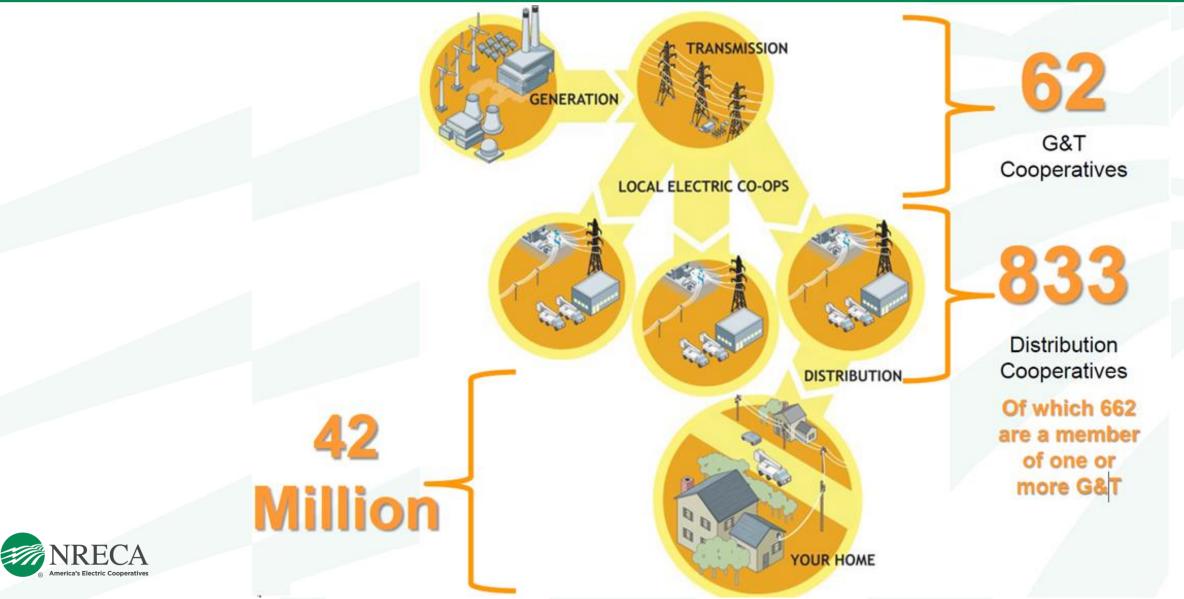
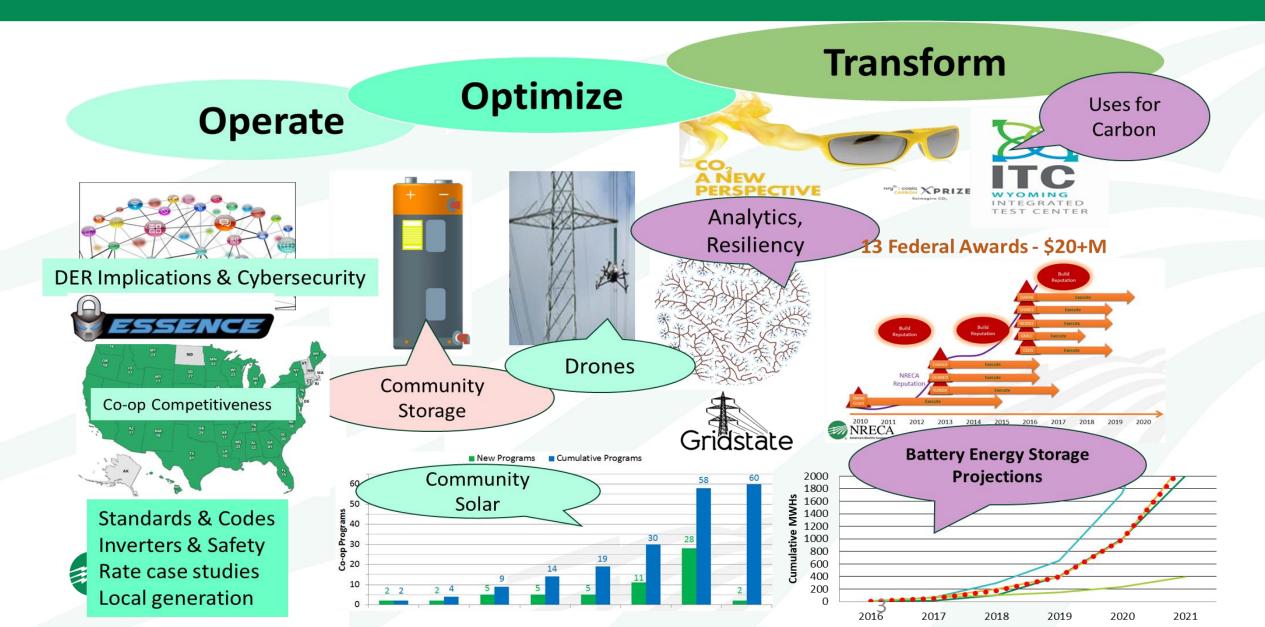
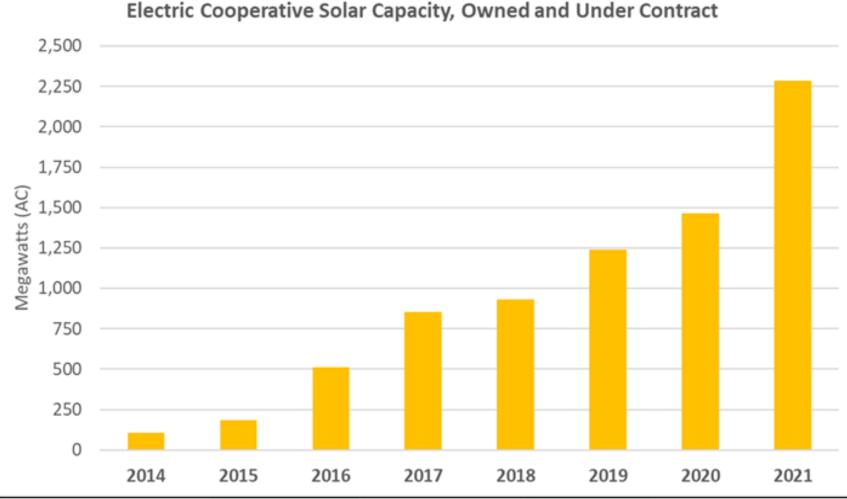
NRECA'S DER Interconnection Work for Cooperatives Open Modeling Framework and others


Fathalla Eldali Sr. Distribution Optimization Engineer

Outline


- Our team (NRECA and BTS)
- DER growth among the cooperatives (co-ops)
- NRECA offerings to co-ops in the DER space
- Open Modeling Framework (OMF)
- DER interconnection applications
 - Completed
 - DER Interconnection in omf.coop
 - Rapid Solar Interconnection automation model (R3IT)
 - Being finalized
 - Model-free Hosting Capacity Analysis (MOHCA)
 - Microgrid Planning Utilizing OMF (Microgrid-UP)
 - Smart Inverters field studies
 - DG Toolkit

National Rural Electric Cooperative Association (NRECA)

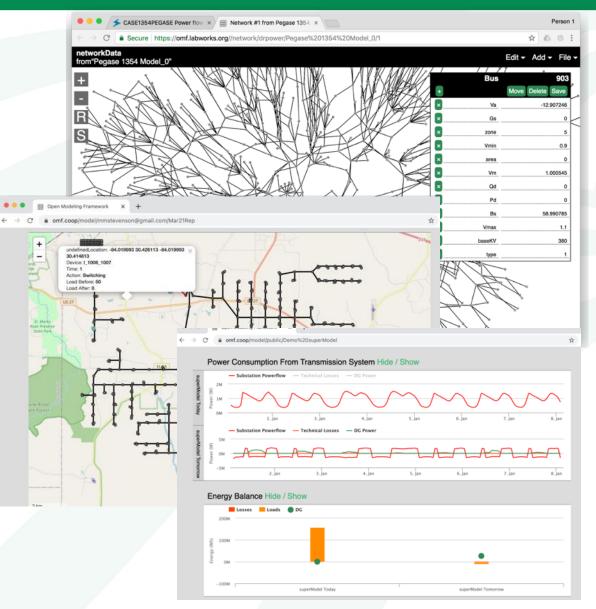


NRECA's BTS Applied Research & Development

Solar Growth in co-ops territories

• As end of 2021, co-ops solar capacity (owned & contracted) more than 2.2 GW

NRECA DER Interconnection Efforts


- NRECA offers tools and resources to help distribution and G&T co-ops nationwide with influx of DER interconnections
- These resources are in form of:
 - Educational materials to DER interconnection standard IEEE 1547
 - <u>DG toolkit</u> (set of documents to handle DG interconnection requests)
 - Software tools to help co-ops process DER interconnection faster and easier
 - DER Interconnection in omf.coop
 - R3IT
 - MOHCA
 - Microgrid UP
 - Smart Inverters alternative settings for voltage regulations here

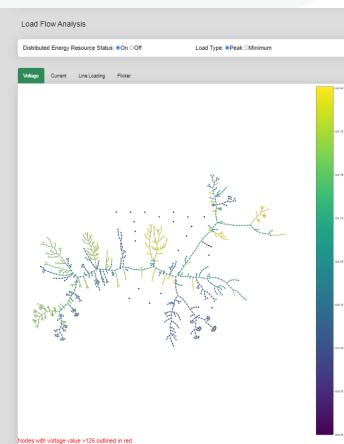
DER Interconnection Tools

• Open Modeling Framework (OMF)

- Web-based modeling platform OMF.coop allows utility access to advanced algorithms and modeling tools via easy graphical interface
- Visualization, data conversion, and model management tools in place
- 100+ utilities active on the platform

Open Modeling Framework DER Interconnection Model

- DER Interconnection Model in OMF
 - carries out key modelling and analysis steps involved in DER impact study including
 - Load Flow computations
 - Short Circuit Analysis
 - Effective Grounding Screenings
 - analysis presented in a static point-ofview of a 24-hr simulation period (not time series analysis)
 - We will walk through an example together towards the end of this session


Model Inputs

Model Input

Model Type Help?	Model Name	User
derInterconnection	DER_Example	· · · · · · ·
Created	Run Time	Feeder
2023-01-26 21:48:15.296421	0:01:30	Open Editor
Added System Name	Generation Step-up Transformer Name	Generation Breaker Name
addedDer	addedDerStepUp	addedDerBreaker
Added System Insolation (W/sf)	Max Line loading(% rating)	Max Voltage Flicker(%)
30	100	2
Max Tap Position Difference	Max Fault Current Difference(%)	Max Fault Voltage at POI(%)
2	10	138
Peak Load (.csv file) optional	Min Load (.csv file) optional	Display Format
Choose File	Choose File	Force Directed
		Delete Run Model Share Duplicate

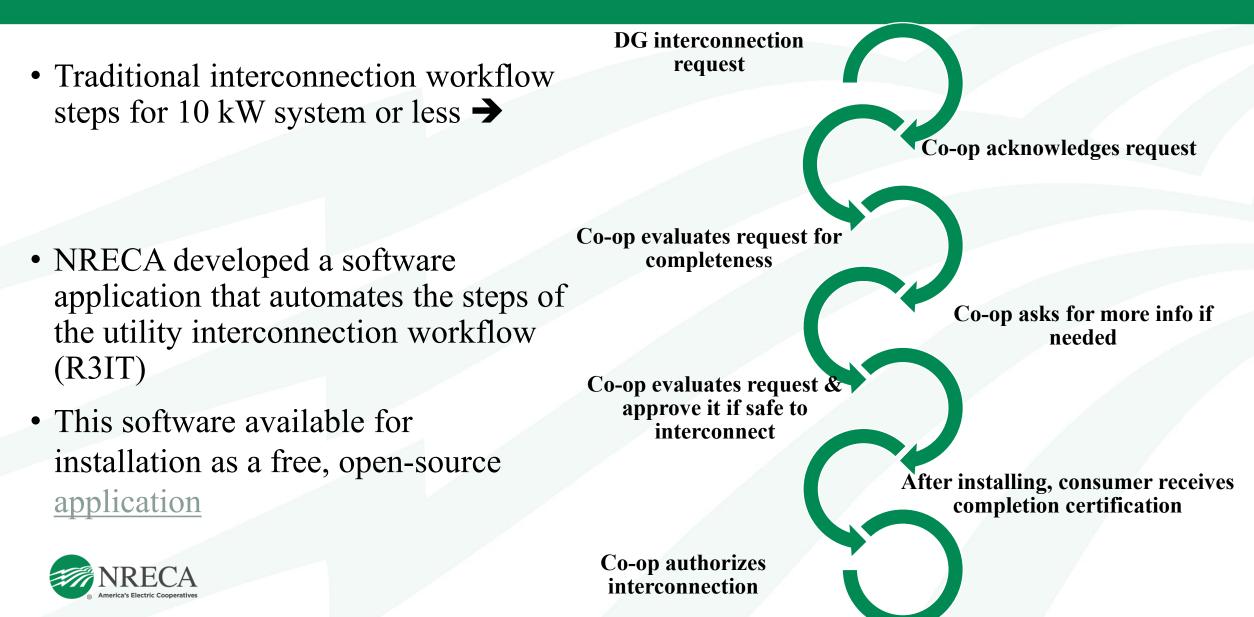
Open Modeling Framework DER Interconnection Model

- DER Interconnection Model in OMF
 - Some Outputs

Maximum and Minimum Voltages

DER Status	Lood Condition	Max Voltage		Min Voltage	
	Load Condition	V	Location	V	Location
On	Peak	7320.39	nodeT624621692451 7038	120.55	node62462225428T6 2462224580
On	Min	7309.85	nodeT624621692451 7038	120.75	node62474204371T6 2474204354
Off	Peak	7325.79	node18410F7423	120.37	node62462058558T6 2462057585
Off	Min	7314.53	nodeT624621692451 7038	120.73	node62474204371T6 2474204354

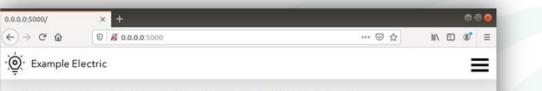
Maximum Voltage Flicker when DER is turned off


Power 🔺 🗸	DER Status 🔺 🕶
504.39	Peak Load, DER On
542.74	Peak Load, DER Off
325.78	Min Load, DER On
350.81	Min Load, DER Off
-	504.39 542.74 325.78

Reverse power flow violations displayed in red

Tap Changes

Load Condition 🔺 🕶	Location 🔺 🗸	Tap Position DER On	Tap Position DER Off	Difference 🔺 🕇
Peak	regulator171929 tapA	2	2	0
Peak	regulator171929 tapB	1	1	0
Peak	regulator171929 tapC	1	1	0
Min	regulator171929 tapA	2	2	0
Min	regulator171929 tapB	1	1	0
Min	regulator171929 tapC	1	1	0

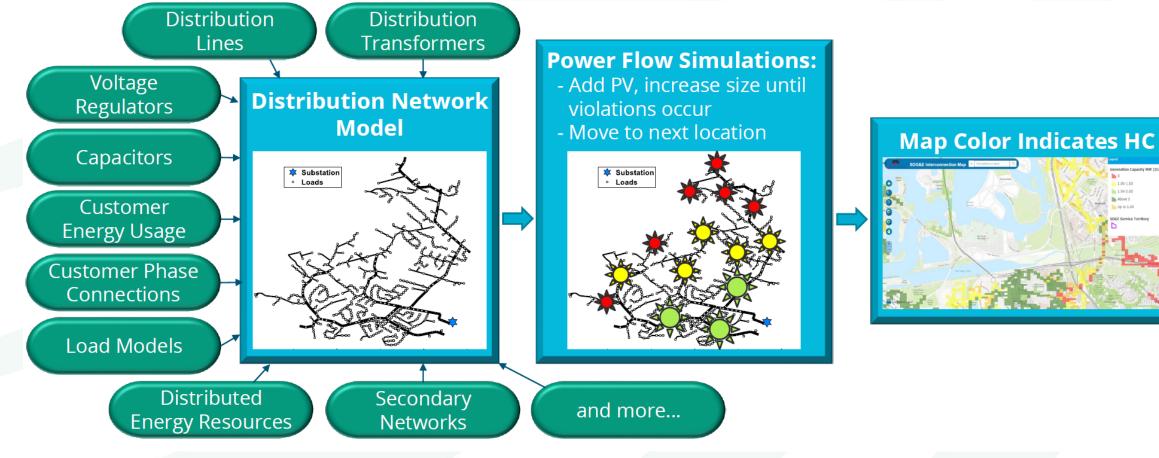

R3IT

R3IT

Production Release Overview

- Features:
 - Online application and document submission
 - Payment and signature collection
 - Interconnection lifecycle management
 - Email notifications
 - Automated engineering screening
 - Configurable through single file
 - Can be Cloud hosted or deployed locally
- Try it out!
 - <u>https://demo.r3it.ghw.io</u>
 - Register with your email to see the consumer workflow
 - Login with username "engineer@electric.coop" and password
- Want to install? See the open-source release:
 - <u>https://github.com/dpinney/r3it</u>

Interconnecting Distributed Generation


Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

This work supported by the DOE's EERE under the Solar Energy Technologies Office

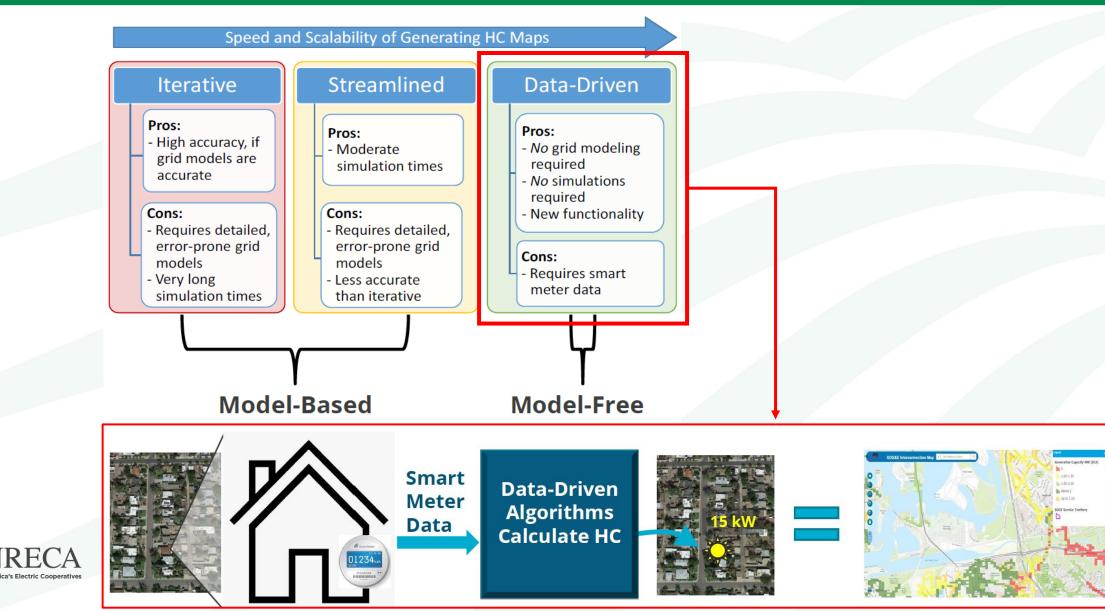
Tools Being Finalized MOHCA (NRECA-Sandia-GTech)

• Conventional model-based HCA

Source : Sandia

Tools Being Finalized MOHCA (NRECA-Sandia-GTech)

Objectives


- Develop scalable algorithms for estimating the voltage and thermal-constrained HC at smart meter locations
- Algorithms for identifying optimal inverter settings
- Evaluating hosting capacity as a time-series, instead of considering a handful of worst-case scenarios that may underestimate HC

• Motivation

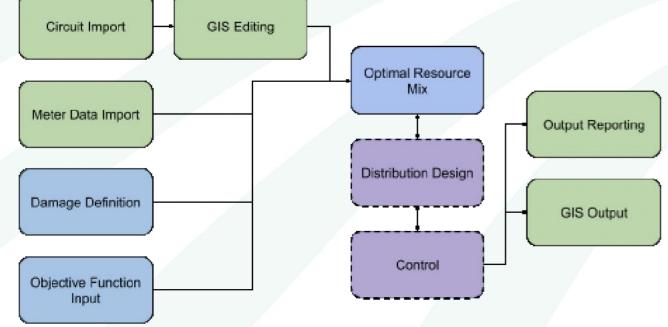
- Co-ops already have the smart meter infrastructure and data, but maybe not models/tools/time
- Help drive down the cost of solar, improving access to affordable clean energy
- Providing energy justice by facilitating the siting of Community Solar projects that benefit low-income areas

Tools Being Finalized MOHCA (NRECA-Sandia-GTech)

Tools Being Finalized Microgrid UP

• Core problem is installation resilience

- Critical installations require electric power to operate at full strength, as is reflected in for 14 days of islanded operation
- Majority of electric power outages were due to disruptions to the bulk grid
- Microgrids offer resilience but planning them is challenging:
 - Deployment incurs large planning costs (20-40% of total costs)
 - Complex environment of legacy generators and infrastructure are not interconnected
 - Planning requires engineering planning, damage modeling, and characterization of critical loads


• Current approach:

- No shared approach across the utility industry, especially for multi-building sites
- No comprehensive planning tools (unlike for e.g. distribution design)

Tools Being Finalized Microgrid UP

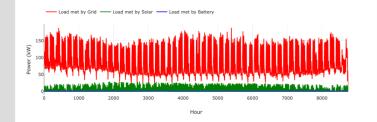
- Objectives
 - Develop a common microgrid planning methodology including standardization of assumptions and data requirements
 - Implement an open-source tool that solves the key computational problems in large installation microgrid design (optimal distribution design and generation mix)
 - Field-validate the process and tool by creating microgrid roadmaps for 4 diverse military installations
- System architecture

Tools Being Finalized Microgrid UP

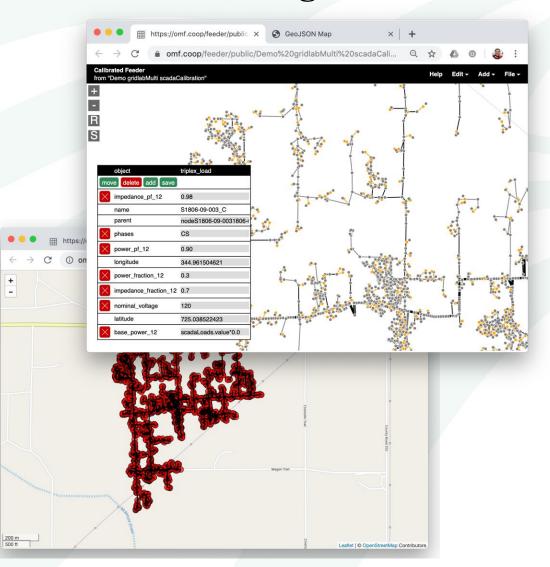
• Generation mix

•••	Gpen Modeling Framew	vork × +		
$\leftarrow -$	C mode	el/admin/estcp	२ ☆ 🛆 🛛	9 -
	Year	Cost of Energy (\$/kWh)	Cost of Demand (\$/kW)	
		2001 0	.08 20	
	Select your Technologies			
	Solar	✓ Wind	 Battery 	
	Solar Cost (\$/kW)	Minimum Solar Generation (kW)	Energy capacity cost (\$/kWh)	
		2000	0 500	
	Power capacity cost (\$/kW)	Minimum Power Cpacity (kW)	Minimum Energy Cpacity (kWh)	
		1000	0 0	
	Resilence			
	Critical Load Factor			
		50		
			Delete Publish Duplicate Run Model	

Microgrid Overview


Total Savings (20 years)	4610
Recommended Solar (kW)	36.8292
Recommended Battery Power (kW)	1.733
Recommended Battery Capacity (kWh)	2.2853
Average length of survived Outage (hours)	0
Minimum length of survived Outage (hours)	0
Maximum length of survived Outage (hours)	4

+


Microgrid Financial Overview (Click here to download detailed ProForma analysis)

	Business as Usual	Microgrid	Difference
Demand Cost	388033.49	367849.4	20184.089999999967
Energy Cost	610894.91	578446.33	32448.58000000075
Total Cost	998928	994318	4610

Load Overview

• Data Ingest

Smart Inverter Demo Project – Voltage Regulation

Simulation Studies

- Objective of simulation studies determine alternative settings for studied solar PV sites
- Study the impact of changing the settings on inverters operations and distribution feeder
- Used actual load and solar datasets from sites
- We use circuit models and run QSTS using NRECA's **OMF & OpenDSS**
- It considers the unique characteristics of rural distribution feeders

Step 1: Pre-test data collection Circuit model (e.g., WindMil, CYME)

- Hourly/sub-hourly solar generation
- Hourly/sub-hourly load data at substation, and at individual meters

Step 2: Simulation studies (alternative settings)

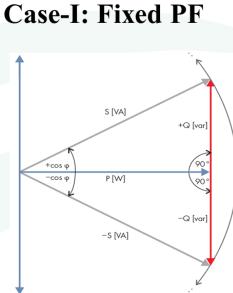
- Base Case (Unity PF/No voltage regulations)
- Case-I (Fixed non-unity PF)
- Case-II (Volt-Var) or (Volt-Watt) curves

Step 3: Test plan and field test

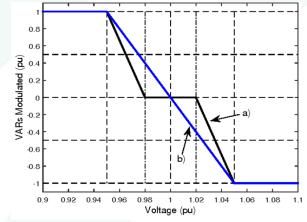
- Implementing different simulated VR settings
- Circuit response and collecting data of covariates impacting results

Step 4: Post-test data collection & analyses

- Substation data (Voltage, load, regulators operation)
- Point of Interconnection (POC) data (Voltage, power, etc.)
- AMI readings at different parts of the system

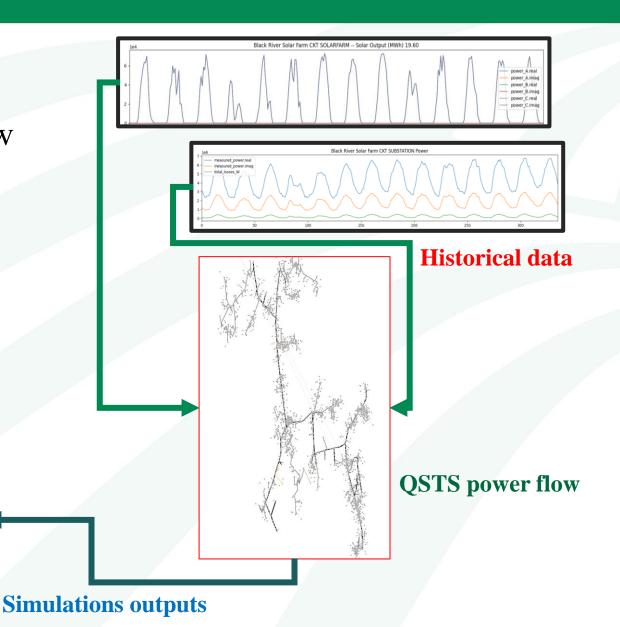


Smart Inverter Demo Project – Voltage Regulation


Simulation Studies

- Base Case (Default Settings)
 - Unity PF/Set and forget
 - No Voltage Regulation required (older versions IEEE 1547)
- Case-I
 - Fixed PF Inductive/Capacitive
 - Considering CAT-I & CAT-II
- Case-II
 - Volt-Var Curve (with and without deadband)
 - Volt-Watt if available
 - Considering CAT-I & CAT-II

Considering fixed step fixed PF Case-II: Volt-Var Curves


Considering different slopes, with and without dead-band curves

Smart Inverter Demo Project – Voltage Regulation

Simulation Studies Outputs

- Voltage profile along the feeder and how it relates to the distance from solar PV system and the substation
- Impact on losses
- Impact on voltage regulating devices operations
- Power Factor at the substation

Distributed Generation Toolkit Update

- <u>DG Toolkit</u> consists of forms and procedures to help co-ops with DER interconnection
- For all sizes of DG: A model distribution cooperative agreement for interconnection and operation of distributed generation
- Small size applications:
 - Small size DG model interconnection application
 - Shortened small size DG application for residential members (only Solar and/or Storage)
- Medium size DG model interconnection application
- Large size DG model interconnection application
- Extra-Large applications:
 - Extra Large DER fast-tack document
 - Extra Large Generator Interconnection (GI) Study Data Sheets for all types (PV, wind, synchronous)

Thank you

Questions ?

Fathalla Eldali Sr. Distribution Optimization Engineer Fathalla.Eldali@nreca.coop

