

DER Boot Camp at GridTech CONNECT

11:00 a.m. – 3:00 pm February 7, 2023

San Diego, CA

An EERE collaboration between SETO & WETO

i2x@ee.doe.gov | energy.gov/i2x

PNNL-SA-181625

Agenda

•	i2X and Boot Camp Overview	PNNL	11:00
•	OpenDSS Intro, Examples (Smart Inverters, Local Air Qual	ity) PNNL	11:05
•	OMF Intro, Examples (DER Interconnection Applications)	NRECA	11:20
•	GridUnity Intro, Examples (Automation with CYMDIST)	GridUnity	11:40
•	Lunch Across the Hall	DistribuTech	12:00
•	Form Small Project Teams	PNNL	12:45
•	Work on Small Problems	all	1:00
•	Discussion and Recap	PNNL facilitates	2:30
•	Adjourn		3:00
•	Pre-requisites:		

- Bring a laptop. (OpenDSS may require local installation and Python)
- Optional pre-readings: <u>https://cigre.ca/papers/2021/paper%20460.pdf</u>, https://ieeexplore.ieee.org/document/5275253, https://ieeexplore.ieee.org/document/985677

i2X Key Elements

Mission: To enable a simpler, faster, and fairer interconnection of clean energy resources all while enhancing the reliability, resiliency, and security of our electric grid.

Stakeholder Engagement

Nation-wide engagement platform and collaborative working groups

Data & Analytics

Collect and analyze interconnection data to inform solutions development

Strategic Roadmap

Create roadmap to inform interconnection process improvements

Technical Assistance

Leverage DOE laboratory expertise to support stakeholder roadmap implementation

energy.gov/i2x

IEEE P1729, Recommended Practice for Electric Power Distribution System Analysis

- Hosting capacity analysis (HCA) for small, medium, and large utilities
- Distribution system dynamics, using electromagnetic transient (EMT) tool running at Δt ≥ 100 µs
- To ballot by September 30, 2023
- Collaborating with CanmetENERGY
- See <u>https://standards.ieee.org/ieee/1729/10759/</u>

energy.gov/i2x

Commonly Applied Boundary Parameters

- Thermal limits (overloading of feeder equipment or conductors)
- Voltage limits (steady-state)
- Rapid voltage changes (dynamic variations)
- Impact on voltage regulators and tap changers operation
- Reverse power flow

Advanced Boundary Parameters

- Protection
 - ➢ Reach reduction
 - ➤ Sympathetic tripping
- Harmonics
 - Individual harmonics
 - ≻ THD/TDD

Figures from: <u>https://cigre.ca/papers/2021/paper%20460.pdf</u>

Δ

i2x Guide to Interconnection Studies of Renewable DER, replacing the outdated IEEE Guide for DER Impact Studies

IEEE STANDARDS ASSOCIATION

IEEE Guide for Conducting Distribution Impact Studies for Distributed **Resource Interconnection**

IEEE Standards Coordinating Committee 21

Sponsored by the IEEE Standards Coordinating Committee 21 on Fuel Cells, Photovoltaics, Dispersed Generation, and Energy Storage

New York, NY 10016-5997

IEEE Std 1547.7[™] 2013

ا 🚯

- Assumptions and Criteria •
- **Standards and Guidelines**
- Data Collection
- Model Development and Validation
- Analytical Steps and Automation
- **DFR Interconnection Studies**
 - Screening
 - Impact
 - Facility
- Hosting Capacity Studies (consistency)
- Multi-DER (Feeder Cluster) Studies
- Influence of Storage and Chargers
- When to use EMT (or Dynamics)
- Aggregating DER for Bulk System Studies
- Sub-transmission vs. Distribution Connections
- **Report Formats**

IEEE

3 Park Avenue

PNNL's OpenDSS Examples

- Choose either a radial system or an urban low-voltage network
- How much more PV can you connect to the chosen system?
 - What evaluation criteria will you consider?
 - What data and tools do you need?
 - Result: a list or pattern of sizes and locations
 - Evaluation: how could the result or process be improved?
- OpenDSS models, with Python front end, to assist users with:
 - Adding PV at existing locations
 - Setting parameters for capacitors, regulators, and smart inverters
 - Choosing from a list of load and PV profiles
 - Executing solutions in daily mode at 1-minute steps
 - Outputs: min and max customer voltages, max voltage fluctuations, overloaded components as measured by "energy exceeding normal"
- Focus on IEEE 1547 Category A vs. B, and the effect of inverter control modes
- See https://github.com/pnnl/i2x for instructions and downloads

OpenDSS Radial System: IEEE 9500-Node Test Case

- 12.47 kV, 3 substations, 3 feeders
- 13,669 kW peak load
- 12 Synchronous Machines
 - Total rating is 7060 kW, 9112 kVA
 - Dispatched to 1210 kW grid-connected
 - Includes 150 kW (225 kVA) permanentmagnet wind turbine generators
 - Displace the fossil-fuel generators with PV to improve local air quality?
 - Discuss possible impact on grid reliability
- 178 PV Inverters, 2955 kW
- 2 Batteries, 500 kW

Reference: <u>https://cmte.ieee.org/pes-testfeeders/wp-content/uploads/sites/167/2022/03/9500-Node-PES-TPWRS-Paper-2022.01.14.pdf</u> Models: <u>https://github.com/GRIDAPPSD/CIMHub/tree/feature/SETO/ieee9500</u>

energy.gov/i2x

OpenDSS Urban System: IEEE Low-Voltage Network

- 13.2 kV, 8 primary feeders
- 42,210 kW peak load
- 8 PV Inverters, 8000 kW
 - Verify network protectors do not trip on reverse flow
 - How much more PV could be added?

Reference: <u>https://doi.org/10.1109/PESGM.2014.6939794</u> Base Model: <u>https://github.com/GRIDAPPSD/CIMHub/tree/feature/SETO/lv_network</u> With PV: <u>https://github.com/GRIDAPPSD/CIMHub/tree/feature/SETO/OEDI/base</u>

