, demand, and meteorological data from the event
 - Temperature, icing, snow
- NAERM uses actual generator outages from the event OR hypothetical cold weather outages generated from fragility curves

Data Inputs: Cold Weather Characterization

Data Inputs: Cold Weather Characterization

Example: Available generator capacity

Capacity that was unavailable due to cold weather

Mitigation Teaser: Utilize winter weather fragility curves to explore benefits of hardening technologies

Co-Simulation: Procedure

Bus voltage violation change map

NAERM Interface

Simulation Schematic

Co-Simulation: Power Flow Modeling

Power flow software: Powerworld, PSLF, PSEE

NAERM developed (semi) automated redispatch and load shedding

ti	mestep: 49.0				
	voltage		category	counts	
0	BusPUVolt < .9	severe	violation	65	
1	.9 <= BusPUVolt < .95		violation	591	
2	.95 <= BusPUVolt < 1.05		nominal	77036	
3	1.05 <= BusPUVolt < 1.1		violation	4022	
4	1.1 <= BusPUVolt	severe	violation	710	

timestep: 59.0

0

1 2

80000

counts	category	voltage		
67	severe violation	BusPUVolt < .9	0	
599	violation	.9 <= BusPUVolt < .95	1	
77008	nominal	.95 <= BusPUVolt < 1.05	2	
4041	violation	1.05 <= BusPUVolt < 1.1	3	
			1.1	

Before redispatch: Many severe time violations at 109 minutes, diverging powerflow after 109

3 minutes A

	mescep. 103.0			
	voltage		category	counts
0	BusPUVolt < .9	severe	violation	221
1	.9 <= BusPUVolt < .95		violation	772
2	.95 <= BusPUVolt < 1.05		nominal	76889
3	1.05 <= BusPUVolt < 1.1		violation	3848
4	1.1 <= BusPUVolt	severe	violation	694
ti	mestep: -99999			
	voltage		category	counts
0	BusPUVolt < .9	severe	violation	0
1	.9 <= BusPUVolt < .95		violation	0
2	.95 <= BusPUVolt < 1.05		nominal	20
£			minlation	1
3	$1.05 \leq BusPUVolt \leq 1.1$		VIOLACION	

1	.9 <= BusPUVolt < .95	violation	554
2	.95 <= BusPUVolt < 1.05	nominal	76814
3	1.05 <= BusPUVolt < 1.1	violation	4268
4	1.1 <= BusPUVolt	severe violation	719

timestep: 59.0

U.S. DEPARTMENT OF

voltage category counts BusPUVolt < .9 severe violation

Before redispatch: Converging powerflow through the simulation, with voltage violations similar to beginning of simulation.

	voltage		category	counts
0	BusPUVolt < .9	severe	violation	66
1	.9 <= BusPUVolt < .95		violation	554
2	.95 <= BusPUVolt < 1.05		nominal	76998
3	1.05 <= BusPUVolt < 1.1		violation	4092
4	1.1 <= BusPUVolt	severe	violation	714
ti	mestep: 119.0			
	voltage		category	counts
0	BusPUVolt < .9	severe	violation	66
1	.9 <= BusPUVolt < .95		violation	584
2	.95 <= BusPUVolt < 1.05		nominal	77030
3	1.05 <= BusPUVolt < 1.1		violation	4033
4	1.1 <= BusPUVolt	severe	violation	711
ti	mestep: 120.0			
	voltage		category	counts
0	BusPUVolt < .9	severe	violation	66
1	.9 <= BusPUVolt < .95		violation	584
2	.95 <= BusPUVolt < 1.05		nominal	77030

Co-Simulation: Natural Gas Modeling

Natural gas software: Lab developed software

- Steady-state (NG Fast)
 - National-scale, computationally efficient screening tool to identify events of interest and concern
- Transient-state (GasModels, NGTransient)
 - Physics-based, high fidelity model of the dynamics of gas flow in pipelines to calculate the spatiotemporal evolution of disruptions and key physical quantities like pipeline pressure

Resilience Evaluation

<u>Develop contingency scenarios and</u> <u>evaluate impacts through co-simulation</u>

- To-date, we have evaluated
 - Generator outages that occurred during Grayson with...
 - Two pipeline outage scenarios, one on the Tennessee pipeline and one on the Iroquois pipeline

FI ECTRIC

Gas System Emergency Compensation Sources for the Tennessee Gas Pipeline disruption (mmcfd)

Mitigation and Investment Evaluation

Forthcoming...

In combination with plans for the future of energy delivery in New England

- Evaluate conversion to dual fuel units
- Evaluate wind turbine winterization
- Evaluate Increased LNG capacity
- Evaluate Electrification and demand flexibility
- Other stakeholder priorities...

Introduction to NAERM (Ali Ghassemian – DOE OE)

Current State of NAERM (John Grosh – LLNL)

Wildfire Use Case (JP Watson – LLNL)

Cold Wave Use Case (Russell Bent – LANL)

4